用户名: 密码: 验证码:
高速铁路厚覆盖型岩溶路基地质工程问题系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
厚覆盖型岩溶是指可溶岩被第四纪松散堆积物所覆盖,覆盖层厚度为10~30m的岩溶区,高速铁路穿越这种厚覆盖型岩溶区,将可能引起一系列的岩溶路基地质工程问题,严重影响了高速铁路工程的施工及运营。本文在对武广客运专线韶关至花都段环境地质条件、岩溶发育情况的调查总结基础上,对研究区岩溶路基破坏机理、厚覆盖型岩溶路基地下水动力响应、厚覆盖型岩溶路基列车荷载动力响应、覆盖型岩溶路基物理模拟及判据、基于GIS技术岩溶塌陷危险性预测评价、覆盖型岩溶路基整治技术及质量检测技术等方面做了深入的研究,建立起了一套研究厚覆盖型岩溶路基地质工程问题的理论体系,该体系的建立,既丰富了岩溶研究的理论体系,同时对于高速铁路穿越厚覆盖型岩溶区的设计、施工又具有重大的工程实践意义。通过系统的研究主要取得了以下成果:
     (1)凝炼了厚覆盖型岩溶的概念,即可溶岩被第四纪松散堆积物所覆盖,覆盖层厚度范围为10~30m的区域为厚覆盖型岩溶区。
     (2)在厚覆盖型岩溶区土洞、溶洞、溶蚀破碎带的发育机理与分布规律调查研究基础上,提出了基于覆盖层结构特征的研究区岩溶路基变形破坏的地质模式,即“粉质粘土+可溶岩”型地质模式、“粉质粘土+卵石土+粉质粘土+可溶岩”型地质模式、“粉质粘土+卵石土+可溶岩”型地质模式、“卵石土+粉质粘土+可溶岩”型地质模式等。
     (3)从触发因素的角度研究厚覆盖型岩溶路基的地下水动力响应。在对研究区地下水水位长期观测基础上,对四种地质模式下的地下水位变化对第四系松散堆积层变形破坏的影响程度及过程进行了数值模拟。模拟结果表明,在单一模式下,水位下降同样的深度时可溶岩上方覆盖层的厚度对土洞直径的发展有直接联系,且可溶岩上部覆盖层越薄,发生地表塌陷的几率越大;在复合模式中,由于模型Ⅱ土洞发育在卵石土层,卵石土层的强度较低,在天然状态下洞顶的位移就偏大,且稍强烈的水位波动即可引起土洞直径的不断加大,若遭遇人工强降水则发生地表塌陷的几率较大。模型Ⅲ、模型Ⅳ由于土洞发育在粘土层,故水位下降过程中洞顶位移的变化规律与模型Ⅰ-1~模型Ⅰ-3相似。
     (4)从触发因素的角度研究厚覆盖型岩溶路基的列车荷载动力响应。以“粉质粘土+可溶岩”结构为地质原型,建立起了研究区的概念模型,并对厚覆盖型岩溶路基列车荷载动力响应进行了数值模拟研究。模拟结果表明,在动荷载作用下拉应力主要集中在路基下方的3-5m处,大于5m埋深的土洞对应力分布没有实质影响。当土洞跨度相对土洞顶板厚度较大时,塑性区首先出现在土洞顶板顶部土体,表现为压剪屈服。随着动荷载的不断影响,塑性区逐渐向下发展延伸,土洞顶部的塑性区逐渐向上发展延伸,最后塑性区贯通。
     (5)为深入研究厚覆盖层(土洞)塌陷的发育判据,建立了研究区的大型实体模拟,对第四系下部的粉质粘土在地下水长期作用下塌陷形成和演化特征进行了物理模拟。模拟结果表明,第四系水位的变化对土层的破坏作用不明显;相同土层结构条件下,第四系孔隙水含水层和岩溶水含水层关系密切的地区,发生塌陷的可能性大;土层的破坏与岩溶管道裂隙系统水水位下降速度和渗透坡度有关,可以作为塌陷发育的判据。对于原新沙口站一带,岩溶水位下降的临界速度大致为0.225m/min,临界水力坡度为0.4~1.59。
     (6)运用层次分析法和GIS技术,建立岩溶塌陷预测评价模型,选取了基岩岩性、线岩溶率、土层厚度、土层结构、地下水位、地下水位与基岩面关系等6个因素作为岩溶塌陷综合评价指标。并利用该模型对研究区进行了评价,确定研究区有12段为岩溶塌陷易塌区,这些段落为岩溶塌陷重点整治段。
     (7)合理的制定了岩溶整治设计原则、岩溶整治主要工程措施,并对加固深度、注浆孔距等主要设计参数进行了深入的研究。认为研究区岩溶整治最大深度以30m为宜,注浆压力在0.2~0.5MPa时,注浆孔距宜取3.5~7.0m为宜。采用电测法及面波法对厚覆盖型岩溶路基整治工程进行了检测。
     (8)针对武广客运专线面临的厚覆盖型岩溶塌陷问题,通过系统研究,建立武广客运专线韶关至花都地段厚覆盖型岩溶塌陷,从勘察、预测评价到防治工程的技术体系。
Thick-covering karst refers to the soluble rock which covered by10to30metersthick loose deposit of Quaternary. Once crossing this type of karst, the high-speedrailway may cause series of geological engineering problems which threat theconstruction and operation. Based on the research of environmental geological conditionsand development condition of karst from Shaoguan to Huadu, this paper has studied thefailure mechanism, both the response of underground hydrodynamic force and train load,physical simulation and criterion, the risk analysis of collapse by GIS, and the disposalmeasure together with quality inspection of karst subgrade. Meanwhile, a theoreticalsystem about geological engineering problems of thick-covering karst subgrade has beenset up. And it enriches the study of karst and guides the design and construction ofhigh-speed railway passing through thick-covering karst. The main achievements of thispaper are as follows:
     (1) Defy the notion of thick-covering karst, which means the soluble rock whichcovered by10to30meters thick loose deposit of Quaternary.
