用户名: 密码: 验证码:
大规模声学问题的快速多极边界元方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
边界元方法是一种有效的数值计算方法,它伴随着有限元方法发展起来。由于具有只在边界离散、计算精度高、适合处理无限域问题等优点,边界元方法被广泛用于声学问题研究。然而,边界元方法形成的线性系统方程组的系数矩阵通常是稠密、非对称满阵,使用常规的求解方法将消耗高昂的计算机资源,所以传统的边界元方法只适合分析中小规模的声学问题,无法求解大规模问题。计算能力成为制约边界元方法在大规模工程领域发展与应用的瓶颈。因此,发展一种新型的快速边界元方法求解大规模声学问题至关重要。本文主要是对快速多极方法和边界元方法进行深入研究,提出一种新型的快速多极边界元方法有效求解大规模声学问题。
     针对传统边界元方法求解外部Helmholtz方程时存在的非唯一解问题,提出了采用Burton-Miller公式解决这个问题。对于Burton-Miller公式引入的超奇异及强奇异积分困难,利用新的奇异性减少技术及Laplace方程相关性质,推导了只包含完全弱奇异积分的Burton-Miller公式改进形式。此外,提出了一种简单有效的块对角预处理技术改善线性系统方程组的性态,加速求解的迭代收敛效率。数值结果证明了改进的边界元方法求解声学问题的准确性和有效性,同时也揭示出传统边界元方法的计算效率为O(N2)量级(N为问题的自由度数),不适合求解大规模声学问题。
     基于改进的Burton-Miller公式,提出了一种新型的快速多极边界元方法求解大规模二维(2D)声学问题。利用多极扩展理论,推导了快速多极边界元方法的计算公式及数值程序处理流程。此外,根据树结构叶子结点的特点,提出了一种有效的稀疏近似求逆预处理技术全面提高快速多极边界元方法的迭代求解效率,并从理论上证明了新算法各求解步骤具有O(N)量级的计算复杂性。数值算例验证了快速多极边界元方法求解2D声学问题的准确性和有效性,进一步的数值测试表明新算法具有O(N)量级的计算效率,比传统边界元方法的计算效率有数量级的提高。包含24万个自由度的多体声散射算例有效证明了快速多极边界元方法可以在个人计算机上快速求解大规模2D声学问题,成功克服了传统边界元方法不能求解大规模声学问题的技术瓶颈,并且表现出潜在的工程应用价值。
     将2D问题延伸到3D(三维)问题,基于改进的Burton-Miller公式,提出了一种新型的宽频快速多极边界元方法求解大规模全空间声学问题。分别利用分波扩展方法及平面波扩展方法,推导了快速多极边界元方法的低、高频问题计算公式,并提出一种可自适应实现求解低、高频问题的宽频无缝连接形式。此外,根据现有的经验方法,提出了适合宽频计算的截断项数确定公式。包含52万个自由度的数值算例验证了快速多极边界元方法求解3D大规模声学问题的准确性、有效性及工程适用性。
     进一步将全空间问题延伸到半空间问题。基于3D全空间算法,提出了一种新型的快速多极边界元方法求解大规模半空间声学问题。利用半空间Green函数,推导了半空间快速多极边界元方法的计算公式。新的半空间算法只需要在实域建立树结构,而不需要建立包含实域和影像域的更大的树结构,这明显减少了新算法的计算时间和存储量要求。数值结果验证了半空间快速多极边界元方法求解大规模半空间声学问题的准确性、有效性,建筑物及声障分析的算例表明新算法可以处理大规模工程声学问题。
     本文对声学快速多极边界元方法的基础理论及应用进行了深入的研究,结果表明发展的方法能够有效求解大规模声学问题,具有重要的学术研究价值及广阔的工程应用前景。
The boundary element method (BEM) is a numerical method along with the development of the finite element method (FEM). The BEM is widely used to solve acoustic problems, since it has attractive advantages of boundary discretization, high accuracy and is especially suitable to handle infinite domain problems. However, the most serious problem is that the BEM leads to linear system of equations with general dense, non-symmetrical coefficient matrices. Solving the BEM system of equations needs expensive computational costs, when traditional solution techniques are used. As a result, the BEM has been limited to solve relatively small- and moderate-size problems, and is not available for large-scale problems. The computational ability of the BEM becomes a bottleneck problem. This restricts the large-scale engineering development and application of the BEM. Thus, it is crucial to develop a new fast BEM for solving large-scale acoustic problems. This dissertation focuses on the research of the fast multipole method (FMM) and BEM, and develops a new fast multipole BEM (FMBEM) for solving large-scale acoustic problems.
