用户名: 密码: 验证码:
涡轮增压器的基础激励辨识和转子动力
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
涡轮增压器通过增压增加了气缸的进气量,使燃油燃烧得更多更充分,提高燃油的经济性,增加发动机的输出功率,极大地改善了发动机的性能,因而获得了广泛的应用。涡轮增压器是发动机的重要子系统,其工作性能、使用可靠性和稳定性有着很高的技术要求。涡轮增压器转子转速快,工作温度高。此外,由于涡轮增压器是安装在发动机上的,相比于涡轮增压器转子的高速旋转,发动机运转时产生的低频的大位移的振动会通过油膜轴承传递给涡轮增压器的转子。尽管发动机的振动频率远远低于涡轮增压器转子的转速,但这些振动还是会通过非线性油膜轴承对涡轮增压器的转子振动产生很大的影响。传统的转子动力学研究主要是针对地面旋转机械的,并假设基础的刚性足够大且是固定不动的。对于涡轮增压器这样的转子系统,这种假设显然是不太合理的,必须考虑基础振动的影响。
     因此,考虑到涡轮增压器转子的高速高温的工作条件,加上发动机基础激励的影响,对涡轮增压器进行转子动力学研究就显得非常重要。本论文旨在研究考虑基础激励的涡轮增压器转子动力学建模与分析方法,进行发动机对涡轮增压器的基础激励辨识,开展发动机–排气管–涡轮增压器系统的模态分析,探讨基础激励与非线性油膜力耦合作用下的转子动力学问题,应用有效方法实现系统仿真,提供在基础激励作用下的故障诊断和状态监测方法。论文的研究围绕这些内容展开。
     对于本文应用三种方法进行了发动机对于涡轮增压器的基础激励的辨识。
     第一,考虑到发动机给涡轮增压器转子的基础激励是通过中间室和浮动轴承对转子起作用的,如果能得到发动机工作时轴承座(即中间室内部)的振动响应,就可以用它作为发动机的基础激励,进行涡轮增压器转子的动力学研究。然而中间室的温度高,振动响应不易测量。只在中间室的注油孔部位受润滑油的循环冷却作用温度较低,振动响应可以测量的。考虑到中间室是一个刚度很大的空心柱体,那么就可以假设中间室注油孔(即中间室外部)的振动响应就等同于中间室内部的振动响应,可以通过直接测量注油孔的振动响应方法获得发动机的基础激励。因此,通过对中间室的实验模态分析、中间室内部和外部的频响函数测定和比较以及振动台上中间室内部和外部的振动响应比较等方式,验证了中间室外部注油孔的振动响应与中间室内部的振动响应是等同的,因此可以用直接测量中间室外部振动响应的方法获得发动机对涡轮增压器转子的基础激励。
     第二,通过测量涡轮增压器可测量点的振动和激励点至这些可测量点的频响函数,利用频响函数矩阵求逆法得到轴承座内部难以测量的振动响应。对涡轮增压器进行自由悬挂实验和振动台实验验证了此方法的有效性和可行性,并且用来反演的可测量点越多,获得的不可测点的响应越精确。这是第二种获得基础激励的方法。
     第三,利用对发动机–排气管–涡轮增压器整体系统理论建模的方法,获得涡轮增压器中间室的响应。在对整体发动机悬置系统建立动力学模型时,将发动机整体系统分解成发动机主体和排气管+涡轮增压器两个子系统,发动机主体子系统用刚体运动建模,排气管+涡轮增压器子系统用实验和有限元模态分析相结合的方法建模,然后用自由界面模态综合法对各子系统进行综合,获得整体系统的固有频率和振动响应。计算得到的与实验测量的固有频率非常吻合,而计算得到的与实验测量的振动响应也很接近。
     在考虑基础激励的涡轮增压器转子动力学研究方面,主要包括三方面内容。
     第一,对涡轮增压器的转子建立线性动力学模型,进行进行转子的振动特性研究,包括模态分析和临界转速计算,以确保涡轮增压器的工作转速能远离转子的各阶临界转速,从而获得安全平稳的运行。计算得到的自由转子的固有频率和模态振型与实验结果非常吻合,验证了动力学模型的可靠性。此外,还对含基础的转子进行临界转速分析,研究不同的基础的质量和支承刚度对转子的临界转速的影响。计算表明,基础的质量和支承刚度只对基础自由度振动的固有频率有影响,而对转子的临界转速没有影响。
     第二,考虑发动机的基础激励和非线性油膜力,建立涡轮增压器转子–轴承系统的动力学方程,计算转子在偏心惯性力作用下的动力学响应,研究了转子随转速变化的分叉规律以及基础激励对转子非线性动力学行为的影响,并与没有基础激励时的转子动力学行为进行对比,发现考虑基础激励的转子动力学行为明显不同于没有基础激励的情况。基础激励会通过非线性油膜力非常显著的影响转子的动力学行为,例如基础激励会使转子振动响应产生众多分频和倍频成分,在低转速时会使原本单周期的运动变为周期2运动,基础激励会降低转子发生油膜涡动和混沌运动的转速。但由于基础激励本身的频率就比较低,基础激励对转子动力学的影响主要体现在转子转速较低的阶段,随着转子转速的提高,基础激励的影响也逐渐减小。
     第三,研究含有裂纹故障和碰摩故障的转子在基础激励的作用下的动力学问题,提取在基础激励下的故障特征信息,进一步揭示基础激励对转子动力学的影响。研究发现,基础激励对裂纹转子的动力学响应有着复杂的影响,特别是转子开始发生油膜涡动的时候,基础激励的存在使裂纹力的作用更显著。基础激励的存在会增加转子发生碰摩的可能性,也会加剧转子碰摩的程度。
     最后,对全文的工作进行了总结,并对今后的研究方向进行了展望。
A turbocharger has a broad application on the engine because it can improve the property of an engine by charging more air into the cylinders, burning more fuels and more sufficiently, and subsequently carrying out more power. As an important component of an engine, the turbocharger has a high command on the working performance, reliability and stability. The turbocharger is a rotational machine with extremely high rotational speed and under high temperature situation. As the turbocharger is always founded on the engine, low frequency, with respect to engine’s running speed, large deflection vibrations are transferred from the engine to the turbocharger rotor through the hydrodynamic bearings. Even though these low frequency vibrations are far below from the rotor’s running speed, they do affect its operation in a nonlinear way through the journal bearing clearance variation. Uptodate, many efforts have been made to investigate