     (2) Based on studied of development mechanism and distribution of soil cave, karstcave, and corroded breaking zone, geological model of failure mechanism has been raised,such as silty clay+soluble rock, silty clay+land pebble+silty clay+soluble rock, siltyclay+land pebble+soluble rock, and and pebble+silty clay+soluble rock.
     (3) Focusing on trigger factors, the underground hydrodynamic force has beeninvestigated. And numerical simulation of the impact of loose deposit of Quaternarycompanion with underground water level change has been made. The results show, undersingle pattern, the diameter of soil cave is related to the thickness of covering layer withthe same decline depth of water level. The thinner of the covering layer, the biggerchance of subside. However, since the soil caves are located within land pebble layer intype Ⅱ under the combined pattern, the displacement of the top is bigger than normal in natural state because of lower strength. Besides, a little fluctuation of water level mayenlarge the diameter of soil cave constantly. Once man-made heavy precipitation happens,the subsidence was liable to take place. The caves are located within silty clay in type Ⅲand Ⅳ, therefore, change of displacement is similar to type Ⅰ-1to Ⅰ-3.
     (4) Focusing on trigger factors, the train load has been studied. Taking silty clay+soluble rock as geological model, the conceptual model and numerical simulation havebeen established. According to the simulation, the tensile stresses mainly concentrate3to5meters below the subgrade, which means soil caves over5meters’ depth could not beaffected. While the span of soil caves is relatively larger than coping thickness, plasticzone appears at the top of the roof firstly, which brings shear compression failure.Affected by the constantly dynamic load, the plastic zone extends downward. And plasticzone at the top extends upward. Finally, transfixion happens.
     (5) In order to explore the development criterion of the thick covering layer, a largeentity simulation has been set up. Physical simulations are made to study the formationand evolution of collapse within the silty clay. Results did not show an obvious relationbetween water level change of Quaternary and the deformation. Under the same soil layerstructure, the regions, where the pore aquifer is close to karst aquifer, are liable tocollapse. The deformation of soil has related to water decline speed and permeategradient of fissure water system within karst conduits, which can be recognized as onecriterion of collapse. At the former Xin Shakou station, the critical speed of karst waterdecline is about0.225m/min and the critical hydraulic gradient is form0.4to1.59.
     (6) Using AHP and GIS, the forecast model of karst collapse has been raised. Andsix factors are chosen as index, such as lithology, rate of linear karstification, soilthickness, soil formation, underground water level, relation between underground waterlevel and bedrock surface. The analysis based on this model has defined12sections to beeasy to collapse which are focusing remediation zone.
     (7) Reasonable remediation design principles and engineering measures are made.Also further study is made to the parameters, for example, reinforcement depth andgrouting pitch. A maximum of30meters is considered to be the best reinforcement depth.While grouting pressure is about0.2to0.5MPa, the grouting pitch is3.5to7.0meters.The electrometric method and surface wave method are chosen to detect the remediation.
     (8) Aimed at thick-covering karst collapse, a combined system, includingreconnaissance, prediction and evaluation, and prevention and cure construction, has setup to study the collapse in Wuguang passenger dedicated line from Shaoguan to Huadu.
引文
[1] V. Anikeev, E. V. Kalinin, S. I. Tarakanov.1991.Determination of stressed station of soilseries over karst cavity[J]. Soviet Engineering Geology,(5):51-56.
    [2] H. Cooper.2001. Natural and induced halite karst geohazards in Great Britain (inGeotechnical and environmental applications of karst geology andhydrology)[C].Proceedings-Multidisciplinary Conference on Sinkholes and the Engineeringand Environmental Impacts of Karsts,8:119-124.
    [3] American Society for Testing and Material.1999. ASTM D6429-99Standard Guide forSelecting Surface Geophysical Methods[S]. LSA: West Conshohocken, Pennsylvania.
    [4] Abdulla,Goodings.1996.Modeling of sinkholes in weakly cemented sand[J]. Journal ofGeotechnical and Geoenvironmental Engineering,122(12):998-1005.
    [5] Broms B. B.,Bennermark h..1971.Recent major shield-driven tunnels through soft ground inJapan",by Shunta Shiraishi[J]. Soils and Foundations,10(2):162-167.
    [6] Borms,Bennermark.1967. Recent major shield-driven tunnels through soft ground inJapan[J]. Soil and foundation,11(1):63-65.
    [7] Carrara A, Guzzetti F, M Cardinali.1999.Use of GIS Technology in the Prediction andMonitoring of Landslide Hazard[J]. Natural hazards,(20):117-135.
    [8] Craig W. H..1990. Collapse of cohesive overburden following removal of support[J].Canadian Geotechnical Journal=Revue Canadienne deGeotechnique,27(3):355-364.
    [9] C.H. Dowding, M.B. Su, O' Connor, et al.1988. Principles of Time Domain ReflectometryApplied to Measurement of Rock Mass Deformation[J]. Int., J. Rock Mech. and Min.Sci.,25(5):287-297.
    [10] D. Raghu, R. Reddy, P.S. Reddy.1984.A simple method to test the existence of2-D partialfraction decomposition[J].Signal processing,128(1):102-104.
