用户名: 密码: 验证码:
松南无机成因CO_2与常规油气的耦合差异成藏研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
松辽盆地石油、天然气资源丰富,常规油气与幔源成因CO_2共存。本文对幔源CO_2与常规油气双重充注区域不同流体成藏机制和耦合关系进行了研究和讨论。CO_2成藏控制因素研究表明:深部构造背景控制了CO_2区域分布,基底大断裂与热流底辟体相衔接构成幔源成因CO_2脱气和运移的通道,部分基底大断裂在坳陷期和反转期持续活动断至浅层,控制了中浅层CO_2的聚集和分布。青山口期及新生代岩浆活动提供了主要CO_2气源。基底大断裂及其附属体系是联系常规油气和CO_2气的桥梁,幔源成因CO_2与常规油气共享圈闭和储层等成藏要素而耦合分布在一起。营城组火山岩和泉头组四段河道砂岩是二者的优质储层,区域盖层共同限制了两种类型流体的聚集层位;不同的成因机理、运聚过程决定了两种流体在空间上的分布差异。CO_2与常规油气成藏的耦合关系研究,对于进一步深化认识两种流体的分布特点和高效勘探,具有重要的理论和现实意义。
Along with the progress of natural gas exploration,large scale of inorganic carbon dioxide has been found in Changling area.In fact some inorganic gas was captured in several areas such as Wanjinta,Gudian ,Qian an,Honggang and Changde in Songliao Basin.Such facts indicate that mantle-resource gas exists commonly in the basin,Constituent and isotope of natural gas are the important parameters that can be used to distinguish the type of gas origination.According to the analysis of isotope of natural gas in Southern Songliao Basin,we can conclude that most of the inorganic carbon dioxide is inoganic.
     The distribution of inorganic natural gas has been studied by several scholars at home and abroad.Generally they often pay attention to the machanism and accumulation of natural gas. After integrating the achievement of ancestors ,such as studying on the tectonic characters of deep layer and high abnormal thermal-flow of Songliao Basin,crust-mantle structure in the deep strata and the leading passages of mantle-genetic carbon dioxide reservoir,we mainly studied the coupling mechanism of inorganic carbon dioxide and petroleum in different depth of the layer.
     Some important conclusions are acquired:
     1.The crust low-velocity and high-conduction zone in the deep layer of Songliao Basin may be the magma chamber accummulated in the mid or lower crust and produced from the partly melting inside mantle under the interaction of crust and mantle. The low-velocity and high-conductivity zone may also be the melted lava inside crust under the condition of high thermal flow and shortage of water.
     2.Different kinds of fault controlled the distribution of inorganic carbon dioxide The generation,migration and accumulation of inorganic carbon dioxide are controlled by different kinds of faults in the basin.Ingeneral,large scale fault such as shell fault controlled the supply of gas,and the basic fault in basin controlled the distribution in different layer of inorganic carbon dioxide,and the fault of late periods mantained the redistribution of inorganic carbon dioxide.
     The activity of fault in Songliao Basin can be classified into 7 periods.and the intense exercise are mainly 3 times,that is earlly Cretaceous,the times of Qingshankou,and the end of Mingshui formation.
     Fault in earlly cretaceous contronlled the volcanic eruption and to take shape the advantaged reservior,they also controlled the distribution of crater.Multi-activity faults creat lots of crack in the reservior nearby crater.this is very useful to impprove the penetrability of volcanic reservoir.
     Fault activity at the end of Mingshui formation caused transportation and accumulation of huge inorganic carbon dioxide.the extent of fault controlled the position of inorganic carbon dioxide reservior.
     3. Controlling machanism of magamtism and volcatism
     Lava in Yingcheng formation have the characteristics of huge thickness,wide range distribution,are the excellent quality reservoir in the basin.
     Magamtism and volcatism of Mesozoic in the basin are distributed in four formation.that is Huoshiling formation,Shahezi formation,Yingchengzi formation and Qingshankou formation. magamtism and volcatism of Cenozoic which are seldem found,we can found that at the marginal of basin, volcatism such as Wudalianchi and Datun volcanic.