     The Burton-Miller formulation is employed to successfully remove the non-uniqueness problem associated with the conventional BEM for exterior Helmholtz equation. The major difficulty of the Burton-Miller formulation is that it includes a hypersingular integral. This dissertation proposes an improved form of the Burton-Miller formulation which it only contains weakly singular integrals, and avoids the difficulty of the hypersingular integral evaluation. Furthermore, the iterative efficiency of the presented method is significantly improved by adopting a simple and effective block diagonal preconditioner to improve the condition of the system matrix equations. The block diagonal preconditioner is very efficient and results in a large reduction of required iteration steps. Numerical results demonstrate the accuracy and efficiency of the improved BEM for acoustic problems, and show the conventional BEM needs O(N2) computational time and computer memory, where N is number of degrees of freedom (DOFs). Thus, the BEM is prohibitively expensive for solving large-scale acoustic problems.
     A new fast multipole BEM based on the improved Burton-Miller formulation is presented for solving large-scale two-dimensional (2D) acoustic problems. According to the theories of multipole expansions, the formulations and algorithms of the fast multipole BEM are developed. Furthermore, for overall improving the computational efficiency of the presented method, an effective sparse approximate inverse preconditioner is constructed based on the leaves of tree structure. Then the O(N) complexity of the fast multipole BEM is verified using the theoretical analysis. Numerical results demonstrate the accuracy and efficiency of the fast multipole BEM for solving 2D acoustic problems. Further numerical tests show that the presented method has O(N) computational efficiency and provides an order of magnitude increase in efficiency compared to the conventional BEM. A multiple scattering model with 240000 DOFs is solved effectively on a personal computer. The results demonstrate that the fast multipole BEM has the advantage for large-scale acoustic problems, and successfully solves the bottleneck problem of the BEM. This example shows the great potential of the presented method for large-scale engineering applications.
     The fast multipole BEM is extended from 2D to 3D acoustic problems. Based on the improved Burton-Miller formulation, a new wideband fast multipole BEM is presented for solving large-scale 3D full-space acoustic problems. According to the partial wave expansion method and plane wave expansion method, the formulations of the fast multipole BEM are developed for the low- and high-frequency problems, respectively. In order to further obtain overall computational efficiency in all frequencies, a seamless framework for adaptively combining the low- and high-frequency formulation is proposed. Furthermore, the practical formulation is presented to determine the number of truncation terms based on the empirical methods. The numerical examples including a model with 520000 DOFs clearly demonstrate the accuracy and efficiency of the fast multipole BEM for solving large-scale 3D acoustic problems in a wide frequency range, and show the potentially useful engineering applications.
     The fast multipole BEM is further extended from full-space to half-space acoustic problems. Based on the full-space algorithm, a new fast multipole BEM for solving large-scale 3D half-space acoustic problems is presented. Using the half-space Green's function, the formulations of the half-space fast multipole BEM are developed. In the new half-space algorithm, a tree structure of boundary elements can be constructed in the real domain only, instead of using a larger tree structure that contains both the real domain and its mirror image, which greatly simplifies the implementation of the half-space fast multipole BEM and reduces the computational time and memory storage. The numerical examples validate the accuracy and efficiency of the fast multipole BEM for solving large-scale 3D half-space acoustic problems. The analysis of the building and sound barrier noise further illustrates the potential of the presented method for solving large-scale practical problems.
     This dissertation mainly studies the fundamental theories and applications of the fast multipole BEM in acoustics, the research results demonstrate that the fast multipole BEM is efficient for solving large-scale acoustic problem, and show important academic value and extensive engineering prospect.
引文
[1]石钟慈.第三种科学方法一计算机时代的科学计算.百科知识,2001,5:92-98.
    [2]Brebbia CA. The boundary element method for engineers. London:Pentech Press, 1978.
    [3]马大猷.噪声控制学.北京:科学出版社,1987.
    [4]马大猷.现代声学理论基础.北京:科学出版社,2004.
    [5]黄其柏.工程噪声控制学.武汉:华中科技大学出版社,1999.
    [6]杜功焕,朱哲民,龚秀芬.声学基础,南京:南京大学出版社,2001.
    [7]Chen LH, Schweikert DG. Sound radiation from an arbitrary body. J Acoust Soc Am, 1963,35:1626-1632.
    [8]Schenck HA. Improved integral formulation for acoustic radiation problems. J Acoust Soc Am,1968,44:41-58.
    [9]Burton AJ, Miller GF. The application of integral equation methods to the numerical solution of some exterior boundary value problems. Proc R Soc London A,1971,323: 201-210.
    [10]Ursell F. On the exterior problems of acoustics. Proc Cambridge Philos Soc,1973,74: 117-125.
