用户名: 密码: 验证码:
苹果早期落叶病生物防治关键技术研究及其田间应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,苹果早期落叶病已成为我国苹果生产中最严重的病害之一,在我国各苹果主产区均有发生,且发病率逐年上升,直接影响苹果的产量和质量,危害巨大。
     本研究对广谱拮抗菌株分离筛选、菌株分类鉴定、拮抗菌株对病原菌的抑制作用、抑菌物质的分离纯化和研究、发酵工艺优化和田间防治等苹果早期落叶病生物防治关键技术进行了系统地研究,以期为苹果早期落叶病的生物防治提供理论依据和奠定应用基础,旨在探索一条绿色高效、可持续的苹果早期落叶病病害防治途径。
     采用稀释分离法从不同来源的11份样品中分离纯化得到细菌菌株173株,以8种植物病原菌为靶标、采用平板对峙法、以抑菌效果明显和菌株生长迅速为筛选标准,进行植物病害广谱拮抗菌株的筛选,共筛选得到广谱拮抗菌株20株,其中有7株菌株对苹果斑点落叶病病原菌(Alternaria alternata f.sp.Mali)和苹果褐斑病病原菌(Marssoninacoronaria(Ell Et Davis)Davis)均有明显抑制作用。然后以Alternaria alternata f.sp.Mali和Marssonina coronaria(Ell Et Davis)Davis为靶标、采用平皿叶片法,对7株广谱拮抗菌株进行苹果早期落叶病广谱拮抗菌株的复筛,复筛结果显示菌株BS24和菌株D4的抑制效果最好,病叶抑制率分别为100%和90.48%。
     结合传统细菌分类鉴定方法和16S rDNA序列分析对拮抗菌株BS24和D4进行分类鉴定,结果表明菌株BS24应为枯草芽孢杆菌和菌株D4应为巨大芽孢杆菌,Genbank登录号分别为GQ213991和FJ755786。
     系统研究了拮抗菌株BS24对病原菌的作用方式。菌株BS24可显著抑制Alternariaalternata f.sp.Mali、Marssonina coronaria(Ell Et Davis)Davis的菌丝生长,抑菌带宽度分别为9.5 mm和9.2 mm;可在苹果叶片上迅速定殖、占据生存空间,使病原菌无法在叶片上定殖,从而有效地阻断了病原菌对苹果叶片的侵染。菌株无细胞培养滤液同样可明显抑制病原菌的生长,对Alternaria alternata f.sp.Mali和Marssonina coronaria(Ell EtDavis)Davis的抑制率分别为85.48%和82.86%;可使病原菌菌丝生长畸形,出现扭曲变形、明显交联、部分部位断裂、细胞质聚集以及内含物外溢等现象;还可导致芽管生长畸形,明显抑制病原菌分生孢子的萌发。通过酸沉淀、甲醇抽提和RP-HPLC等步骤,分离得到抑菌物质BSP,经研究初步确定其为一个小分子抑菌多肽。BSP抑菌谱较广,对Alternaria alternata f.sp.Mali、Marssonina coronaria(Ell Et Davis)Davis、Phyllostictapirina、Bolyosphoma berengeriana、Fusarim oxysporium f.sp.Melonis、Glanerella cingulata、Alternaria alternata fries Keissler和Alternaria solani等病原真菌和Escherichia coli均具有抑菌活性,其中对Alternaria alternata f.sp.Mali、Marssonina coronaria(Ell Et Davis)Davis的EC_(50)分别为5.03μg/mL和5.60μg/mL。BSP具有良好的热稳定性、pH稳定性和蛋白酶稳定性。菌株BS24可分泌胞外蛋白酶。
     综合考虑工业化生产要求,以发酵液活菌数为检测标准,从6种供试发酵培养基中选出初始发酵培养基。采用Plackett-Burman设计法、最陡爬坡试验、中心组合设计法进行进一步的优化,得到拟合良好的回归方程,R~2=0.96。模型验证显示预测值与实测值之间具有较好的拟合性,预测模型可靠。未优化前发酵液活菌数为8.6×10~9 cfu/mL,优化后为15.08×10~9 cfu/mL,增加了75.35%。优化后发酵工艺为淀粉1.5g,黄豆粉2.16 g,酵母膏0.3 g,蔗糖0.5 g,尿素0.2 g,MnSO_4 0.01 g,MgSO_4 0.01 g,K_2HPO_4 0.2 g,蒸馏水100mL,pH 7.0,转速300 r/min,接种量7.8%。
     田间试验结果表明,拮抗菌剂三个不同浓度的处理均对苹果早期落叶病有较好的防治效果,拮抗菌剂原液、拮抗菌剂50倍液和拮抗菌剂100倍液防治效果分别为83.14%、79.21%和76.99%,均显著高于10%多抗霉素WP 1000倍的70.04%(p<0.05)。供试拮抗菌剂在试验浓度范围内对供试果树无任何不良影响,使用安全。拮抗菌剂处理组果实感官评价、农药残留、重金属残留均符合国家无公害食品的要求。
Nowadays Apple early defoliation diseases have becoming the most serious diseases in most apple-growing areas in China,decreasing the yield and quality of apple.And the incidence was rising year by year.Until now,there is no a very effective control methods for the disease,the chemical pesticides were employed to suppress the diseases.However,the overuse of chemical pesticides inevitably brought about pesticide residues in apple fruit and environmental pollution,directly or indirectly affecting the health of human.Aimed at obtaining the broad-spectrum antagonistic strains and exploring a green and efficient,and sustainable control methods towards Apple early defoliation diseases,the present study was undertaken in antagonistic Bacillus stains screening,identification,inhibitory action, purification and characteristic of antifungal substance,optimization of fermentation process and field experiment.