     During the formation of Yingcheng, magamtism activity are very popular,heat flow piercement overflow along the fault system,and great scale of volcano-magma were formed.and at the same time,huge amount of carbon dioxide were disipated because of no seal formation .
     During the time of Qingshankou-Cenozoic, magamtism activity were once more developed,most of the heatflow piercement did not pass through the Huoshiling formation and above formation.Out gas migreted along fault and accumulated in the fracture of lava.At that time,overlap such as Denglouku formation were formed,kept the carbon dioxide reservoiring.
     4.Hydrocarbon in deep layer has the different origination from iorganic carbon dioxide,the two sides have great distinction on accumulation. In the area with good source rocks,lava will be put into hydrocarbon under the communication by faults.Once the trap meet the accumulation conditions of both hydrocarbon and iorganic carbon dioxide,there will form mix reservoir which contain hydrocarbon and inorganic carbon dioxide.in the area with poor source rocks,under the communication of huge fault, iorganic carbondioxide will be acuumulated.
     5.The controlling factor in Quantou formation are:,sandstones are continuously distributed in the whole basin,reservoirs are compact in the depression area;oil sources are abundant and with overpressure as the major driving force of hydrocarbon expulsion;
     The coupling mechanism between inorganic carbon dioxide and petroleum in Quantou formation are:first,petroleum are accumulated at Mingshui formation,and inorganic carbon dioxide invaded oil reservior at Neozoic,The destroy effection of original oil reservior are limited,just becaused that the sandstone almost isolated.then the redistribution of petroleum are only inside the sandstone.
     The effection of inorganic carbon dioxide to petroleum reservoir are obvious. Waters in reservoir showed high outliner abnormol value in the case of carbondioxide influxion which greately changed total minerlitation of reservoir,and the invasion of iorganic carbon dioxide created abundance of dawsonite.This is very infaust factor to the penetrability of reservoir.
引文
[1]孙玉梅,郭徙燕,王彦.莺-琼地区天然气注入史分析.[J].中国海上油气,2000,14(4):240-246.
    [2] Wenzhi Zhao, Zecheng Wang, Jingming Li. Natural gas resources of the sedimentary basins in China[J]. Marine and Petroleum Geology ,2008,25:309–319.
    [3]戴金星,宋岩,戴春森等.中国东部无机成因气及其气藏形成条件[M].北京:科学出版社, 1995, 1-10.
    [4]付晓飞.宋岩.松辽盆地无机成因气及气源模式.[J].石油学报,2005,26(4):23-28.
    [5]刘立,高玉巧,曲希玉,等.海拉尔盆地乌尔逊凹陷无机CO2气储层的岩石学与碳氧同位素特征[J].岩石学报, 2006,22(8):1861-1868.
    [6]高玉巧,刘立,张福松等.海拉尔盆地乌尔逊片钠铝石的碳氧同位素组成及流体来源探讨[J].岩石学报, 2007, 23(4): 831-838.
    [7] Bader E.Uber die buiding and konstitution des dawsonite and seine synthetic darstelling Mineralogy [J]. Geology and Palaeotology,1938, 74:449-465
    [8] Chesworth W.Laboratory synthesis of dawsonite and its natural occurrences.[J].Natural and Physical Sciences,1971,231: 40-41
    [9] Zhang Xiangfeng, Wen Zhaoyin, Gu Zhonghua,et al.Hydrothermal synthesis and thermodynamic analysis of dawsonite-type compounds.[J].Journal of Solid State Chemistry,2004,177(3):849-855
    [10] Hay R.Zeolite weathering in Olduvai Gorge, Tanganyika.[J]. Bulletin of Geological Society of America,1963,74: 1281-1286
    [11] Smith J W, Milton C.Dawsonite in the Green River Formation of Colorado.[J].Economic geology.1966,61: 1029-1042
    [12] Hellevang H,Aagaard P,Oelkers E and Kvamme B.Can dawsonite permanently trap CO2? [J]. Environ.Sci.Technol,2005,39:8281-8287
    [13]王佰长.谈迎.刘德良.松辽盆地北部二氧化碳的成藏疏导通道.[J].石油学报,2005,26(2):43-46.