the nonlinear behaviors of rotor dynamics, including bifurcation, chaos, oil whirl and whip, stability, and so on. However, the traditional rotor dynamics mainly aims at the ground rotational machine, and presumes the base is stationary and the supporting stiffness is efficiently large. This presumption is obviously unreasonable for the turbocharger rotor system. The influence of the engine’s base excitation must be taken into account in the turbocharger rotor dynamics.
     In this effort, this dissertation deals with the engine’s base excitation identification and the turbocharger rotor dynamics investigation with the base excitation. The base excitation identification method is presented, the modal analysis of the engine-manifold-turbocharger system is carried out, the dynamic model of turbocharger rotor-bearing system is established, including the engine’s base excitation and nonlinear oil film force, the nonlinear dynamic behavior of unbalance mass is investigated, and the fault diagnosis and state monitor with the base excitation are studied.
     Three methods are applied for the engine’s base excitation identification in this dissertation.
     Firstly, based on the fact that the engine’s base excitation affects the turbocharger rotor dynamics through the center housing and the hydrodynamic bearings, if the vibration responses of bearing block (center housing inner) when the engine is running on can be obtained, we can use these responses as base excitation for the turbocharger rotor dynamics. However, the responses of center housing inner can hardly be measured directly due to its high temperature and too small room to place accelerometers. Only the responses of center housing lubricant nut (center housing outer) can be measured owing to the cyclic lubricant cool. Considering that the center housing is an extremely stiff hollow cylinder, we assume that the vibration responses of center housing outer are identical to the vibration responses of center housing inner, and the base excitation can be obtained by measuring the responses of center housing outer directly. In order to validate this assumption, the modal analysis of center housing is carried out, the test and comparison of frequency response functions (FRF) of center housing inner and center housing outer are processed, and the test and comparison of vibration responses of the engine on the vibrator table are made. The results show that the responses of center housing outer are identical to the responses of center housing inner, and the base excitation can be obtained by measuring the responses of center housing outer directly.
     Secondly, an FRF matrix inverse method is applied to acquire the vibration responses of turbocharger center housing inner by means of testing the responses of measurable points on the compressor housing shell and their FRFs. This method is verified by free hanging experiment and vibrator table experiment, and thus proved to be efficient and applicable. The factors that influence the accuracy are analyzed, and the more measurable points that are used to inverse, the more accurate the inversed immeasurable responses of center housing inner.