    [11]Kleinman RE, Roach GF. Boundary integral equations for the three dimensional Helmholtz equation. SIAM Rev,1974,16:214-236.
    [12]Jones DS. Integral equations for the exterior acoustic problem. Q J Mech Appl Math, 1974,27:129-142.
    [13]Meyer WL, Bell WA. Boundary integral solutions of three dimensional acoustic radiation problems. J Sound Vib,1978,59:245-262.
    [14]Seybert AF, Soenarko B, Rizzo FJ, et al. An advanced computational method for radiation and scattering of acoustic waves in three dimensions. J Acoust Soc Am, 1985,77:362-368.
    [15]Seybert AF, Rengarajan TK. The use of CHIEF to obtain unique solutions for acoustic radiation using boundary integral equations. J Acoust Soc Am,1987,81:1299-1306.
    [16]Cunefare KA, Koopman G. A boundary element method for acoustic radiation valid for all wavenumbers. J Acoust Soc Am,1989,85:39-48.
    [17]赵健,汪鸿振.边界元法计算已知振速封闭面的声辐射.声学学报,1989,14:250-257.
    [18]Ciskowski RD, Brebbia CA. Boundary element methods in acoustics. Southampton: Computational mechanics publications and Elsevier Applied Science,1991.
    [19]Wu TW. Boundary element acoustics:fundamental and computer codes.Southampton: WIT Press,2000.
    [20]Rjasanow S, Steinbach O. The fast solution of boundary integral equations. New York: Springer,2007.
    [21]Liu YJ. Fast multipole boundary element method:theory and application in engineering. Cambridge:Cambridge University Press,2009.
    [22]任志文,侯薇,杜林等.基于有限元/边界元耦合方法的管道进口声传播及声辐射模型.航空动力学报,2010,25:136-141.
    [23]Gentle JE. Gaussian elimination in numerical linear algebra for applications in statistics. Berlin:Springer Verkag,1998.
    [24]Yu KH, Kadarman AH, Djojodihardjo H. Development and implementation of some BEM variants:a critical review. Eng Anal Bound Elem,2010,34:884-899.
    [25]Jawson MA, Symm GT. Integral equation methods in potential theory ⅠⅡ. Proc Royal Soc,1963,275 A:23-46.
    [26]Rizzo F. An integral equation approach to boundary value problems of classical elastostatics. Q Appl Math,1967,25:83-95.
    [27]Banerjee PK, Cathie DN, Davies TG. Two and three dimensional problems of elastoplasticity:development in boundary element methods. London:Elsevier Applied Science,1979.
    [28]Cruse TA. BIE fracture mechanics analysis:25 years of development. Comput Mech, 1996,18:1-11.
    [29]杜庆华.关于连续介质力学工程数值分析方法.全国有限元会议,1978,p:352-359.
    [30]杜庆华,岑章志.边界积分方程方法—边界元法.北京:高等教育出版社,1989.
    [31]Chertock G. Sound radiation from vibrating surfaces. J Acoust Soc Am,1964, 36:1305-1313.
    [32]Copley LG. Integral equation method for radiation from vibrating bodies. J Acoust Soc Am,1967,41:807-810.
    [33]Copley LG. Fundamental results concerning integral representations in acoustic radiation. J Acoust Soc Am,1968,44:28-32.
    [34]Wu TW, Seybert AF. A weighted residual formulation for the CHIEF method in acoustics. J Acoust Soc Am,1991,90:1608-1614.
    [35]Segalman DJ, Lobitz DW. A method to overcome computational difficulties in the exterior acoustic problems. J Acoust Soc Am,1992,91:1855-1861.
    [36]Benthien W, Schenck HA. Nonexistence and nonuniqueness problems associated with integral equation methods in acoustics. Comput Struct,1997,65:295-305.
    [37]Chen JT, Liu LW, Hong HK. Spurious and true eigensolutions of Helmholtz BIEs and BEMs for a multiply connected problem. Proc R Soc London A,2003,459:1891-1924.
    [38]Hadamard J. Lectures on Cauchy's Problem in Linear Partial Differential Equations. New Haven:Yale University Press,1923.
    [39]Meyer WL, Bell WA, Stallybrass MP, et al. Prediction of the sound field radiated from axisymmetric surfaces. J Acoust Soc Am,1979,65:631-638.
    [40]Chien CC, Rajiyah H, Atluri SN. An effective method for solving the hypersingular integral equations in 3D acoustics. J Acoust Soc Am,1990,88:918-937.
    [41]Liu YJ, Rizzo FJ. A weakly singular form of the hypersingular boundary integral equation applied to 3D acoustic wave problems. Comput Method Appl Mech Engrg, 1992,96:271-287.