    [14]高玉巧.刘立.曲希玉.海拉尔盆地片钠铝石及研究意义.[J].地质科技情报,2005,24(2):45-50.
    [15]曲希玉.刘立.乌尔逊凹陷含片钠铝石地层水特征及成因.[J].大庆石油学院学报,2006,14(3):7-10.
    [16]程裕淇.中国区域地质概论[M].北京:地质出版社,1994:461-465.
    [17]高君,李占林,李勤学.松辽盆地北部深部地壳结构及盆地成因机制.[J].大庆石油地质与开发,2002,21(1):20-22.
    [18]杨宝俊,穆石敏,金旭,刘财.中国满洲里──绥芬河地学断面地球物理综合研究[J].地球物理学报, 1996,21(1):16-21.
    [19]葛肖虹,马文璞.东北亚南区中—新生代大地构造轮廓[J].中国地质,1996,21(1):16-21.
    [20]田在艺,史卜庆.中国中新生界沉积盆地与油气成藏[J].大地与构造成矿学,2002,26(1):1-5.
    [21]赵越,杨振宇,马醒华,东亚大地构造发展的重要转折[J],地质科学; 1994(2): 25-32.
    [22]刘德来,陈发景,关德范.松辽盆地形成、发展与岩石圈动力学[J];地质科学,1996,17(3):25-29.
    [23]王骏.王东坡.邵林海.沉积盆地学说的发展及主要的含油气盆地分类.[J].世界地质报,1996,7(2):35-41.
    [24]高瑞祺,萧德铭.松辽盆地及其外围盆地油气勘探新进展[M].北京:石油工业出版社,1995:138-145.
    [25]郭占谦,王先彬.松辽盆地非生物成因气的探讨[J].中国科学B辑,1994,14(3):23-28.
    [26]张晓东,余青,陈发景,汪新文.松辽盆地变质核杂岩和伸展断陷的构造特征及成因.[J].地学前缘, 2000(7)4:411-419.
    [27]刘和甫,梁慧社,李晓清.中国东部中新生代裂陷盆地与伸展山岭耦合机制.[J].地学前缘, 2000(7)4: 477-486.
    [28]陈践发,徐永昌,黄第藩.塔里木盆地东部地区天然气地球化学特征及成因探讨(之一)[J].沉积学报,2000,18(4):606-609.
    [29]徐永昌.天然气中的幔源稀有气体[J].地学前缘,1996,3(3/4):63-70.
    [30]徐永昌.天然气成因理论及应用[M].北京:科学出版社,1994:97-106.
    [31]沈平,徐永昌,王先彬,等.气源岩和天然气地球化学特征及成气机理研究[M].兰州:甘肃科学技术出版社,1991:39-122.
    [32]戴金星.中国含油气盆地的无机成因气及其气藏[J].天然气工业,1995,15(3):22-27.
    [33]戴金星,石昕,卫延召.无机成因油气论和无机成因的气田(藏)概略[J].石油学报,2001,22(6):5-10.
    [34]张士亚,郜建军,蒋泰然.利用甲、乙烷碳同位素判识天然气类型的一种新方法[G]//地质矿产部石油地质研究所.石油与天然气地质文集(一):中国煤成气研究.北京:地质出版社,1988:48-58.
    [35]伊培荣,彭峰,韩云.天然气地质学的新发展[J].天然气地球科学,1997,8(4):1-7.
    [36]刚文哲,高岗,郝石生,等.论乙烷碳同位素在天然气成因类型研究中的应用[J].石油实验地质,1997,19(2):164-167.
    [37]戴金星,宋岩,张厚福,等.中国天然气的聚集区带[M].北京:科学出版社,1997:33-35,100-109.