     173 isolates of bacterial strains were isolated from 11 samples of different sources by Plate Dilution method.20 isolates with broad-spectum antagonistic activity against eight phytopathogens such as Alternaria alternata f.sp.Mali,Marssonina coronaria(Ell Et Davis) Davis,Phyllosticta pirina,Bolyosphoma berengeriana and so on were screening from these 173 isolates by Plate inhibition method.10%of the twelve bacterial strains exhibited obvious antagonistic activity against all of the eight phyopathogens and 70%exhibited obvious antagonistic activity against at least 3 phytopathogens.Seven strains could effectively inhibit Alternaria alternata f.sp.Mali and Marssonina coronaria(Ell Et Davis) Davis,the width of inhibition zone both exceeded 5 mm.The potential antagonistic strains against Alternaria alternata f.sp.Mali and Marssonina coronaria(Ell Et Davis) Davis were screening from the seven broad-spectum antagonistic strains by In vitro leavesf plate method.Compared with the control,the rate of diseased leaves in treatment group were significantly decreased(p<0.05), and strain BS24 and D4 were proved to be the most effective ones with inhibition rate of 100%and 90.48%.This is the first report on the antagonistic strain with broad-spectum antagonistic activity against Alternaria alternata f.sp.Mali and Marssonina coronaria(Ell Et Davis) Davis.
     Strain BS24 and D4 were respectively identified as Bacillus subtilis and Bacillus megaterium though the traditional bacterial systemic identification method and the analysis of 16S rDNA sequence.Genbank accession number was GQ213991 and FJ755786,repectively. This is the first report on Bacillus megaterium with broad-spectum antagonistic activity against kinds of phyopathogens.
     Antagonism of antagonistic strains on phyopathogens was always achieved by the synergistic effect of various action modes.Strain BS24 could strongly inhibit the mycelial growth of Alternaria alternata f.sp.Mali and Marssonina coronaria(Ell Et Davis) Davis, and the width of inhibition zone were 9.5 mm and 9.2 mm,respectively.It could colonize rapidly on apple leaves in vitro and occupy the living space,which inhibit the colonization of phyopathogens and effectively block their invasion of apple leaves.Cell-free culture filtrate could also strongly inhibit the growth of Alternaria alternata f.sp.Mali and Marssonina coronaria(Ell Et Davis) Davis,the inhibition rate was 85.48%and 82.86%,respectively.It could also result in the abnormity and tortuosity of mycelial,cytoplasmic aggregation,the leak of cytoplasmic substances,the abnormal growth of germ tube and the inhibition of Conidia germination.
     After acid precipitation,methanol extraction and RP-HPLC,BSP,an antifungal substance, was obtained and initially determined as a small antifungal peptide.BSP had broad-spectrum angonistic activity,such as Alternaria alternata f.sp.Mali,Marssonina coronaria(Ell Et Davis) Davis,Phyllosticta pirina,Bolyosphoma berengeriana,Fusarim oxysporium f.sp. Melonis,Glanerella cingulata,Alternaria alternata fries Keissler and Alternaria solani and Escherichia coli.And the EC_(50) towards Alternaria alternata f.sp.Mali and Marssonina coronaria(Ell Et Davis) Davis was 5.03μg/mL and 5.60μg/mL,respectively.BSP had good thermal stability,pH stability and protease stability.Strain BS24 can produce protease.
     Considering viable count in fermentation broth and the requirements for industrial production,the initial fermentation medium was screening from six fermentation medium. The further optimization was undertaken though Plackett-Burman Design,path steepest ascent and Central Composite Design.And a good regression equation was obtained;the determination coefficient(R~2) was 0.96,which ensure an adequate credibility of the model. Verification of the predicted values was conducted by using optimal conditions in inoculation experiments.Result showed that the predicted value was much closer to practical value, which corroborated the validity and the effectiveness of this model.The viable count in fermentation broth after optimization was 15.08×10~9 cfu/mL,which increased by 75.35% compared with initial count 8.6×10~9 cfu/mL.The fermentation medium after optimization was as followed,corn flour 1.5 g,bean flour 2.16 g,yeast extract 0.3 g,sucrose 0.5 g,urea 0.3 g, MnSO_4 0.01 g,MgSO_4 0.01 g,K_2HPO_4 0.2 g,distilled water 100 mL,pH 7.0,300 r/min and 7.8%of inoculation.