    [11] E.C.Drumm, et al.1990.Application of limit plasticity to the stability of sinkholes[J].Engineering geology,29(3):213-225.
    [12] Emmi Jose Macari, James R Martin, Thomas L Brandon (ASCE A. M.).1993. Liqufactionpotential of puerto rico[A]. David Frost J., Jean-Lou A. Chameau. Proceedings ofGeographic Information Systems and Their Application in Geotechnical EarthquakeEngineering[C]. American Society of Civil Engineers:72-77.
    [13] Frederik Calitz.2001.Evaluation of the risk of the formation of karst-related surfaceinstability features in dolomite strata occurring in the Lebowakgomo area, Republic of SouthAfrica (in Geotechnical and environmental applications of karst geology and hydrology)[C].Proceedings-Multidisciplinary Conference on Sinkholes and the Engineering andEnvironmental Impacts of Karsts,8:113-118.
    [14] George Sowers.1997.Building and Sinkholes: Design and Construction of Foundations inKarst Terrain[J]. ASCE,3(3):143-143.
    [15] Hugo Fellner-Feldegg.1969.The Measurement of Dielectrics in the Time Domain[J].American Chemical Society,73(3):616-623.
    [16] Handfelt L. D., Attwooll W.J..1988. Exploration of karst conditions in central Florida,American Society of Civil Engineers [J]. ASCE, Geotechnical Special Publication,No.14:40-52.
    [17] Herkelrath, W. N., Hamburg, S. P. and Murphy, F.1991.Automatic, Real-Time Monitoringof Soil Moisture in a Remote Field Area with Time Domain Reflectometry[J]. WaterResources Research,27(5):857-864.
    [18] Hoover, R.A..2003. Geophysical Choices for Karst Investigations. In: Barry F. Beck, eds.Proceedings of the9th Multidisciplinary Conference on Sinkholes and the Engineering andEnvironmental Impacts of Karst[J]. USA: ASCE, Geotechnical Special Publication,No.122:529-538.
    [19] Howell, Jenkins.1984.Records of shrews (Insectivora, Soricidae) from Tanzania[J]. AfricanJournal of Ecology,22(1):67-68.
    [20] James R. Martin.1993.Development of geographical information system(GIS) for seismicstudy of Charleston SC[A]. David Frost J., Jean-Lou A. Chameau. Proceedings ofGeographic Information Systems and Their Application in Geotechnical EarthquakeEngineering[C]. American Society of Civil Engineers, Atlanta:77-82.
    [21] Jean Benoit, Pedro A. de Alba, Stephen M. Sawyer.1993.National geotechnicalexperimentation sites center data repository[A]. David Frost J, Jean-Lou A Chameau.Proceedings of Geographic Information Systems and Their Application in GeotechnicalEarthquake Engineering[C].American Society of Civil Engineers, Atlanta:17-21.
    [22] Jean-Laurent Mallet.1992.Discrete smooth interpolation in geometric modeling[J].Computer Aided Design,24(4):178-190.
    [23] Konietzky, H., Will, J., Heinrich, J..2001. Coupled Three-Dimensional Analysis of the SlabFoundation for the Magnetic Levitation Transportation System (TRANSRAPID) inGermany[J]. Geotechnical special publication,113:500-513.
    [24] Lei, M. Gao, Y. Jung, X. and Hu, Y..2005.Experimental Study of Physical Model: forSinkhole Collapses in Wuhan, China[C]. In: Barry F. Beck, eds. Proceedings of the10thMultidisciplinary Conference on Sinkholes and the Engineering and Environmental Impactsof Karst. USA:ASCE, Geotechnical Special Publication, No.144:91-102.
    [25] M.Sunaga, E.Sekine.1991. A study on Decrease of Reinforced Roadbed Thickness inRailway[J].(Proc. JSCE),(10):156-160.
    [26] Mao Bangyan, Xu Mo, Xiao Wei.2010. Study on the Interaction Between Groundwater andRock-soil Mass in Subway Construction,Geologically Active [J]. Journal of HunanUniversity of Science&Technology(Natural Science Edition),25(2):36-39.
    [27] Michael J. Miluski, Charles J. Naples.2008.Two case histories of sinkhole repair using lowmobility grouting methods[C]. In: Barry F. Beck, eds. Proceedings of the11thMultidisciplinary Conference on Sinkholes and the Engineering and Environmental Impactsof Karst. USA:ASCE, Geotechnical Special Publication, No.183:670-679.
    [28] Mingtang Lei, Junlin Liang.2005. Karst collapse revention along Shui-Nan Highway,China[J]. Carsologica Sinica,24(2):293-298.
    [29] Mingtang Lei, Yongli Gao, Yu Li, et al.2008.Detection and treatment of sinkholes andsubsurface voids along Guilin-Yangshuo highway, Guangxi, China[C]. In: Barry F. Beck, eds.Proceedings of the11th Multidisciplinary Conference and Environmental Impacts of Karst.USA:ASCE, on Sinkholes and the Engineering Geotechnical SpecialPublication,183:632-639.
    [30] Rana A.2005.Al-Fares, The Utility of Synthetic Aperture Radar Interferometry inMonitoring Sinkhole Subsidence[C]. In: Barry F. Beck, eds. Proceedings of the10thMultidisciplinary Conference on Sinkholes and the Engineering and Environmental Impactsof Karst. USA:ASCE, Geotechnical Special Publication, No.144:541-547.
    [31] Raymond Saliba, Nick Hudyma, Binay Prakash.2008. Subgrade evaluation and repair of aroadway depression caused by a deep seated sinkhole[C]. In: Barry F. Beck, eds. Proceedingsof the11th Multidisciplinary Conference on Sinkholes and the EngineeringEnvironmental Impacts of Karst. USA: ASCE, Geotechnical Special Publication,No.183:593-601.