    [38]戴金星,洪峰,秦胜飞,等.中国煤成气田分布规律初探[C]//戴金星,傅诚德,夏新宇.煤成烃国际学术研讨会论文集.北京:石油工业出版社,2000:1-14.
    [39]李德生.李德生石油地质论文集[G].北京:石油工业出版社,1998:5-452.
    [40]刘文汇,徐永昌.天然气中氦、氩同位素组成特征[J].科学通报,1993,38(6):818-821.
    [41]沈平,徐永昌,刘文汇,等.天然气研究中的稀有气体地球化学应用模式[J].沉积学报,1995,13(2):48-58.
    [42]戴金星,戚厚发.我国煤成烃气的δ13C1-R.关系[J].中国科学B辑,1989,19(9):690-692.
    [43]高瑞祺,萧德铭.松辽盆地及其外围盆地油气勘探新进展[M].北京:石油工业出版社,1995:138-145.
    [44]迟元林,云金表,蒙启安,等.松辽盆地深部结构及成盆动力学与油气聚集[M].北京:石油工业出版社,2002.
    [45]赵文智,汪泽成,王红军,等.近年来我国发现大中型气田的地质特点与世纪初天然气勘探前景[J].天然气地球科学,2005,16(2):687-692.
    [46]于秀英,程日辉.裂谷盆地构造控制地形-沉积体系演化研究与面临问题[J].世界地质,2004,23(2):123-127
    [47]刘德良,杨强,李振生,等.松辽盆地多元构造系统要览[J].天然气地球科学,2005,16(4):433-436.
    [48]周庆华,吕延防,付广,等.松辽盆地北部西斜坡油气成藏模式和主控因素[J].天然气地球科学,2006,17(6):765-769.
    [49]王德发,陈建文.中国东部沉积盆地在中新生代的沉积演化[J].地球科学--中国地质大学学报,1996,21(4):441-448.
    [50]程学儒,王青海.中国含气盆地的形成因素探讨[J].大庆石油学院学报,1993,17(4):14-23.
    [51]程日辉.徐家围子断阶带对火山岩体和沉积相的控制[J].石油与天然气地质,2004,24(2):126-129.
    [52]徐开礼,朱志澄.构造地质学[M].北京:地质出版社,1989.
    [53]胡见义.石油地质学前缘[M].北京:石油工业出版社,2002.
    [54]中国石油勘探与生产分公司.岩性地层油气藏勘探理论与实践培训教材[M].北京:石油工业出版社,2005.
    [55]邵明礼,门吉华,魏志平.松辽盆地南部二氧化碳成因类型及富集条件初探[J].大庆石油地质与开发,2000,19(4):1-3.
    [56]陈国利.松辽盆地南部天然气的分布特征[J].新疆石油地质,2003,24(6):520-522.
    [57]王濮,潘兆橹,翁玲宝.系统矿物学(下)[M].北京:地质出版社,1987:415
    [58]徐衍彬,陈平,徐永成.海拉尔盆地碳钠铝石分布与油气的关系[J].石油与天然气地质,1994,15(4):322-327
    [59] Baker J C, Bai G P, Hamilton P J, et al. Continental-scale magmatic carbon dioxide seepage recorded by dawsonite in the Bowen-Gunnedah-Sydney basin system, eastern Australia[J].Journal of Sedimentary Research, 1995,A65(3):522-530
    [60]杜韫华.一种次生的片钠铝石[J].地质科学,1982,4:434-437
    [61]黄善炳.金湖凹陷阜宁组砂岩中片钠铝石特征及对物性的影响[J].石油勘探与开发,1996,23(2):32-34
    [62]宋荣华,王军,何艳辉,等.荧光图像技术判断储层流体性质研究[J].油气井测试,2000,9(4):28-32
    [63]孙玉梅,郭迺嬿,王彦.莺-琼气区天然气主气源及注入史分析[J].中国海上油气(地质),2000,14(4):240-247
    [64]高玉巧,刘立,曲希玉.片钠铝石的成因及其对CO2天然气运聚的指示意义[J].地球科学进展,2005,20(10):1083-1088.