     Thirdly, a theoretical dynamic model of the engine-manifold-turbocharger is constructed, and the responses of center housing inner can be derived from this model. The whole engine system is divided into two subsystems: engine main body subsystem and manifold-turbocharger subsystem. The engine main body subsystem is modeled by rigid body movement, and the manifold-turbocharger subsystem is modeled by the combination of finite element method (FEM) and experiment method. These two subsystems are synthesized by free interface component modal synthesis method. The vibration modes and vibration responses are obtained from the synthesized system equations. The calculated results agreed well with the experiment results. Through this study, the response of turbocharger bearing block, which is regard as the base excitation for turbocharger rotor dynamics, can be determined.
     On the investigation of the turbocharger rotor dynamics with base excitation, there are three aspects of contents.
     Firstly, the linear dynamic model of the turbocharger bearing-rotor is constructed for the modal analysis and critical speeds calculation, so that the working speed of turbocharger can be far away from the critical speeds. The predicted natural frequencies and mode shapes of the free rotor agree with the experiment results, which validates the dynamic model of turbocharger rotor. Further more, the critical speeds of base-bearing-rotor system are analyzed, and the base mass and supporting stiffness variation influences on the critical speeds are investigated. The results show that the base mass and supporting stiffness variation can only affect the base’s natural frequency, and cannot affect the rotor’s critical speeds.
     Secondly, in order to investigate the influence of the base excitation on the nonlinear rotor dynamic behavior of turbocharger, a dynamic model of turbocharger rotor-bearing system including the engine’s base excitation and nonlinear lubricant force is established. The rotor vibration response of unbalance mass is simulated by numerical calculation of Runge-Kutta method. The bifurcation disciplinarian and chaos behaviors of nonlinear rotor dynamics with various rotational speeds are studied. The results obtained by numerical simulation show that the difference of dynamic behavior between the turbocharger rotor systems with/without base excitation is obvious. The base excitation will affect the rotor dynamic behavior in a complicated way, e.g. the base excitation will change the rotor dynamic behavior from period-1 motion to period-2 motion at a low rotational speed, and the base excitation will lower the rotational speeds at which the oil whirl begins and chaos motion occurs. Since the frequency of base excitation is much lower than the rotational speed of the turbocharger rotor, the influences of base excitation on the rotor dynamic behavior are mainly at the low rotational speed. The influences of base excitation lessen gradually with the increase of rotor rational speed.
     Thirdly, on the purpose of revealing more influences of base excitation on the rotor dynamics, the crack rotor dynamics and rub-impact rotor dynamics with base excitation are investigated, and the characteristic information of fault with base excitation are abstracted. The investigations show that base excitation will complicate the cracked rotor dynamics. Especially at the rotational speed that the oil whirl begins, the base excitation will make the crack forces more distinct. The base excitation will increase the possibility and extent that the rub-impact fault of rotor happens.
     Finally, the dissertation is summarized, and the prospect is presented.
引文
[1] C. Shaw, T. Nussdorfer. An analysis of the full–floating journal bearing. NACA Report, 1947, No. 866: 95–107.
    [2]施新,马朝臣,王延生.车用涡轮增压器混流式涡轮的发展.柴油机, 2000, (6): 14–18.
    [3] N. G. Pantelelis, A. E. Kanarachos, N. Gotzias. Neural networks and simple models for the fault diagnosis of naval turbochargers. Mathematics and Computers in Simulation, 2000, (51): 387–397.
    [4]孟光.转子动力学研究的回顾与展望.振动工程学报, 2002, 15(1): 1–9.
    [5]傅志方,华宏星.模态分析理论与应用.上海:上海交通大学出版社, 2000.
    [6]张文.转子动力学理论基础.北京:科学出版社, 1990.
    [7]闻邦椿,顾家柳,夏松波,等.高等转子动力学.北京:机械工业出版社, 2000.
    [8]钟一谔.转子动力学.北京:清华大学出版社, 1987.
    [9] R.伽西著,周仁睦译.转子动力学导论.北京:机械工业出版社, 1986.
    [10]张锦.叶轮机振动模态分析理论及数值方法.北京:国防工业出版社, 2001.
    [11]朱大鑫.涡轮增压与涡轮增压器.北京:机械工业出版社, 1992.
    [12]吴炎庭,袁卫平.内燃机噪声振动与控制.北京:机械工业出版社, 2005.
    [13]程云鹏.矩阵论.西安:西北工业大学出版社: 1999.