    [42]Liu YJ, Chen SH. A new form of the hypersingular boundary integral equation for 3-D acoustics and its implementation with C0 boundary elements. Comput Method Appl Mech Engrg,1999,173:375-386.
    [43]Yang YA. A numerical method for scattering from acoustically soft and hard thin bodies in two dimensions. J Sound Vib,2002,250:773-793.
    [44]Yang YA. Evaluation of 2D Green's boundary formula and its normal derivative using Legendre polynomials with an application to acoustic scattering problems. Int J Numer Methods Eng,2002,5:905-927.
    [45]Harris PJ, Chen K. On efficient preconditioners for iterative solution of a Galerkin boundary element equations for the three dimensional exterior Helmholtz problem. J Comput Appl Math,2003,156:303-318.
    [46]Gray LJ, Glaeser JM, Kaplan T. Direct evaluation of hypersingular Galerkin surface integrals. SIAM J Sci Comput,2004,25:1534-1356.
    [47]Yan ZY, Cui FS, Hung KC. Investigation on the normal derivative equation of Helmholtz integral equation in acoustics. Comput Model Engrg Sci,2005,7:97-106.
    [48]Seydou F, Duraiswami R, Seppanen T, Gumerov NA. Computation of singular and hypersingular integrals by Green identity and application to boundary value problems. Eng Anal Boundary Elem,2009,33:1124-1131.
    [49]Yang SA. Evaluation of the Helmholtz boundary integral equation and its normal and tangential derivatives in two dimensions. J Sound Vib,2007,301:864-877.
    [50]Engleder S, Steinbach O. Stabilized boundary element methods for exterior Helmholtz problems. Numer Math,2008,110:145-160.
    [51]Chen K, Cheng J, Harris PL. A new study of the Burton and Miller method for the solution of a 3D Helmholtz problem. IMA J Appl Math,2009,74:163-177.
    [52]Li SD, Huang QB. An improved form of the hypersingular boundary integral equation for exterior acoustic problems. Eng Anal Bound Elem,2010,34:189-195.
    [53]Chen ZS, Kreuzer W,Waubke H, et al. A Burton-Miller formulation of the boundary element method for baffle problems in acoustics and the BEM/FEM coupling. Eng Anal Bound Elem,2011,35:279-288.
    [54]Saad Y, Schultz H. GMRES:a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM Sci Stat Comput,1986,7:856-869.
    [55]Amini S. An iterative method for the boundary element solution of the exterior acoustic problem. J Comput Appl Math,1987,20:109-117.
    [56]Amini S, Ke C. Conjugate gradient method for second kind integral equations applications to the exterior acoustic problem. Eng Anal Bound Elem,1989,6:72-77.
    [57]Amini S, Ke C, Harris PJ. Iterative solution of boundary element equations for the exterior Helmholtz problem. J Vib Acoust,1990,112:257-262.
    [58]Amini S, N. Maines. Preconditioned Krylov subspace methods for boundary element solution of the Helmholtz equation. Int J Numer Meth Engng,1998,41:875-898.
    [59]Chen K, Harris PJ. Efficient preconditioners for iterative solution of the boundary element equations for the three-dimensional Helmholtz equation. Appl Numer Math, 2001,36:475-489.
    [60]Marburg S, Schneider S. Performance of iterative solvers for acoustic problems. Part I. Solvers and effect of diagonal preconditioning. Eng Anal Bound Elem,2003,27: 727-750.
    [61]Schneider S, Marburg S. Performance of iterative solvers for acoustic problems. Part Ⅱ. Acceleration by ILU type preconditioner. Eng Anal Bound Elem,2003,27: 751-757.
    [62]张敬东,何祚镛.有限元+边界元——修正的模态分解法预报水下旋转薄壳的振动和声辐射.声学学报,1990,15:12-19.
    [63]商德江,何祚镛.加筋双层圆柱壳振动声辐射数值计算分析.声学学报2001,26:193-201.
    [64]张胜勇,陈心昭.应用三次B样条函数插值的边界元法计算结构振动声辐射问题.声学技术,1998,17:20-23.
    [65]闫再友,姜楫,严明.利用边界元法计算无界声场中结构体声辐射,上海交通大学学报,2000,34:520-523.
    [66]Zhao ZG, Huang QB. Calculation of multi frequency of Helmholtz boundary integral equation. Journal of Chinese Acoustics,2005,24:97-109.
    [67]Zhao ZG, Huang QB, He Z. Calculation of sound radiation efficiency and sound radiant modes of arbitrary shape structures by BEM and general eigenvalue decomposition. Appl Acoust,2008,69:796-803.
    [68]赵志高,黄其柏,何锃.基于有限元边界元方法的薄板声辐射分析.噪声与振动控制,2008,1:39-43.