    [65] Gunter W D, Wiwchar B, Perkins E H. Aquifer disposal of CO2-rich greenhouse gases: extension of the time scale of experiment for CO2-sequestering reactions by geochemical modeling [J]. Mineralogy and Petrology, 1997, 59: 121–140.
    [66]曾荣树,孙枢,陈代钊,等.减少二氧化碳向大气层的排放——二氧化碳地下储存研究[J].中国科学基金,2004,4:196-200.
    [67] Haywood H M, Eyre J M, Scholes H. Carbon dioxide sequestration as stable carbonate minerals - environmental barriers [J]. Environmental Geology, 2001, 41:11-16.
    [68] Haszeldine R S, Quinn O, England G, et al. Natural Geochemical analogues for carbon dioxide storage in deep geological porous reservoirs, a United Kingdom perspective[J]. Oil & Gas Science and Technology, 2005, 60(1):33-49.
    [69]周蒂. CO2的地质储存——地质学的新课题[J].自然科学进展,2005,15(7):782-787.
    [70] XU T F, APPS J A, PRUESS K. Mumerical simulation of CO2 disposal by mineral trapping in deep aquifers [J]. Applied Geochmistry, 2004, 19: 917-936.
    [71] XU T F, APPS J A, PRUESS K. Mineral sequestration of carbon dioxide in a sandstone-shale system [J]. Chemical Geology, 2005, 217: 295-318.
    [72]郭巍,刘彦杰,王建功,等.松辽盆地英台地区储层砂岩体微观结构特征研究[J].长春科技大学学报,1998,28(2):162-165.
    [73]吴新民,康有新,姜英泽,等.吉林大安北油田葡萄花储层岩石基本特征[J].西安石油学院学报,1999,14(1):6-9.
    [74]吴新民,康有新,张宁生.吉林油田大26井区储层潜在伤害因素分析[J].西安石油学院学报(自然科学版),2001,16(5):29-32.
    [75]赵荣.松辽盆地南部红岗油田高台子油层油藏地质特征研究[D].大庆:大庆石油学院,2003.
    [76]薛永超,彭仕宓,朱红卫,等.新立油田泉三、四段储层成岩作用及储集空间演化[J].西安石油大学学报(自然科学版),2005,20(4):11-16.
    [77]王大锐.油气稳定同位素地球化学[M].北京:石油工业出版社, 2000:17-119.
    [78]翟光明.中国石油地质志(卷二)——大庆、吉林油田(下册)[M].北京:石油工业出版社,1993,270-287.
    [79]高玉巧,刘立,蒙启安,等.海拉尔盆地与澳大利亚Bowen-Gunnedah-Sydney盆地系片钠铝石碳来源的比较研究[J].世界地质,2005,24(4):344-349.
    [80]隋少强,宋丽红,张金亮.海拉尔盆地乌尔逊凹陷大磨拐河组成岩作用研究[J].大庆石油地质与开发,1996, 15(4):12-16.
    [81] Golab A N, Carrb P F, Palamara D R. Influence of localised igneous activity on cleat dawsonite formation in Late Permian coal measures, Upper Hunter Valley, Australia[J]. International Journal of Coal Geology, 2006, 66(4): 296-304.
    [82] Worden R H. Dawsonite cement in the Triassic Lam Formation, Shabwa basin, Yemen: A natural analogue for a potential mineral product of subsurface CO2 storage for greenhouse gas reduction[J]. Marine and Petroleum Geology, 2006, 23:61-77.
    [83] Ohmoto H, Rye R O. Isotopes of sulfur and carbon[A]. In: Barnes H L. Geochemistry of Hydrothermal Ore Diposits[C]. New York: Wiley Press, 2nd Edition, 1979: 509-567.
    [84]余和中,蔡希源,韩守华,等.松辽盆地石炭-二叠系烃源岩研究[J].沉积与特提斯地质,2003,23(2):62-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700