     Field experiment showed that the three concentration of antagonistic inoculum have both achieved the desirable control efficacy towards Apple early defoliation diseases.The control efficacy were 83.14%、79.21%and 76.99%respectively,which both exceeded that of 10% multiantimycin.The antagonistic inoculum had no harmful effects on plants under the three testing concentration.Residues of chemical pesticides and heavy metals were in all accord with national request for food.Due to its high control efficacy and safety,the antagonistic agent had great potential of application in the field control of Apple early defoliation diseases.
引文
[1] Agrow World Crop protection News Group. EU SCP backs Bio Agri biofungicide [J].Agrow world Crop Protection News, 2002, (393): 8
    [2] Alison H, Govan J, Richard G Could the agricultural use of Burkholderia cepacia pose a threat to human health? [J]. J Emerging Infectious Diseases, 1998, 4(2): 221-227
    [3] Annadurai G. Design of optimum response surface experiments for adsorption of direct dye on chitosan [J]. Bioproc Eng, 2000, 23:451-455
    [4] Anuratha C.S. and Gnanamanickam S.S.. Biological control of bacterial wilt caused by Pseudomonas solanacearum in India with antagonistic bacteria [J]. Plant and Soil, 1990,124: 109-116
    [5] Arras G. Mode of action of an isolate of Candida famata in biological control of Penicillium digitatum in orange fruits [J]. Postharvest bioand Technol. 1996, 8: 191-198
    [6] Banerjee A.B. and Bose S.K. Amino acid configuration of mycobacillin [J]. Nature, 1963, 200: 471
    [7] Barritt B.H. The apple world 2003-present situation and developments for produces and consumers [J]. Compact Fruit Tree, 2003, 36(1): 15-18
    [8] Benitez T, Limon C, Delagado-Jrana J, et al.. Glucanolytic and other enzymes and their genes [M]. In GE. Harman and C.Kubicek (ed.), Trichoderma and Gliocladium:enzymes, biological control and commercial applications, vol.2, aylor and Francis, Ltd.,London, United kingdom.
    
    [9] Breth D.I. Integrated Fruit production (IFP) in Europe-Report of the IDFTA 2001 European Tour [J]. Compact Fruit Tree, 2002, 35(2): 56-58
    [10]Brian S. Row recon Ⅲ. Disease management: Fire blight's destructive path [J]. American Fruit Grower, 2001, 121(3): 11-16
    [11]Buchanan R.E., Bergey N.E. Bergey's manual of determinative bacteriology (9th Ed.) [M]. Baltimore: Williams&Wilkins Company, 1994
    [12]BuIajic A. First report of Alternaria Mali on apples in Yugaslavia [J]. Plant disease, 1996, 80(6): 709
    [13]Calistru C, Melean M and Berjak P. In vitro studies on the potential for biological control of Aspergillus flavus and Fusarium moiliforne by Trichoderma species [J].Mycopathologia, 1997, 137: 115-124
    [14]Castoria R, De-Curtis F, Lima G, et al.. Aureobasidium pullulans LS-30 an antagonist of postharvest pathogens of fruits: Study on its modes of action [J]. Postharvest Biol. Technol., 2001, 22: 6-17
    [15]Ciampi P.L., Femandez C, Bustamante P, et al. Biological control of bacterial wilt of potatoes caused by Pseudomonasso lanacearum [J]. Am. Potato J. 1989, 66: 315-332
    [16]Compant S, Duffy B, Nowak J, et al.. Use of plant growth promoting bacteria for biocontrol of plant disease: Principles, mechanisms of action, and future prospect [J].Appl Environ Microbiol, 2005, 71(9): 4951-4959
    [17] Coombs J.T. and Franco C.M.M. Isolation and identification of actinobacteria from surface-sterilized wheat roots [J]. Applied and Environmental Microbiology, 2003, (69):5603-5608
    [ 18]Daniel P.R., Scott M.L., Susan L.F., et al.. Biocontrol agents applied individually and in combination for suppression of soilborne diseases of cucumber [J]. Crop Protection,2005, 24: 141-155
    [19]Davies O.L., George E.P. and Lewis R C. The Design and Analysis of Industrial Experiments (2nd Ed). London: Longman Group Limited, 1978