    [14] G. Meng, Y. Guo, E. J. Hahn. The influence of fluid inertia forces on the sudden unbalance responses of squeeze film damper supported rotors. Proceeding of the Institution of Mechanical Engineering, Part J: Journal of Engineering Tribology, 1998, 212: 353–357.
    [15] G. Meng, R. Gasch. Stability and stability degree of a cracked flexible rotor supported on journal bearings. Transactions of ASME, Journal of Vibration and Acoustics, 2000, 122: 116–125.
    [16] G. Meng, W. M. Zhang. Stability, bifurcation and chaos of a high–speed rub–impact rotor system in MEMS. Sensors and Actuators A, 2006, 127: 163–178.
    [17] X. L. Leng, G. Meng, T. Zhang, et al. Bifurcation and chaos response of a cracked rotor with random disturbance. Journal of Sound and Vibration, 2007, 299: 621–632.
    [18] J. X. Wang, G. Meng. Study of the vibration control of a rotor system using a magnetorheological fluid damper. Journal of Vibration and Control. 2005, 11: 263–276.
    [19] M. Cheng, G. Meng, J. P. Jing. Numerical and experimental study of a rotor–bearing–seal system.Mechanism and Machine Theory, 2007, 42: 1043–1057.
    [20] J. Wang, G. Meng. Experimental study on stability of an MR fluid damper rotor journal bearing system. Journal of Sound and Vibration, 2003, 262: 999–1007.
    [21] J. Wang, G. Meng. Study of the vibration control of a rotor system using a magnetorheological fluid damper. Journal of Vibration and Control, 2005, 11: 263–276.
    [22] J. P. Jing, G. Meng, Y. Sun, et al. On the nonlinear dynamic behavior of a rotor–bearing system. Journal of Sound and Vibration, 2004, 274: 1031–1044.
    [23] F. S. Lin, G. Meng. Study on the dynamics of a rotor in a maneuvering aircraft. Transactions of ASME, Journal of Vibration and Acoustics, 2003, 125: 324–327.
    [24] W. M. Zhang, G. Meng, D. Chen, et al. Nonlinear dynamics of a rub–impact micro–rotor system with scale-dependent friction model. Journal of Sound and Vibration, 2008, 309: 756–777.
    [25] H. Born. Analytical and experimental investigation of the stability of the rotor–bearing system of a new small turbocharger. ASME Paper 1987 No. 87–GT–110.
    [26] F. Orcutt, and C. Ng. Steady–state and dynamic properties of the floating–ring journal bearing. ASME Journal of Lubrication Technology, 1968, 90: 243–253.
    [27] A. Tatara. An experimental study on the stabilizing effect of floating bush journal bearings. JSME Bulletin, 1970, 13: 859–863.
    [28] M. Tanaka, Y. Hori. Stability characteristics of floating bush bearings. ASME Journal of Lubrication Technology, 1972, 94: 248–259.
    [29] H. C. Hill. Slipper bearings and vibration control in small gas turbines. Transaction of ASME. 1958, 80: 1756–1764.
    [30] J. Dworski. High–speed rotor suspension formed by fully floating hydrodynamic radial and thrust bearings. ASME Journal of Engine Power, 1964, 86: 149–160.
    [31] A. Tondl. Some problems of rotordynamics. Chapman and Hall, London, 1965: 155–160, 200–201.
    [32] S. M. Rohde, H. A. Ezzat. Analysis of dynamically loaded floating–ring bearings for automotive applications. ASME Journal of Lubrication Technology, 1980, 102: 271–277.
    [33] C. H. Li, S. M. Rohde. On the steady state and dynamic performance characteristics of floating ring bearings. ASME Journal of Lubrication Technology, 1981, 103: 389–397.
    [34] C. H. Li. Dynamics of rotor bearing systems supported by floating ring bearings. ASME Journal of Lubrication Technology, 1982, 104: 469–477.
    [35] R. Trippett, F. L. Dennis. High–speed floating–ring bearing test and analysis. ASLE Transaction, 1983, 27: 73–81.
    [36] M. Tanaka. A theoretical analysis of stability characteristics of high speed floating bush bearings. Proceedings of the 6th International Conference on Vibrations in Rotating Machinery, IMechE Conference Transaction, 1996, Oxford, UK, September, Paper C500/087/96: 133–142.
    [37] S. A. Howard. Rotordynamic design analysis of an oil–free turbocharger. NASA Conference Publication, n 10193/2, Applied Life Models, Design, Vibration Control, Mechanical Components, Tribology, 1997, paper 36.