    [32] Ralph J. Hodek, Allan M. Johnson, Dean B. Sandri.1984. Soil cavities formed by piping (inSinkholes, their geology, engineering and environmental impact, Beck)[J]. A. A. Balkema,Rotterdam, Netherlands:249-254.
    [33] Richard C.1987.Benson, Assessment and long term monitoring of localized subsidenceusing ground penetrating radar[C]. In: Barry F. Beck, William L. Wilson eds. Proceedings ofThe Second Multidisciplinary conference on sinkholes and the Environmental Impacts ofKarst. Orlando, Florida:161-170.
    [34] Roberto Salvati, Antonio Colombi, Eugenio Di Loreto, et al.2001. The purposes of the mainsinkhole project in the Latium region of central Italy (in Geotechnical and environmentalapplications of karst geology and hydrology)[C]. Proceedings-Multidisciplinary Conferenceon Sinkholes and the Engineering and Environmental Impacts of Karsts,8:73-76.
    [35] Saribudak, M., Hawkins, A., Stoker, K. R..2005.Integrated Geophysical Surveys Applied toKarstic Studies Over Transmission Lines in San Antonio, Texas[C]. In: Barry F. Beck, eds.Proceedings of the10th Multidisciplinary Conference on Sinkholes and the Engineering andEnvironmental Impacts of Karst. LSA:ASCE, Geotechnical Special Publication,No.144:580-589.
    [36] S.Brandel, S. Schneider, M. Perrin, et. al.2005.Automatic building of structured geologicalmodels[J]. Journal of Computing and Information Science in Engineering, ASME,5(2):138-148.
    [37] Stuart L. Grassie.1995. Review of workshop: aims and open questions [J].Vehicle SystemDynamics Supplement,(24):380-386.
    [38] Su, M. B.1987.Quantification of Cable Deformation with Time Domain Reflectometry [D].USA: Northwestern Univ.
    [39] Sam B. Upchurch, James R..1987.Littlefield. Evaluation of data for sinkhole-developmentrisk models (in Karst hydrogeology, engineering and environmental applications)[C].Proceedings-Multidisciplinary Conference on Sinkholes and the Environmental Impacts ofKarst,2:359-364.
    [40] Thomas. M. Tharp.2001.Cover-collapse sinkhole formation and piezometric surfacedrawdown [J]. Geotechical and Environmental Applications of Karst Geology and Hydrology,Beck&Herring(eds):53-58.
    [41] Tharp, T. M..2003. Cover-Collapse Sinkhole Formation and Soil Plasticity[J]. Geotechnicalspecial publication,(122):110-124.
    [42] Thomas M. Tharp.1995.Design against collapse of karst caverns (in Karst geohazards;engineering and environmental problems in karst terrane, Beck)[C].Proceedings-Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impactsof Karst,5:397-408.
    [43] Topp, G.C., Davis, J. L., Annan, A. P..1980. Electromagnetic Determination of Soil WaterContent: Measurement in Coaxial Transmission Lines[J].Water Resources Research,16(3):574-582.
    [44] Tian, K.1988. Almost Developed Technique of Karst Collapse Prevention During MineDrainage Karst Hydrogeology and Karst Environment Protection[J]. Volume2. Proceedingsof the21st Congress of the International Association of Hydrogeologists, Guilin, ChinaOctober10-15,1988. IAHS Publication No.176:1155-1162,5fig,3ref.
    [45] Vanmarcke Erik H.1977.Probabilistic modeling of soil profiles[J]. Journal of theGeotechnical Engineering Division, ASCE,103(GT11):1227-1246.
    [46] Vladimir Tolmachev, Olga Maximova, Tatiana Mamonova.2005.Some New approaches toassessment of collapse risks in covered karts[C]. In: Barry F. Beck, eds. Proceedings of the10th Multidisciplinary Conference on Sinkholes and the Engineering and EnvironmentalImpacts of Karst. CSA: ASCE, Geotechnical Special Publication, No.144:66-71.
    [47] William B. White.2002.Karst hydrology; recent developments and open questions (inEngineering and environmental impacts of karst, Beck)[J]. Engineering Geology,65(2-3):85-105.
    [48] Xiang S, Chen J, Qin Y.1988. Evaluation and Prediction of Karst Collapse—As Exemplifiedbythe Daguangshan Iron Mine, Karst Hydrogeology and Karst Environment Protection[C].Proceedings of the21st Congress of The International Association of Hydrogeologists, Guilin,China October10-15.IAHS Publication,2(176):1169-1177,8fig,11tab,4ref.
    [49] Y T. Lee.1999.Information Modeling: From Design to Implementation[C]. Proceedings ofthe Second World Manufacturing Congress, International Computer Sciences ConventionsCanada/Switzerland:315-321.
    [50] Zisman, E. D., Wightman, M.,J., Taylor, C..2005. The Effectiveness of GPR in SinkholeInvestigations[C]. In: Barry F. Beck, eds. Proceedings of the10th MultidisciplinaryConference on Sinkholes and the Engineering and Environmental Impacts of Karst.LSA:ASCE, Geotechnical Special Publication, No.144:608-616.
    [51]《工程地质手册》编写委员会.2007.工程地质手册·第四版[M].北京:中国建筑工业出版社.
    [52]《岩土工程手册》编写委员会.1994.岩土工程手册[M].北京:中国建筑工业出版社.
    [53]白日升.2001.岩溶地区地面塌陷的发生规律及治理[J].土工基础,15(4):34-38.