    [20]Dipietro A, Lorito M and Hayes C.K. Endochitinase from Gliocladium virens: Isolation,characterization and synergistic antifungal activity in combination with gliotoxin [J].Phytopathology. 1993, 83: 308-313
    [21]Droby S, Hofstein R, Wilson C.L., et al.. Pilot testing of Pichia guilliermondii: a biocontrol agent of posthavest diseases of citrus fruit [J]. Biol. Control, 1993, 3: 46-52
    [22]EI-Ghoahut A, Smilanick J, Wisniewski M, et al.. Improved control of apple and fruit decay with a combination of Candida Saitoana and 2-deoxy-D-glucose on Botrytis cinerea, Pencillium expansum and Rhizopus stolonifer. Ultrastuctural and cytochemical aspect [J]. Phytopathology, 2000, 87: 772-779
    [23]Fani R, Bandi C, Bazzicalupo M, et al.. Phylogeny of the genus Azospirillum based on 16S rDNA sequence [J]. FEMS Microbiol Lett, 1995, 129, 195-200
    [24]Filonow. Role of competition of sugars by yeasts in the biocontrol of gray mold of apple. [J].Biocontrol Science and Technology,1998,8:243-256
    [25]Forbes G.A.Laboratory manual for Phytophthora infestans work at CIP-Quito,CIP,2001:1-41
    [26]Fravel D.R.Commercialization and implementation of bioeontrol[J].Annual Review of Plant Biology,2005,43:336-359
    [27]Gacto M.,Vicente-Soler J.,Cansado J.,et al..Characterization of an extraeellular enzyme system produced by Micromonospora chalcea with lytic activity on yeast cells[J].J.Appl.Microbiol.,2000,88(6):961-967
    [28]GB/T 17980.124-2004,农药田间药效试验准则(二)第124部分:杀菌剂防治苹果斑点落叶病[S].北京:中国标准出版社,2004
    [29]Gueldner R,Shtienberg D,Elad Y,et al..Combining biocontrol agents to reduce the variability of biological control.Phytopathology,2001,91:621-627
    [30]Jonasson J,Olofsson M and Monstein H.J.Classification,identification and subtyping of bacteria based on pyrosequeneing and signature matehing of 16S rDNA fragments[J].Apmis,2002,110:263-272
    [31]Jones J.B.,Chase A.R.and Harris G.K.Evaluation of the Biolog GN Microplate System for identification of some plant-pathogenic baeteria[J].Plant Dis,1993,77:553-558
    [32]Kracht M,Rokos H and Ozel M.Antiviral and hemolytic activities of surfactin isoforms and their methyl ester derivatives[J].J Antibiotics,1999,52:613-619
    [33]Lai L.S.T.,Pan C.C.and Tzeng B.K.The influence of medium design on lovastation production and pellet formation with a high-producing mutant of Aspergillus terreus in submerged cultures[J].Proc Biochem,2003,38:1316-1326
    [34]Landy M,Warren G.H.and Rosenman S.B.An antibiotic from Bacillus subtilis against pathogenic fungi[J].Proc Soc Exp Biol Med,1948,67:539-541
    [35]Larena L,Melgarejo A.Production,survival and evaluation of solid substrate inocula of Penicillium oxalicum,a biocontrol agent against Fusarium wilt of tomato[J].Phytopathology,2002,92:863-869
    [36]Leverentz B,Janisiewicz W.J.,Conway W.S.,et al..Combining yeasts or a bacterial biocontrol agent and heat treatment to reduce postharvest decay of Gala apples.Postharvest Biol.Tech.,2000,21:86-94
    [37]Lim T.K.and Tohrbach K.G.Role of Penicillium funiculosum strains in the development of pineapple fruit diseases[J].Phytopathology,1980,70:663-665
    [38]Lima G,De Curtis F and Castoria R.Activity of the yeasts Cryptococcus Laurentii and Rhodotorula glutinis against post-harvest rots on different fruits[J].Biocontrol Science and Technology,1998,8:256-267
    [39]Markovich N.A.and Kononova G.L.Lytic Enzymes of Trichoderma and their role in plant defense from fungal disease:a review[J].Applied Biochemistry and Microbiology,2003,39(4):341-351
    [40]Mendo S,Faustino A.N.,Sarmento A.C.,et al.Purification and characterization of a new peptide antibiotic produced by a thermotolerant Bacillus licheniformis strain[J].BiotechnologyLetters,2004,26(2):115-119
    [41]Montgomeryd C.Design and Analysis of Experiments[M].New York:John Wiley &Sons,1991.