    [69]王雪仁,季振林.有流消声器四极参数和传递损失的边界元法预测.计算物理,2007,24:717-724.
    [70]Ji ZL, Wang XR. Application of dual reciprocity boundary element method to predict acoustic attenuation characteristics of marine engine exhaust silencers. J Marine Sci Appl,2008,7:102-110.
    [71]杨志刚,王同庆.边界元计算内外声场耦合及流体目标声散射.哈尔滨工程大学学报,2007,28:161-164.
    [72]陈达亮,舒歌群,卫海桥等.基于边界元法的近场声全息实验研究.中国机械工程,2009,20:159-162.
    [73]Swedlow J, Cruse T. Formulation of boundary integral equations for three dimensional elasto-plastic flow. Int J Solids Struct,1971,7:1673-1683.
    [74]Chen ZS, Hofstetter G, Mang HA. A symmetric Galerkin formulation of the boundary element method for acoustic radiation and scattering. J Comput Acoust,1997,5:219-241.
    [75]Mansur WJ. A time-stepping technique to solve wave propagation problems using the boundary element method. Southampton:University of Southampton,1983.
    [76]Banerjee PK, Ahmad S, Wang HC. A new BEM formulation for acoustic eigenfrequency analysis. Int J Num Meth Eng,1988,26:1299-1309.
    [77]Seybert AF, Wu TW. Modified Helmholtz integral equation for bodies sitting on an infinite plane. J Acoust Soc Am,1989,85:19-23.
    [78]Kim GT, Lee BH.3D sound source reconstruction and field reprediction using the Helmholtz integral equation. J Sound Vib,1990,136:245-261.
    [79]Chen ZS, Hofstetter G, Mang HA. A Galerkin-type BE-FE formulation for elasto-acoustic coupling. Comput Method Appl Mech Engrg,1998,152:147-155.
    [80]Geng P, Oden J, Van D. Massively parallel computation for acoustical scattering problems using boundary element methods. J Sound Vib,1996,191:145-165.
    [81]Bebendorf M. Hierarchical Matrices:A means to efficiently solve elliptic boundary value problems. Berlin:Springer,2008.
    [82]Tsinopoulos SV, Agnantiaris JP, Polyzos D. An advanced boundary element/fast Fourier transform axisymmetric formulation for acoustic radiation and wave scattering problems. J Acoust Soc Am,1999,105:1517-1526.
    [83]George CH, Andreas R. Wavelet collocation methods for a first kind boundary integral equation in acoustic scattering. Adv Comput Math,2002,7:281-308.
    [84]Brancati A, Aliabadi MH, Benedetti I. Hierarchical adaptive cross approximation GMRES technique for solution of acoustic problems using the boundary element method. CMES,2009,43:149-172.
    [85]Hackbusch W, Kress W, Sauter S. Sparse convolution quadrature for time domain boundary integral formulation of the wave equation by cutoff and panel clustering. Boundary Element Analysis,2007,29:113-134.
    [86]Rokhlin V. Rapid solution of integral equations of scattering theory in two dimensions. J Comput Phys,1990,86:414-439.
    [87]Rokhlin V. Diagonal forms of translation operators for the Helmholtz equation in three dimensions. Appl Comput Harmon Anal,1993,1:82-93.
    [88]Rokhlin V. Rapid solution of integral equations of classical potential theory. J Comput Phys,1985,60:187-207.
    [89]Greengard L, Rokhlin V. A fast algorithm for particle simulations. J Comput Phys,1987,73:325-348.
    [90]Greengard L. The Rapid Evaluation of Potential Fields in Particle Systems. Cambridge:The MIT Press,1988.
    [91]Greengard L, Rokhlin V. A new version of the fast multipole method for the Laplace equation in three dimensions. Acta Numerica,1997,6:229-269.
    [92]Board J, Schulten K. The fast multipole algorithm. IEEE Comput Sci Eng, 2000,2:76-79.
    [93]Nishimura N, Yoshida K, Kobayashi S. A fast multipole boundary integral equation method for crack problems in 3D. Eng Anal Bound Elem,1999,23:97-105.
    [94]Yoshida K, Nishimura N, Kobayashi S. Application of new fast multipole boundary integral equation method to crack problems in 3D. Eng Anal Bound Elem,2001, 25:239-247.
    [95]Yoshida K. Application of fast multipole method to boundary integral equation method. Kyoto:Kyoto University,2001.
    [96]Chew WC, Chao HY, Cui TJ,et al. Fast integral equation solvers in computational electromagnetics of complex structures. Eng Anal Bound Elem,2003,27:803-823.