    [54]包惠明,胡长顺.2001.岩溶塌陷两级模糊综合评判[J].水文地质工程地质,(3):49-51.
    [55]曹锋.1998.枣庄地区岩溶地面塌陷成因与防治[J].中国岩溶,17(2):104-110.
    [56]曾川峰,张银祖.2007.铁路路基动应力机理的研究[J].山西建筑,33(27):279-280.
    [57]曾昭华.1998.江西省地面塌陷的形成及其防治对策[J].长江流域资源与环境,7(1):70-75.
    [58]常聚友.1997.贵昆铁路小哨至浑水塘段岩溶塌陷的原因分析和对策[J].中国地质灾害与防治学报,8(3):73-77.
    [59]陈国亮.1994.岩溶地面塌陷的成因与防治[M].北京:中国铁道出版社.
    [60]陈佳云,孙福元.2000.斗笠山矿区岩溶塌陷分布规律及成因探讨[J].煤炭科学技术,28(9):22-24.
    [61]陈清洪.2009.渝怀铁路岩溶地区路基加固技术[J].路基工程,(3):163-165.
    [62]陈晓明.2002.岩溶覆盖层塌陷的原因分析及其半定量预测[J].岩石力学与工程学报,21(2):285-289.
    [63]陈学军,罗元华.2001.GIS支持下的岩溶塌陷危险性评价[J].水文地质工程地质,(4):15-18.
    [64]陈余道,朱学愚,蒋亚萍.1997.粘性土土洞形成的水化学侵蚀实验[J].水文地质工程地质,(1):29-32.
    [65]陈震.2006.高速铁路路基动应力响应研究[D].武汉:中国科学院研究生院.
    [66]陈植华,靳孟贵.1992.地理信息系统与水资源系统分析、模拟、决策[A].水文地质工程地质论文集[C].武汉:中国地质大学出版社:60-64.
    [67]陈仲颐.1994.非饱和土力学的基本原理与实际应用[C].海峡两岸土力学及基础工程地工技术学术研讨会论文集.
    [68]程星,黄润秋.2002.岩溶塌陷的地质概化模型[J].水文地质工程地质,(6):30-34.
    [69]程星.2006.岩溶塌陷机理及其预测与评价研究[M].北京:地质出版社.
    [70]程亚鹏,凌贤长,王宣清,等.2005.水下隧道覆土层安全厚度设计预测数学模型研究[J].岩石力学与工程学报,24(S1):285-289.
    [71]代群力.1994.论岩溶地面塌陷的形式机制与防治[J].中国煤田地质,(2):59-63.
    [72]戴建玲,蒋小珍.2005.GIS在高速公路岩溶路基病害研究中的应用——以水任-南宁高速公路为例[J].中国岩溶,24(2):109-114.
    [73]邓家喜.2006.广西典型岩溶发育区路基基底勘察及处治技术的研究[D].南宁:广西大学硕士学位论文
    [74]邓启江.2010.重大工程岩溶塌陷防治综合研究[D].北京:中国地质大学(北京)博士学位论文
    [75]地矿部岩溶地质研究所.1986.长江流域岩溶塌陷分布图说明书[R].桂林:地矿部岩溶地质研究所.
    [76]董亮等.2008.高速铁路路基的动力响应分析方法[J].工程力学,25(11):231-240.
    [77]董兆祥,贺可强.1997.应用直接测氡法对唐山岩溶塌陷的测试研究[J].中国地质灾害与防治学报,8(4):28-32,54.
    [78]冯左海,陈南春,韦继武.1998.桂林市柘木岩溶塌陷成因及其分布的基本特征[J].中国地质灾害及防治学报,9(3):85-89.
    [79]冯佐少,梁金城,李晓峰,等.2001.桂林市岩溶塌陷成因类型与时空分布特征[J].自然灾害学报,10(3):92-97.
    [80]付艳春,吴舒天,张琦,等.2009.基于GIS对岩溶塌陷预测及评价的方法[J].化工矿产地质,31(4):227-231.
    [81]付中英,谈干军.1999.塌陷土地时空变异性动态监测方法[J].江苏煤炭,(1):10-11.
    [82]宫全美,王炳龙,周顺华,等.2006.沪宁线提速铁路路基的强度条件[J].同济大学学报,34(2):207-211.
    [83]谷永磊.2007.新建铁路线路方案岩溶塌陷灰色模糊综合评判研究[D].北京:北京交通大学硕士学位论文.
    [84]广东省地质局水文工程地质二大队.1981.1:20万英德幅综合水文地质图(G-49-36)及说明书.
    [85]郭殿权,刘连喜.1990.武昌陆家街地面塌陷成因机理分析[J].工程勘察,(6):11-13.
    [86]郝文化.2005.ANSYS土木工程应用实例[M].北京:中国水利水电出版社.
    [87]何宇彬.1993.咯斯特塌陷机理研究[J].上海地质,(2):54-64.
    [88]何振宁.1999.当前铁路建设中主要地质工程问题探讨[J].铁道工程学报,(4):70-74.
    [89]贺玉龙,杨立中,黄涛.1999.人工神经网络在岩溶塌陷预测中的应用研究[J].中国地质灾害与防治学报,10(4):86-90.
    [90]胡成,陈植华,陈学军.2003.基于ANN与GIS技术的区域岩溶塌陷稳定性预测—以桂林西城区为例[J].地球科学-中国地质大学学报,28(5):557-562.
    [91]胡成,陈植华,丁国平,等.2000.GIS技术在岩溶塌陷预测中的应用[J].桂林工学院学报,20(2):117-119.