    [42]NY/T 1156.1-2006,农药室内生物测定试验准则杀菌剂第3部分:抑制病原真菌孢子萌发凹玻片法[S].北京:中国农业出版社,2006
    [43]NY/T 1156.3-2006,农药室内生物测定试验准则 杀菌剂 第3部分:抑制黄瓜霜霉病原菌试验 平皿叶片法[S].北京:中国农业出版社,2006
    [44]NY/T 5011-2006无公害食品 仁果类水果[S].北京:中国农业出版社,2006
    [45]Ohshiro T,Aoi Y,Torii K,et al..Flavin reductase coupling with two monooxygenases involved in dibenzothiophene desulfurization:purification and characterization from a non-desulfurizing bacterium,PaeniBacillus polymyxa A-1[J].Appl Microbiol Biotechnol,2002,59:649-657
    [46]Oijkaasl P,Wilkinson E.C.and Tramper J.Medium Optimization for Spore Production of Coniothyrium Minitans Using Statistically Based Experimental Designs[J].Biotechnology and Bioengineering,1999,64(1):92-100
    [47]Ongena M,Jacques P.Bacillus lipopeptides:Versatile weapons for plant disease biocontrol[J].Trends in Microbiology,2008,16:115-125
    [48]Patel PS,Huang S,Fisher S,et al..Bacillaene,a novel inhibitor ofprokaryotic protein synthesis produced by Bacillus subtilis:production,taxonomy,isolation,physicochemical characterization and biological activity[J].Antibiotics,1995,48: 996-1031
    [49]Pestieide outlook Group. An effective biofungicide with novel modes of action [J]. Pestieide Outlook, 2002, 13(5): 193-194
    [50]Rotem J. The genus Alternaria: bloiogy, epidemiology, and pathogenicity [M]. St. Paul: APS press, 1994, 11-34
    [51]Sadfi N, Cherif M, Fliss I, et al.. Evaluation of bacterial isolates from salty soils and Bacillus thuringiensis strains for the biocontrol of fusariym dry rot of potato tubers [J].Journal of Plant Pathology, 2001, 83(2): 101-118
    [52]Sadfi N, Cherif M, Hajlaoui M.R., et al. Biological control of the potato tubers dry rot caused by Fusarium roserm var sambucinum under greenhouse field and storage conditions using Bacillus spp. Isolates [J]. Journal of Phytopathology, 2002, 150(11-12):640-648
    [53]Sawamura K. Studies on spotted disease of Apples. I. The causal agent of Alternaria blotch [ J]. Bulletin of the Tohoku Agriculture Experiment Station, 1962, 23: 163-175
    [54] SchislerD.A., Slininger P.L. and Bothast R.J. Effects of antagonist cell concentration and two strain mixtures on biological control of fusarium dry rot of potatoes. Phytopathology, 1997, 87: 176-183
    [55] Silosuh L.A., Lethbridge B.J., Raffel S.J., et al. Biological activities of two fungistatic antibioties produced by Bacillus cereus UW85 [J]. App Environ Microbiol, 1994, 60(6):2023-2030