    [97]Liu YJ. A new fast multipole boundary element method for solving large-scale two-dimensional elastostatic problems. Int J Numer Methods Eng,2006,65:863-881.
    [98]Ergul O, Gurel L. Hierarchical parallelisation strategy for multilevel fast multipole algorithm in computational electromagnetics. Electron Lett,2008,44:3-5.
    [99]Tornberg AK, Greengard L. A fast multipole method for the three-dimensional stokes equations. J Comput Phys,2008,227:1613-1619.
    [100]Zhu XY, Huang ZY, Jiang AM, et al. Fast multipole boundary element analysis for 2D problems of magneto-electro-elastic media. Eng Anal Bound Elem,2010, 34:927-933.
    [101]Bapat M S, Liu Y J. A new adaptive algorithm for the fast multipole boundary element method. CMES,2010,58:161-184.
    [102]Nishimura N. Fast multipole accelerated boundary integral equation methods. Appl Mech Rev,2002,55:299-324.
    [103]Hastriter ML, Ohnuki S, Chew WC. Error control of the translation operator in 3D MLFMA. Microwave Opt Technol Lett,2003,37:184-188.
    [104]Jiang LJ, Chew WC. Low-frequency fast inhomogeneous plane-wave algorithm (LF-FIPWA). Microwave Opt Technol Lett,2004,40:117-122.
    [105]Darve E, Have P. Efficient fast multipole method for low frequency scattering. J Comput Phys,2004:341-363.
    [106]Cheng H, Crutchfield WY, Gimbutas Z, et al. A wideband fast multipole method for the Helmholtz equation in three dimensions. J Comput Phys,2006,216:300-325.
    [107]Chew WC. Recurrence relations for three dimensional scalar and addition theorem. J Electromagn Waves Appl,1992,6:133-142.
    [108]Zhao JS, Chew WC. MLFMA for solving boundary equations of 2D electromagnetic scattering from static to electrodynamic. Microwave Opt Technol Lett,1999, 20:306-311.
    [109]Zhao JS, Chew WC. Applying matrix rotation to the threee-dimensional low frequency multilevel fast multipole algorithm. Microwave Opt Technol Lett,2000, 26:105-110.
    [110]Gumerov NA, Duraiswami R. Recursions for the computation of multipole translation and rotation coefficients for the 3-D Helmholtz equation. SIAM J Sci Comput,2003,25:1344-1381.
    [111]Gumerov NA, Duraiswami R. Fast multipole methods for the Helmholtz equation in three dimensions. Oxford:Elsevier,2004.
    [112]Epton M, Dembart B. Multipole translation theory for the three dimensional Laplace and Helmholtz equations. SIAM J Sci Comput,1995,16:865-897.
    [113]Coifman R, Rokhlin V. The fast multipole method for the wave equation:A pedestrian prescription. IEEE Antennas Propagat Mag,1993,35:7-12.
    [114]Song JM, Chew WC. Error analysis for truncation of multipole expansion of vector Green's function. Illinois:University of Illinois at Urbana Champaign,1999.
    [115]Dembart B, Yip E. The accuracy of fast multipole methods for Maxwell's equations. IEEE Comput Sci Eng,1998,5:48-56.
    [116]Koc S, Song JM, Chew WC. Error analysis for the numerical evaluation of the diagonal forms of scalar spherical addition theorem. SIAM J Numer Anal, 1999,36:906-921.
    [117]Rahola J. Diagonal forms of the translation operators in the fast multipole algorithm for scattering problems. BIT,1996,36:333-358.
    [118]Amini S, Profit A. Analysis of the truncation errors in the fast multipole method for scattering problems. J Comput Appl Math,2000,115:23-33.
    [119]Darve E. The fast multipole method I:Error analysis and asymptotic complexity. SIAM J Numer Anal,2000,38:98-128.
    [120]聂在平,胡俊,姚海英等.用于复杂目标三维矢量散射分析的快速多极子方法.电子学报,1999,27:104-109.
    [121]宁德志,滕冰,勾莹.快速多极子展开技术在高阶边界元方法中的实现.计算力学学报,2005,22:700-704.
    [122]张宗斌,陈益邻,高正红.三维复杂目标求解的多层快速多极子方法.南京航空航天大学学报,2007,39:222-226.
    [123]李慧剑,申光宪,刘德义.轧机油膜轴承微动损伤机理和多极边界元法.机械工程学报,2007,43:95-99.
    [124]徐俊东,王朋波,姚振汉等.用于大规模断裂分析的快速多极边界元方法.清华大学学报,2008,48:896-899.
    [125]文彬,胡俊,聂在平.多层快速多极子算法中修正多极子模式数技术.系统工程与电子技术,2010,32:2557-2560.