    [92]胡瑞林,王思敬,李焯芬.2001.唐山市岩溶塌陷区域风险评价[J].岩石力学与工程学报,20(2):180-189.
    [93]胡卫忠.1998.浅乌鲁木齐地区的地面塌陷[J].地质灾害与环境保护,9(1):6-10.
    [94]黄润秋,徐则民,许模.2005.地下水的致灾效应及异常地下水流诱发地质灾害[J].地球与环境,33(3):1-9.
    [95]黄香莲.2000.湘潭杨嘉桥镇地面塌陷成因分析[J].水文地质工程地质,27(3):43-45.
    [96]黄秀凤.1998.广西玉林市岩溶塌陷基本特征及其形成条件[J].中国岩溶,17(2):111-118.
    [97]蒋小珍.1998.岩溶塌陷中水压力的触发作用[J].中国地质灾害与防治学报,9(3):42-47.
    [98]蒋小珍.2008.线性工程路基岩溶土洞(塌陷)灾害防治综合研究[D].北京:中国地质大学(北京)博士学位论文
    [99]康彦仁,项式均,陈健,等.1990.中国南方岩溶塌陷[M].地质矿产部岩溶地质研究所:广西科学技术出版社.
    [100]康彦仁.1984.试论岩溶地面塌陷的类型划分[J].中国岩溶,(2):146-154.
    [101]康彦仁.1992.论岩溶塌陷形成的致塌模式[J].水文地质工程地质,(4):32-34.
    [102]雷明堂,蒋小珍,李瑜,等.2000.城市岩溶塌陷灾害风险评估方法—以贵州六盘水市为例[J].火山地质与矿产,21(2):118-127.
    [103]雷明堂,蒋小珍,李瑜.1993.岩溶塌陷模型试验——以武昌为例[J].地质灾害与环境保护,4(2):39-44.
    [104]雷明堂,蒋小珍.1998.岩溶塌陷研究现状、发展趋势及其支撑技术方法[J].中国地质灾害与防治学报,9(3):1-4.
    [105]雷明堂,项式均.1997.近20年来中国岩溶塌陷研究回顾[J].中国地质灾害与防治学报,8(S1):1-5.
    [106]雷明堂.1998.地理信息系统(GIS)技术在地质灾害信息管理系统中的应用[J].中国岩溶,17(2):125-132.
    [107]黎斌,范秋雁,秦凤英.2002.岩溶地区溶洞顶板稳定行分析[J].岩土力学与工程学报,21(4):532-536.
    [108]李苍松,王石春,陈成宗.2005.岩溶地区铁路工程地质研究[J].铁道工程学报,(S1):357-363.
    [109]李卉,朱丽芬.1998.鞍山市区岩溶塌陷风险预测及评估[J].鞍山钢铁学院学报,21(3):1-4.
    [110]李惠琼.1998.京广线冬瓜铺车站岩溶地面塌陷整治[J].路基工程,(2):72-76.
    [111]李惠琼.2000.京广线山子背站南深长路堑路基病害整治回顾[J].路基工程,(1):66-69.
    [112]李智毅,王智济,等.1990.工程地质学基础[M].武汉:中国地质大学出版社.
    [113]林志勇.2009.覆盖型路基岩溶注浆施工技术[J].福建建筑,(3):95-97.
    [114]刘汉雄.1998.湘中斗笠山矿区岩溶地面塌特征及防治[J].中国煤田地质,10(1):40-42.
    [115]刘辉.1998.铁路施工中处理岩溶塌陷的几点认识[J].地质灾害与环境保护,9(3):62-64.
    [116]刘长礼,贺可强.1993.岩溶地面塌陷的机理分析及预测模型[J].河北地质学院学报,16(3):264-270.
    [117]刘之葵.2004.岩溶区溶洞及土洞对建筑地基影响的研究[D].长沙:中南大学博士学位论文
    [118]刘之葵,梁金城.2006.岩溶地区溶洞及土洞对建筑地基的影响[M].北京:地质出版社.
    [119]卢肇钧,吴肖茗,孙玉珍,等.1997.膨胀力在非饱和土强度理论中的作用[J].岩土工程学报,19(5):20-27.
    [120]罗永红.2008.昆明新机场岩溶塌陷成因机理及其防治对策研究[D].成都:成都理工大学硕士学位论文
    [121]栾殿军.2008.莱新高速公路岩溶路基塌陷机理分析[J].科学之友,(15):67-69.
    [122]律文田,王永和.2004.秦沈客运专线路桥过渡段路基动应力测试分析[J].岩土力学与工程学报,23(3):500-504.
    [123]马天骏.1986.覆盖型岩溶区地面塌陷的形成[J].桂林冶金地质学院学报,6(2):139-144.
    [124]母进伟,雷明堂,梁军林,石连富.2005.岩溶路基病害与处置技术国内外研究现状[J].中国岩溶,24(2):89-95
    [125]缪钟灵.1998.桂林附近陷落地震分布、形成及特征[J].水文地质工程地质,25(4):34-37.
    [126]牟会宠.1992.岩溶与塌陷[M].北京:地震出版社.
    [127]聂志红.2005.高速铁路轨道路基竖向动力响应研究[D].长沙:中南大学博士学位论文.
    [128]彭涛,葛少亭,庞世彬,等.2001.岩溶土洞发育区地基塌陷的治理[J].水文地质工程地质,28(3):55-57.
    [129]屈晓辉,崔俊杰.2008.客运专线铁路路基设计技术[M].北京:人民交通出版社.