    [56]Stanislav G.B., Tatiana A.R., Stanislav E, et al. A novel lipoeptide, an inhibitor of bacterial adhesion , from the thermophilic and halotolerant subsurface Bacillus licheniformis strain 603 [J]. Biochimical and Biophysical Acta, 2003, 16(34): 106-115
    [57]Szekeres A, Kredics L, Antal Z, et al.. Isolation and characterization of protease overproducing mutants of Trichoderma harzianum [J]. FEMS Microbiol.Letters, 2004,233(2):215-222
    [58]Valois D, Fayad K, Barasubiye T, et al.. Glucanolytic antinomycetes antagonistic to Phytophthora Fragariae Var.rubi, the causal agent of raspberry root rot [J]. Appl Environ.Microbiol, 1996, 162(5): 1630-1635
    [59]Weindling R. Studies on a lethal principle effective in the parasitic action of Trichoderma lignorum on Rhizoctonia solani[J].Phytopathology,1932,22:836-845
    [60]Weller D.M.Biological control of soilborne plant pathogens in the rhizosphere with bacteria[J].Annu Rev Phytopathol,1988,26:379-407
    [61]Yoshida S,Hiradate S,Tsukamoto T,et al.Antimicrobiol activity of culture filtrate of Bacillus amyloliquefaciens RC22 isolated from mulberry leaves[J].Phytopathology,2001,91(2):181-187
    [62]Zimmerman S.B.,Schwartz C.D.,Monaghan R.L.,et al.Diffieidin and oxydiffieidin..Novel broad spectrum antibacterial antibiotics produced by Bacillus subtilis:I.Production,taxonomy and antibacterial activity[J].Antibiotics,1987,40:1676-1681
    [63]财政部农业司.我国重点农产品竞争力研究报告[M].经济科学出版社,2005
    [64]蔡兆翔.苹果斑点落叶病的发生原因与防治方法[J].中国果树,2007,(1):62.63
    [65]陈功友,袁红霞,李秀生,等.苹果斑点落叶病发病因子观察及药剂防治试验[J].河南农业大学学报,1990,24(2):205-210
    [66]陈启和,何国庆.产弹性蛋白酶EL314CF10菌株种子培养基优化的研究初报[J].食品与发酵工业,2002,(10):13-17
    [67]陈志谊,刘永锋,陆凡,等.水稻纹枯病生防菌Bs-916产业化生产关键技术[J].植物保护学报,2004,(3):230-234
    [68]陈志谊,许志刚,高泰东,等.水稻纹枯病拮抗细菌的评价与利用[J].中国水稻科学,2000,(2):35-39
    [69]陈志谊.水稻纹枯病拮抗细菌的评估与利用[J].中国水稻科学,2000,14(2):98-102
    [70]陈中义,张杰,黄大防.植物病害生防芽孢杆菌抗菌机制与遗传改良研究[J].植物病理学报,2003,33(2):96-103
    [71]储炬,李友荣.现代工业发酵调控学[M].北京:化学工业出版社,2001
    [72]崔云龙.S-921菌株及其发酵液对苹果树腐烂病原菌作用的试验研究[J].生物防治通报,1992,8(1):26-28
    [73]党志国,赵政阳,郭云忠,等.苹果感染斑点落叶病菌后几种酶活性的变化[J].西北林学院学报,2006,(6):70-72
    [74]邓振山,白重炎,李军,等.陕北苹果常见真菌病害病原菌的分离鉴定研究[J].延安大学学报(自然科学版),2006,(4):65-70
    [75]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001
    [76]杜志辉,雷延明.2002年早期落叶病流行原因及防治对策探讨[J].西北园艺,2003,(4):48-49
    [77]范青,田世平,李永兴,等.枯草芽孢杆菌B-912对采后柑桔果实青、绿霉病的抑制效果[J].植物病理学报,2000,30(1):343-348
    [78]范青,田世平,徐勇.丝孢酵母对苹果采后灰霉病和青霉病抑制效果的影响[J].中国农业科学,2001,34(2):163-168
    [79]方中达.植病研究法(第三版)[M].北京:中国农业出版社,1998
    [80]冯桂馨.苹果褐斑病的发生与防治[J].果农之友,2006,(10):31
    [81]冯瑞华.用AFLP技术和16S rDNA PCR-RFLP分析毛苜蓿根瘤菌的遗传多样性[J].微生物学报,2000,(4):339-345
    [82]傅学池,严志农,徐伟敏,等.苹果斑点落叶病和果实轮纹病生物防治研究[J].中国果树,1997,(3):6-10