    [126]Tong MS, Chew WC, White MJ. Multilevel fast multipole algorithm for wave scattering by truncated ground with trenches. J Acoust Soc Am,2008,123:2513-2521.
    [127]Tong MS, Chew WC. Multilevel fast multipole algorithm for elastic wave scattering by large three-dimensional objects. J Comput Phys,2009,228:921-932.
    [128]Hesford AJ, Chew WC.Fast inverse scattering solutions using the distorted born iterative method and the multilevel fast multipole algorithm. J Acoust Soc Am, 2010,128:679-690.
    [129]Wang PB, Yao ZH. Fast multipole boundary element analysis of two-dimensional elastoplasctic problems. Commun Numer Meth Engng,2007,23:889-903.
    [130]Yao ZH, Wang HT. Investigations on fast multipole BEM in solid mechanics. Journal of university of science and technology of china,2008,38:1-17.
    [131]雷霆,姚振汉,王海涛.快速多极与常规边界元法机群并行计算的比较.工程力学,2006,23:28-32.
    [132]王海涛.快速多极边界元法研究及其在复合材料模拟中的应用.博士学位论文:清华大学,2005.
    [133]王海涛,姚振汉.快速多极边界元法在大规模传热分析中的应用.工程力学2008,25:23-27.
    [134]Wang HT, Yao ZH. A parallel fast multipole accelerated integral equation scheme for 3D stokes equations.Int J Numer Methods Eng,2007,70:812-839.
    [135]姚振汉.三十年边界元法研究的心得.力学与工程应用,2010,13:5-9.
    [136]姚振汉,王海涛.边界元法.北京:高等教育出版社,2010.
    [137]Wang XR, Ji ZL. Application of FMBEM to predict silence acoustic performance. Journal of university of science and technology of china,2008,38:8-14.
    [138]王雪仁,季振林.快速多极子声学边界元法及其研究应用.哈尔滨工程大学学报,2007,28:2-7.
    [139]王雪仁.船用柴油机排气消声器声学性能预测的边界元法及实验研究.博士学位论文:哈尔滨工程大学,2007.
    [140]催晓兵,季振林.消声器声学性能预测的子结构快速多极子边界元法.计算物理,2010,27:711-716.
    [141]Wu HJ, Jiang WK, Liu YJ. Analysis of numerical integration error for Bessel integral identity in fast multipole Method for 2D Helmholtz equation. J Shanghai Jiaotong Univ(Sci),2010,15:690-693.
    [142]Meng WH, Cui JZ. Application of fast multipole boundary element method to 2D acoustic scattering problem. Journal of university of science and technology of china, 2008,38:1332-1340.
    [143]孟文辉.求解声波散射问题的边界元快速多极算法的一种新型树结构.西北大学学报,2009,39:931-935.
    [144]孟文辉,崔俊芝.求解二维随机多区域声波散射问题的快速多极边界元方法.数值计算与计算机应用,2010,31:141-152.
    [145]Sakuma T, Yasuda Y. Fast multipole boundary element method for large-scale steady-state sound field analysis. Part Ⅰ:Setup and Validation. Acust Acta Acust,2002, 88:513-525.
    [146]Yasuda Y, Sakuma T. Fast multipole boundary element method for large-scale steady-state sound field analysis. Part Ⅱ:Examination of Numerical Item. Acust Acta Acust,2003,89:28-38.
    [147]Yasuda Y, Sakuma T. An effective setting of hierarchical cell structure for the fast multipole boundary element method. J Comput Acoust,2005,13:47-70.
    [148]Yasuda Y, Sakuma T. A technique for plane-symmetric sound field analysis in the fast multipole boundary element method. J Comput Acoust,2005,13:71-85.
    [149]Yasuda Y,Oshima T, Sakuma T, et al. Fast multipole boundary element method for low frequency acoustic problems based on a variety of formulation. J Comput Acoust,2010,18:363-395.
    [150]Fischer M, Gauger U, Gaul L. A multipole Galerkin boundary element method for acoustics. Eng Anal Bound Elem,2004,28:155-162.
    [151]Fischer M. The fast multipole boundary element method and its application to structure acoustic field interaction. Stuttgart:University of Stuttgart,2004.
    [152]Fischer M, Perfahl H, Gaul L. Approximate inverse preconditioning for the fast multipole BEM in acoustics. Computing and Visualization in Science,2005,8:169-177.
    [153]Fischer M, Gaul L. Application of the fast multipole BEM for structural-acoustic simulations. J Comput Acoust,2005,13:87-98.
    [154]Fischer M, Gaul L. Fast BEM-FEM mortar coupling for acoustic-structure interaction. Int J Numer Methods Eng,2005,620:1677-1690.