    [38] S. A. Howard. Rotordynamics and design methods of an oil–free turbocharger. NASACR, 1999, 208689.
    [39] J. Naranjo, C. Holt, L. San Andrés. Dynamic response of a rotor supported in a floating ring bearing. Proceedings of the First International Conference in Rotordynamics of Machinery, 2001, ISCORMA1, Lake Tahoe, NV, Paper 2005.
    [40] B. C. Pettinato, P. DeChoudhury. Rotordynamic and bearing upgrade of a high–speed turbocharger. Journal of Engineering for Gas Turbines and Power, 2003, 125: 95–101.
    [41] J. F. Walton II, H. Heshmat, M. J. Tomaszewski. Testing of a small turbocharger/turbojet sized simulator rotor supported on foil bearings. Proceedings of ASME Turbo Expo, Vienna, Austria, 2004, v6: Microturbines and Small Turbomachinery; Structures and Dynamics; General; Structural Mechanics and Vibration; Unsteady Aerodynamics; Rotordynamics: 67–73.
    [42] N. Aretakis, K. Mathioudakis, M. Kefalakis, et al. Turbocharger Unstable Operation Diagnosis Using Vibroacoustic Measurements. Transaction of ASME, 2004, 126: 840–847.
    [43] L. San Andrés, J. Kerth. Thermal effects on the performance of floating ring bearings for turbochargers. Proceeding of Institue of Mechanical Engeering, Part J: Journal of Engeering Tribology, 2004, 218: 1–14.
    [44] C. Holt, L. San Andrés, S. Sahay, et al. Test response and nonlinear analysis of a turbocharger supported on floating ring bearings. ASME Journal of Vibration and Acoustic, 2005, 127: 107–212.
    [45] K. Gjika, C. Groves. Nonlinear dynamic behavior of rotor–bearing systems involving two hydrodynamic oil films in series: prediction and test application to high–speed turbochargers. Proceedings of 8th Biennial ASME Conference on Engineering Systems Design and Analysis. Torino, Italy, 2006.
    [46] L. San Andrés, J. Rivadeneira, M. Chinta, et al. Nonlinear rotordynamics of automotive turbochargers– predictions and comparisons to test data. ASME Journal of Engineering for Gas Turbines Power, 2005, 129: 488–493.
    [47] L. San Andrés, J. Rivadeneira, K. Gjika, et al. A virtual tool for prediction of turbocharger nonlinear dynamic response: validation against test data. ASME Journal of Engineering for Gas Turbines Power, 2005, 129: 1035–1046.
    [48] L. San Andrés, J. Rivadeneira, K. Gjika, et al. Advances in nonlinear rotordynamics of passenger vehicle turbochargers: a virtual laboratory anchored to test data. Proceedings of the World Tribology Congress III, Washington DC, 2005: 891–892.
    [49] L. San Andres, J. Rivadeneira, K. Gjika, et al. Rotordynamics of small turbochargers supported on floating ring bearings– highlights in bearing analysis and experimental validation. Journal of Tribology, 2007, 129: 391–397.
    [50]李伟.动静压浮环径向–推力联合轴承理论研究及其应用(径向部分).郑州:郑州工业大学, 1996
    [51]单颖春. HIC型涡轮增压器故障诊断及有限元动力分析.沈阳:东北大学, 1998.
    [52]岳玉梅,张洪亭.涡轮增压器转子动力分析.航空制造技术,2004,(4): 92–94.
    [53]孙红春,张洪亭,单颖春.涡轮增压器转子的振动分析及故障诊断.振动与冲击, 2005, 24(2): 106–110.
    [54]李建新.车用涡轮增压器的轴密封与轴承.车用发动机. 1999, (6): 18–22.
    [55]张凤格,李惠彬,王国兵,等.涡轮增压器压气机叶片振动分析.噪声与振动控制, 2003, (6): 13–15.
    [56]马玉星,李惠彬,王一棣,等.涡轮增压器叶片振动分析.振动、测试与诊断, 2005, 25(2): 131–134.
    [57]郭建烨,廉彬.车用增压器浮动轴承外间隙设计的研究.汽车技术, 2005, (5): 14–18.
    [58]郭建烨,廉彬.车用增压器浮动轴承外间隙的试验.机械设计, 2005, 22(11): 51–54.
    [59]瞿伟廉,王锦文.振动结构动态荷载识别综述,华中科技大学学报(城市科学版), 2004, 21 (4): 1–4.
    [60]智浩,文祥荣,缪龙秀,等.动态载荷的频域识别方法.北方交通大学学报, 2000, 24(4): 5–10.