    [83]顾真荣,马承铸,韩长安.枯草芽孢杆菌G3防治植病盆栽试验[J].上海农业学报,2002,18,(1):76-80
    [84]顾真荣,马承铸,徐华.枯草芽孢杆菌G3菌剂防治番茄叶霉病田间试验[J].中国生物防治,2003,(4):206-207
    [85]郭泺,刘振宇.论苹果病害IPM系统中的化学防治和生物防治[J].山东林业科技,2000,(1):44-47
    [86]郭萍萍,宗兆锋,李同兴,等.野生山楂上苹果病害生防酵母菌的筛选[J].西北农林科技大学学报(自然科学版),2008,(6):175-179
    [87]郭小侠,陈川,唐周怀,等.苹果早期落叶病的发生规律及生物防治[J].陕西农业科学,2004,(1):62-64
    [88]和青山,袁锋印.两种苹果早期落叶病比较及褐斑病防治建议[J].西北园艺(果树专刊),2008,(3):22
    [89]胡厚芝.宁南霉素的选育与发酵条件的研究.微生物学报,1993,33(6):446-453
    [90]胡升,梅乐和,姚善泾.响应面法优化纳豆激酶液体发酵[J].食品与发酵工业,2003,(1):13-17
    [91]胡同乐,曹克强,王树桐,等.生长季苹果斑点落叶病流行主导因素的确定[J].植物病理学报,2005,35(4):374-377
    [92]胡永红,沈树宝,欧阳平凯.响应面分析法用于微生物培养基浓度的优化[J].工业 微生物,2002,(1):9-12
    [93]纪丽莲.芦竹内生真菌F0238对烟草赤星病的防治作用[J].江苏农业科学,2005,(2):54-56
    [94]焦振泉,刘秀梅,杨瑞馥,等.微孔板杂交法测定椰毒假单胞酵米面亚种的DNA-DNA 同源性[J].微生物学报,2001,41(1):70-75
    [95]焦振泉,刘秀梅.细菌分类与鉴定的新热点:16S-23SrDNA间区[J].微生物学通报,2001,(1):85-89
    [96]孔建,赵白鸽,申效诚,等.中生菌素防治苹果轮纹病和苹果叶斑病的田间试验初报[J].中国生物防治,1995,11(3):119-121
    [97]黎起秦,林纬,陈永宁,等.芽孢杆菌对水稻纹枯病的防治效果[J].中国生物防治,2000,16(4):160-167
    [98]李畅方,罗时华,何强,等.康地蕾得防治番茄青枯病药效试验[J].广东农业科学,2003,(6):38-39
    [99]李东鸿,赵政阳,赵惠燕,等.苹果病虫害综合防治技术规程(草案)[J].西北林学院学报,2004,(4):113-115
    [100]李东鸿,赵政阳,赵惠燕,等.苹果早期落叶病发病规律与药剂防治研究[J].西北农林科技大学学报(自然科学版),2005,(5):76-80
    [101]李东鸿,赵政阳,赵惠燕,等.沼液在苹果上的应用效果研究[M].中国植物保护学会2006学术年会论文集:438-442
    [102]李海飞,赵政阳,梁俊.苹果农药残留研究进展[J].果树学报,2005,22(4):381-386
    [103]李建武,肖能賡,余瑞元,等.生物化学实验原理和方法[M].北京:北京大学出版社,1994
    [104]李静.国内外禁用和限用农药概况[J].黑龙江农业科学,2005,(2):46-48
    [105]李亚芸.五种早期落叶病的比较及科学防治措施[J].果农之友,2008,(9):31
    [106]林加涵,魏文铃,彭宣宪.现代生物学实验(下册)[M].北京:高等教育出版社,2001
    [107]林启美,饶正华,孙焱鑫,等.一株胶质芽孢杆菌RBC13的解磷解钾作用[J].华北农学报,2000,15(4):116-119
    [108]刘焕利,潘小玫,张学君,等.产抗菌蛋白芽孢杆菌的筛选及抗菌蛋白的性质[J]. 中国生物防治,1995,11(4):160-164
    [109]刘雪,穆常青,蒋细良,等.枯草芽孢杆菌代谢物质的研究进展及其在植病生防中的应用[J].中国生物防治,2006,(S1):179-184
    [110]刘伊强,王雅平,潘乃穟,等.拮抗菌TG26的鉴定及其抗菌蛋白BI的纯化和部分特性[J].植物学报,1994,36(3):196-203
    [111]刘永锋,张杰,陈志谊,等.枯草芽孢杆菌Bs-916胞外抗菌蛋白质的生物功能分析[J].江苏农业学报,2008,(3):269-273
    [112]马青,苏静.苹果内生细菌动态分布及其对斑点落叶病的拮抗作用[J].陕西师范大学学报(自然科学版),2007,(4):76-79
    [113]农业部.苹果优势区域发展规划[EB/OL].中国农业信息网,2003.5.
    [114]潘春梅,樊耀亭,赵攀,等.发酵法产氢培养基的响应面分析优化[J].中国农学通报,2008,(1):38-44
    [115]沈德绪主编.果树育种学[M].北京:中国农业出版社,1995
    [116]沈萍,范秀蓉,李广武.微生物学实验(第三版)[M].北京:高等教育出版社,1999
    [117]时春喜,祁志军,马小锋.陕西省苹果树斑点落叶病发生及化学防治的研究[J].农药科学与管理,2003,(9):23-25
    [118]史大卫.苹果早期落叶病的流行发生与防治[J].果农之友,2003,(9):27
    [119]司乃国,刘君丽,杨瑞秀,等.新杀菌剂烯肟菌胺(SYP-1620)对苹果病害的防治效果[J].农药,2008,(8):561-562,568
    [120]田黎,顾振芳,陈杰,等.海洋细菌B29987菌株产生的抑菌物质及对几种植物病原真菌的作用[J].植物病理学报,2003,33(1):76-80
    [121]田少强.苹果早期落叶病的发生与防治[J].河北果树,2003,(2):41.