    [130]任加国,许模.2003.公路路基内部排水机理模拟研究[J],公路,(5):64-66
    [131]任美锷,等.1983.岩溶学概论[M].北京:商务印书馆.
    [132]覃秀玲.2010.岩溶土洞稳定性分析及TDR监测预警研究[D].成都理工大学硕士学位论文
    [133]阮沈勇,黄润秋.2001.基于GIS的信息量法模型在地质灾害危险性区划中的应用[J].成都理工学院学报,28(1):18-27.
    [134]石祥峰.2005.岩溶区桩基荷载下隐伏溶洞顶板稳定性研究[D].武汉:中科院武汉岩土力学研究所.
    [135]史俊德,杨士臣.1998.论岩溶塌陷问题[J].华北地质矿产杂志,13(3):264-267.
    [136]史栾生,陈敬德.1996.广花盆地地面塌陷成因与防治[J].中国岩溶,15(3):278-283.
    [137]苏谦,蔡英.2000.高速铁路路基变形分析[J].路基工程,(1):1-3.
    [138]苏维词.1998.贵州主要城市的岩溶塌陷灾害及其防治[J].水文地质工程地质,25(3):40-42.
    [139]苏阳,曾克强,陈孟芝.2007.桂林市岩溶土洞塌陷的形成机制及治理措施[J].矿产与地质,21(6):692-694.
    [140]孙常新,梁波,杨泉.2003.秦沈客运专线路基动应力响应分析[J].兰州铁道学院学报,22(4):110-112.
    [141]谭鉴益.2001.坛状圆柱状岩溶塌陷预测模型与分析[J].水文地质工程地质,(4):19-22.
    [142]唐万春,许模,于贺燕.2008武广客运专线韶花段岩溶塌陷模式概化研究[J],路基工程,(4):145-146.
    [143]铁道部第二勘测设计院.1984.岩溶工程地质[M].北京:中国铁道出版社
    [144]铁道部第四勘察设计院.1984.高速铁路[M].北京:中国铁道部出版社.
    [145]铁道部第一勘测设计院.1999.铁路工程地质手册[M].北京:中国铁道出版社.
    [146]铁道部科学研究院.1997.环形线200km/h以上高速列车综合试验研究报告[R].铁道部科学研究院.
    [147]涂国强,杨立中,贺玉龙.2001铁路沿线岩溶塌陷预测模型[J].西南交通大学学报,36(4):341-345.
    [148]万继涛,杨蕊英.1999.枣庄南部岩溶塌陷风险预测及评估[J].山东地质,15(1):34-40.
    [149]万志清,秦四清,祁生文,等.2001.桂林市岩溶塌陷及防治[J].工程地质学报,9(2):199-203.
    [150]汪稔,孟庆山,石祥锋,等.2005.桥基岩溶洞穴顶板稳定性综合评价[J].公路交通科技,22(6):76-80.
    [151]王滨,高宗军,等.2001.岩溶塌陷发育的时空阶段性分析[J].水文地质工程地质,28(5):24-27.
    [152]王滨.2002.枣庄市岩溶塌陷的形成机理及其渗压致塌模型的研究[D].青岛:青岛理工大学.
    [153]王道俊,王培新,张武东,等.2010.新耒阳站岩溶路基变形整治施工综合技术[J].铁道建筑,(1):125-128.
    [154]王建秀,何静,杨立中.2001.岩溶塌陷演化过程中的水-土-岩相互作用分析[J].西南交通大学学报,36(3):314-317.
    [155]王建秀,杨立中,何静,等.2000.阻水盖层分布区岩溶塌陷的物质基础及成因研究[J].水文地质工程地质,(4):25-29.
    [156]王建秀,杨立中,刘丹,等.1999.铁路岩溶塌陷典型概念模型研究及实例分析[J].铁路工程学报,(4):75-80.
    [157]王建秀,杨立中,刘丹.1998.覆盖型岩溶区土体塌陷典型数学模型的研究[J].中国地质灾害与防治学报,9(3):54-59.
    [158]王柳宁,高武振.2000.桂林市西城区地下水活动与岩溶塌陷的关系[J].桂林工学院学报,20(2):106-111.
    [159]王其昌.1999.高速铁路土木工程[M].成都:西南交通大学出版社.
    [160]王思敬,黄鼎成,等.2004.中国工程地质世纪成就[M].北京:地质出版社.
    [161]王铁行,胡长顺.2001.冻土路基水份迁移数值模型[J].中国公路学报,14(4):5-8.
    [162]王文奇,刘保县,王永强.2008.高速铁路路基动应力沿深度的衰减规律[J].西华大学学报(自然科学版),27(5):98-100
    [163]王勇,孙彩红.2006.隧道底部溶洞顶板安全厚度预测模型[J].公路,(5):228-233.
    [164]王泽群.2001.新桥硫铁矿岩溶塌陷成因及防治措施探讨[J].金属矿山,(6):47-49.
    [165]武广铁路客运专线建设有限责任公司.2007.武广铁路客运专线建设技术汇编(第一辑)[M].成都:西南交通大学出版社.
    [166]向喜琼,黄润秋.2000.基于GIS的人工神经网络模型在地址灾害危险性区划中的应用[J].中国地质灾害与防治学报.(3):57-62.
    [167]项式均,康彦仁,刘志云,等.1986.长江流域的岩溶塌陷[J].中国岩溶,5(4):255-272.
    [168]肖明贵.2005.桂林岩溶塌陷形成机制与危险性预测[D].长春:吉林大学博士学位论文.
    [169]肖维,许模.2009.地球化学模拟方法在地下水系统划分中的应用[J],人民长江,40(19):30-32.