    [155]Gumerov NA, Duraiswami R. Computation of scattering from N spheres using multipole reexpansion. J Acoust Soc Am,2002,112:2688-2701.
    [156]Gumerov NA, Duraiswami R. Computation of scattering from clusters of spheres using the fast multipole method. J Acoust Soc Am,2005,117:1744-1761.
    [157]Gumerov NA, Duraiswami R.Fast multipole method for the biharmonic equation in three dimensions. J Comput Phys,2006,215:363-383.
    [158]Gumerov NA, Duraiswami R. Fast multipole methods on graphics. J Comput Phys,2008,227:8290-8313.
    [159]Gumerov NA, Duraiswami R.A broadband fast multipole accelerated boundary element method for the three dimensional Helmholtz equation. J Acoust Soc Am, 2009,125:191-205.
    [160]Gumerov NA, Donovan AE, Duraiswami R.Computation of the head-related transfer function via the fast multipole accelerated boundary element method and its spherical harmonic representation. J Acoust Soc Am,2010,127:370-386.
    [161]Chen JT, Chen KH. Applications of the dual integral formulation in conjunction with fast multipole method in large-scale problems for 2D exterior acoustics. Eng Anal Bound Elem,2004,28:685-709.
    [162]Chen KH, Chen JT, Kao JH, et al. Applications of dual integral formulation in conjunction with fast multipole method to oblique incident wave problem. Int Numer Methods Fluids,2009,59:711-751.
    [163]Wu CH, Wang CN, Wu TD, et al. A study of fast multipole method on the analysis of 2D barrier. J Mech,2009,25:233-240.
    [164]Shen L, Liu YJ. An adaptive fast multipole boundary element method for three-dimensional acoustic wave problems based on the Burton-Miller formulation. Comput Mech,2007,40:461-472.
    [165]Shen L. Adaptive fast multipole boundary element method for three-dimensional potential and acoustic wave problems. Cincinnati:University of Cincinnati,2007.
    [166]Bapat MS, Shen L, Liu YJ. Adaptive fast multipole boundary element method for three-dimensional half-space acoustic wave problems. Eng Anal Bound Elem,2009, 33:1113-1123.
    [167]Brunner D, Of G, Junge M, et al. A fast BE-FE coupling scheme for partly immersed bodies. Int J Numer Meth Engng,2010,81:28-47.
    [168]Kreuzer W, Majdak P, Chen ZS. Fast multipole boundary element method to calculate head-related transfer functions for a wide frequency range. J Acoust Soc Am, 2009,126:1280-1290.
    [169]William RW, Sanjiva K. Assessment of Fast Multipole Method Formulations for Acoustic Scattering.15th AIAA/CEAS Aeroacoustics Conference,May 11-13,2009, Miami, America.
    [170]William RW, Sanjiva K. Acoustic analogy formulations accelerated by fast multipole method for two-dimensional aeroacoustic problems. AIAA Journal,2010, 48:2274-2285.
    [171]Liu YJ, Rudolphi TJ. Some identities for fundamental solutions and their applications to weakly singular boundary element formulations. Eng Anal Boundary Elem,1991; 8:301-11.
    [172]Saad Y. Iterative methods for sparse linear systems. New York:PWS Publishing, 1996.
    [173]Solan SW. An algorithm for profile and wavefront reduction of sparse matrices. Int J Numer Meth Engng,1986,23:239-251.
    [174]Abramowita M, Stegun IA. Handbook of Mathematical Function. New York:Dover, 1965.
    [175]Liu YJ, Nishimura N. The fast multipole boundary element method for potential problems:A tutorial. Eng Anal Bound Elem,2006,30:371-381.
    [176]Nishida T, Hayami K. Application of the fast multipole method to the 3D BEM analysis of electron guns. In:Marchettia M, editor. Boundary elements XIX. Southampton:Computational Mechanics Publications,1997, p.613-622.
    [177]Yang S A. A boundary integral equation method for two-dimensional acoustic scattering problems. J Acoust Soc Am,1999,105:93-105.
    [178]Messiah A. Quantum mechanics. New York:John Wiley & Sons,1968.
    [179]Jakob CR, Alpert BK. A fast spherical filter with uniform resolution. J Comput Phys, 1997,136:580-584.
    [180]Seybert AF, Soenarko B. Radiation an scattering of acoustic wave from bodies of arbitrary shape in a three-dimensional half-space. ASME Trans J Vib Acoust Stress Reliab Des,1988,110:112-117.
    [181]Li WL, Wu TW, Seybert AF. A half-space boundary element method for acoustic problems with a reflecting plane of arbitrary impedance. J Sound Vib,1994, 171:173-184.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700