    [122]仝赞华,王学士.大豆根腐病拮抗菌的室内筛选及温室测定[J].中国生物防治,1998,14(1):25-27
    [123]汪景彦主编.苹果无公害生产技术[M].北京:中国农业出版社,2003
    [124]王程亮,张潞生,高微微,等.芽孢杆菌TS-01对苹果斑点落叶病原菌的拮抗作用及防病效果[J].植物保护学报,2008,(2):183-184
    [125]王大威,刘永建,林忠平,等.一株产生脂肽的枯草芽孢杆菌的分离鉴定及脂肽对原油的作用[J].微生物学报,2008,(3):304-311
    [126]王革,周晓罡,方敦煌,等.木霉拮抗烟草赤星病原菌菌株的筛选及其生防机制[J].云南农业大学学报,2000,15(3):216-218
    [127]王金生,张宏声.枯草芽孢杆菌B1菌株对大白菜软腐病的生防作用[J].南京农业大学学报,1989,12(4):59-62
    [128]王晓青.农用抗生素2-16高产菌株选育及发酵优化组合研究[D].北京:植物保护研究所,2004
    [129]王雅平,刘伊强.枯草芽孢杆菌TG26防病增产效应的研究[J].生物防治通报,1993,9(2):63-68
    [130]王允祥,吕凤霞,陆兆新.杯伞发酵培养基的响应曲面法优化研究[J].南京农业大学学报,2004,(3):89-94
    [131]王政逸,梁训义,施德,等.防治芦笋茎枯病的药剂筛选及田间防治效果测定[J].浙江农业学报,1995,(6):34-40
    [132]魏景超.真菌鉴定手册[M].上海:上海科技出版社,1979
    [133]吴桂本,王英姿,王培松,等.苹果斑点落叶病原菌的分化及生物学研究[J].中国果树,1999,(4):11-15
    [134]吴玉星,李美娜,周宗山,等.8种杀菌剂防治苹果斑点落叶病试验[J].中国果树,2007(2):28-30
    [135]谢栋,彭憬,王津红,等.枯草芽孢杆菌抗菌蛋白X98Ⅲ的纯化与性质[J].微生物学报,1998,38(1):13-19
    [136]谢晶,葛绍荣,陶勇,等.多粘类芽孢杆菌BS04拮抗成分分离纯化及其特性[J].化学研究与应用,2004,16(6):775-777
    [137]谢为龙.苹果褐斑病的研究[J].四川农业大学学报,1990,8(1):51-54
    [138]辛玉成,秦淑莲,刘析光,等.枯草芽孢杆菌BL03对苹果霉心病和棉苗病害田间防治效果[J].中国生物防治,2000,16(1):47
    [139]刑来君,李明春.普通真菌学[M].北京:高等教育出版社,1999
    [140]徐秉良,郁继华.苹果斑点落叶病原菌的生物学特征[J].甘肃农业大学学报,1995,(2):183-188
    [141]杨合同,唐文华,Maarten Ryder,等.木霉对棉花枯萎病原菌和黄萎病原菌的作用机理(英文)[J].山东科学,2005,(3):9-15
    [142]杨洪强.绿色无公害果品生产全编[M].北京:中国农业出版社,2003.
    [143]杨克钦,俞宏.苹果农药残留限量国际标准和国家标准的比较分析[J].中国果菜,2001,(3):9-10
    [144]杨柳桦,孙成均.双缩脲光度法快速测定乳品中的蛋白质[J].现代预防医学,2005,(8):984-985
    [145]伊凯.我国苹果育种的回顾与展望[A].全国苹果科技发展战略暨陕西苹果产业发展战略研讨会,29-41
    [146]俞俊堂,唐孝宣.生物工艺学(上册)[M].上海:华东化工学院出版社,1991
    [147]岳宪化,韩秀娜,胡夫防,等.鲁南滨湖区苹果早期落叶病的发生与防治[J].果农之友,2007,(5):29
    [148]翟衡,史大川,束怀瑞,等.我国苹果产业发展现状与趋势[J].果树学报,2007,(3):355-360
    [149]翟衡,赵政阳,王志强,等.世界苹果产业发展趋势分析[J].果树学报,2005,(1):44-50
    [150]张锋华,许煜泉,张雪洪,等.采用响应面分析法优化吩嗪-1-羧酸的发酵条件[J].现代农药,2007,(2):15-18
    [151]张立功,李丙智,马锋旺,等.苹果生产中的农药残留问题及其控制策略[J].陕西农业科学,2006,(2):60-61
    [152]张明露,马挺,李国强,等.一株耐热石油烃降解菌的细胞疏水性及乳化、润湿作用研究[J].微生物学通报,2008,(9):1348-1352
    [153]张学君,凌宏通,李洪连,等.生物农药麦丰宁B3对小麦纹枯病的抑制作用[J].植物病理学报,1994,24(4):361-366
    [154]张永明,张玉峰,张玉琴,等.陇东地区苹果斑点落叶病发病规律及药效试验研究[J].陇东学院学报(自然科学版),2007,(2):59-61
    [155]赵佳,方天防.中国苹果产品国际竞争力的经济分析[J].农业经济,2005,(5):40
    [156]赵进春,李立军,龚欣,等.部分苹果属植物抗斑点落叶病鉴定[J].北方果树,2001(3):15
    [157]赵磊,赵政阳,党志国,等.秦冠、富士苹果杂交后代抗早期落叶病的遗传分析[J].西北农业学报,2008,(2):196-201
    [158]周俊,谭宁华.植物环肽的薄层化学识别新方法及其在植物化学研究中的应用 [J].科学通报,2000,(10):1046-1051
    [159]周贤轩,杨波,陈新华.几种分子生物学方法在菌种鉴定中的应用[J].生物技术,2004,14:35-38
    [160]周增强,杨朝选,侯珲.苹果早期落叶病的发生和防治[J].果农之友,2005,(2):39.
    [161]朱虹,王克.苹果斑点落叶病病原学研究[J].北方果树,1997,(1):11,34
    [162]祝凯,张晓喻,任智,等.内芽孢杆菌属细菌(PaeniBacillus daejeonensis)SS02抗菌蛋白的分离纯化和其性质的研究[J].生物工程学报,2007,23(4):681-685

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700