    [170]谢春艳.2006.铁路岩溶路基稳定性分析及其处理方法[J].铁道勘测与设计,(5):39-44.
    [171]谢定义,张建民.1990.周期荷载下饱和砂土瞬态孔隙水压力的变化机理与计算模型[J].土木工程学报,23(2):51-60.
    [172]熊灵阳.1998.南昆铁路路基隐伏岩溶塌陷预防和整治[J].路基工程,(6):30-33.
    [173]须场诚,关根悦夫.1992.路盘の强き[J].日本铁道设施协会志,(9).
    [174]徐卫国,赵桂荣.1978.试论岩溶矿区地面塌陷的成因及防治设想[J].化工矿山技术,(4):19-27.
    [175]徐卫国,赵桂荣.1981.试论岩溶矿区地面塌陷的真空吸蚀作用[J].地质论评,27(2):63-65.
    [176]徐文.1991.贵州牛场岩溶地面塌陷的形成及其防治[J].中国岩溶,10(3):214-219.
    [177]许模,毛邦燕,张强.2008.现代深部岩溶研究进展与展望[J],地球科学进展,23(5):495-500
    [178]许模,王士天.2003.工程水文地质学及其在水电工程中的应用概述[J].工程地质学报,11(4):396-401
    [179]杨春环,周神根.1995.路基动态参数测试报告,广深准高速铁路运营线试验报告之六[R].铁道部科学研究院铁道建筑研究所.
    [180]杨广庆.2010.高速铁路路基设计与施工[M].北京:中国铁道出版社.
    [181]杨健,佴垒,刘斌.1999.鞍山岩溶塌陷环境地质质量动态分级[J].长春科技大学学报,29(3):11-13.
    [182]杨健,佴磊.1999.鞍山岩溶地面塌陷环境地质质量模糊综合评判[J].中国岩溶,18(1):1-10.
    [183]杨文才.1998.辽宁省地面塌陷类型,危害成因与防治对策[J].中国地质灾害与防治学报,9(4):42-47.
    [184]姚裕春,李安洪,陈裕刚,等.2009.洛湛铁路岩溶路基加固分析[J].铁道工程学报,(6):42-43.
    [185]叶先磊,史亚杰.2003.ANSYS工程分析软件应用实例[M].北京:清华大学出版社.
    [186]尹国荣.2009.岩溶区勘察方法及桥梁桩基施工技术[D].长沙:中南大学硕士学位论文
    [187]殷跃平,张加桂.1999.三峡库区奉节宝塔坪移民安置区塌陷成因研究[J].中国地质灾害与防治学报,10(4):22-28.
    [188]于贺艳.2006.武广客运专线英德段岩溶塌陷模式及致塌因素的研究[D].成都:成都理工大学硕士学位论文.
    [189]俞培基,陈愈炯.1965.非饱和土的水-气形态及其与力学性质的关系[J].水利学报,(1):16-24.
    [190]袁道先,等.1994.中国岩溶学[M].北京:地质出版社.
    [191]翟婉明.1994.高速铁路轮轨系统的最优动力设计原则[J].中国铁道科学,15(2):16-18.
    [192]张超,陈丙咸.1995.地理信息系统[C].北京:高等教育出版社.
    [193]张发旺,贾秀梅,赵华.1996.灰色统计方法及其在岩溶塌陷预测分析中的应用[J].河北地质学学报,19(2):24-26.
    [194]张发旺,赵华.1996.灰色统计方法及其在岩演塌陷预测分析中的应用[J].河北地质学院学报,19(2):144-150.
    [195]张峰,王艳丽.2001.应城汤池镇岩溶地面塌陷成因与防治[J].地质灾害与环境保护,12(3):33-37.
    [196]张景钟.1996.青--权铁路路基岩溶塌陷机理及治理方法[J].徐煤科技,(1):32-33.
    [197]张林,杨志刚,钱庆强,等.2005.溶洞顶板稳定性影响因素张角有限元法分析[J].中国岩溶,(2):156-159.
    [198]张瑛.1998.辽宁地面塌陷现状、成因及防治对策[J].中国地质灾害与防治学报,9(3):94-98.
    [199]张玉杰.2009.铁路岩溶地基加固浅析[J].施工技术与测量技术,29(3):168-171.
    [200]张振营,等.2000.岩土力学[M].北京:中国水利水电出版社.
    [201]张倬元,王士天,王兰生.1994.工程地质分析原理[M].北京:地质出版社.
    [202]赵波.1999.地面塌陷及其预防措施[J].北京地质,11(2):21-22.
    [203]赵国敏,高常波,丑景俊.1996.瓦房店三家子地区岩溶探测与研究[J].辽宁地质,(2):149-156.
    [204]赵帅军.2009.武广客运专线英德段厚覆盖型岩溶区土洞顶板稳定性研究[D].成都:成都理工大学硕士学位论文.
    [205]赵有禄.2000.浅论治理台缘滑坡及灌区塬面塌陷的规划和措施[J].甘肃农业,(10):29-30.
    [206]中国科学院地质研究所岩溶研究组.1979.中国岩溶研究[M].北京:科学出版社.
    [207]中华人民共和国铁道部.2009.高速铁路设计规范(试行)[S].北京:中国铁道出版社.
    [208]周建普,李献民.2003.岩溶地基稳定性分析评价方法[J].矿冶工程,23(1):4-7.
    [209]周神根.1996.铁路路基设计动荷载研究[J].路基工程,(5):6-11.
    [210]朱寿增,周健红.2000.桂林市西城区岩溶塌陷形成条件及主要影响因素[J].桂林工学院学报,20(2):100-105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700