    [61]李万新,张景绘.载荷确定方法及直升飞机六力素识别,航空工业部飞行试验中心, 1984.
    [62] N. Okubo, et al. Identification of force generated by a machine under operating condition.Proceeding of the 3rd MAC, 1985: 920–927.
    [63]潘宏侠,郑海起.结构动态载荷识别及其在兵器中的应用.测试技术学报, 1994, 8(2): 36–44.
    [64] J. S. Tao, G. R. Liu, K. Y. Lam. Excitation force identification of an engine with velocity data at mounting points. Journal of Sound and Vibration, 2001, 242(2): 321–331.
    [65]田燕,王菁,郑海起.多载荷识别频响函数矩阵求逆法的改进算法.军械工程学院学报, 2002, 14(4): 13–17.
    [66]傅志方,饶柱石,周海亭.一种动态载荷的识别方法.上海交通大学学报, 2001, 31 (3): 5–7.
    [67]文祥荣,缪龙秀.由实测应变响应识别结载[J].铁道学报, 2000, 22 (6): 36–39.
    [68]朱继梅,吕忠达.连续系统动态荷载识别的时域方法[J].振动工程学报, 1989, 2 (3): 1–10.
    [69] G. Desanghere, R. Snoeys. Indirect identification of excitation forces by modal coordinate transformation. Proceedings of the 3rd IMAC, USA, Florida, 1985: 685–690.
    [70] H. Ory, H. Glaser, D. Holzdeppe. Quality of modal analysis and reconstruction of forcing function based on measured output data. Proceedings of 4th IMAC, USA, Los Angeles, CA, 1986: 350–357
    [71]唐秀近.动态力识别的时域方法.大连工学院学报, 1987, 26 (4): 21–27.
    [72] T. J. Kreitinger. Non–parametric force identification from structural response. Soil Dynamics and Earthquake Engineering, 1992, 11(5): 269–277.
    [73]时战,许士斌,初良成.利用脉冲响应函数识别荷载的时序法.振动工程学报, 1995, 8(3): 235–242.
    [74]许峰.动荷载识别若干前沿理论及应用研究.大连:大连理工大学, 2003.
    [75]张方,朱德懋,张福祥.动荷载识别的时间有限元模型理论及其应用.振动与冲击, 1998, 17(2): 1–4.
    [76]高宝成,刘红霞,杨叔子.神经网络用于结构动荷载识别的研究.郑州工学院学报, 1996, 17 (2) :91–94.
    [77]张方,朱德懋.基于神经网络模型的动荷载识别.振动工程学报, 1997, 10 (2): 156–162.
    [78]李守巨.基于人工神经网络的爆炸冲击荷载参数识别方法.岩石力学与工程学报, 2003, 22(11): 1870–1873.
    [79]赵玉成,袁树清,李舜酩,等.动态载荷的小波正交算子变换识别法.机械强度, 1998, 20 (2): 127–133.
    [80]杨萍,李鹤岐,李有堂.动态荷载识别的小波正交算子变换法[J ].甘肃工业大学学报, 2001,27(2): 102–105.
    [81] W. C. Hurty. Vibrations of structural systems by component mode synthesis. Journal of Engineering Mechanical Division, 1960, 86: 51–69.
    [82] G. M. L. Gladwell. Branch mode analysis of vibrating system. Journal of Sound and Vibration, 1964, 1: 41–59.
    [83] D. M. Tram. Component mode synthesis methods using interface modes. Application to structures with cyclic symmetry. Computers and Structures, 2001, 79: 209–222.
    [84] D. M. Tram. A comparison of component mode synthesis methods for cyclic structures. American Society of Mechanical Engineers, Dynamic Systems and Control Division (Publication) DSC, 2000, 68: 23–30.
    [85] L. Meirovitch, Computational methods in structural dynamics. Netherlands: Sijtho & Noordho, 1980.
    [86] R. R. Craig, C. J. Chang. Free–interface methods of substructure coupling for dynamic analysis. 1976, 14: 1633–1635.
    [87] R. R. Craig. Substructure coupling for dynamic analysis, 1977: 389–392.
    [88] R. R. Craig. Review of time–domain and frequency–domain component mode synthesis method. Presented at AMD (Symposia Series) (American Society of Mechanical Engineers, Applied Mechanics Division), Albuquerque, NM, USA, 1985.
    [89] K. J. Bathe, Finite element procedures. New Jersey: Prentice Hall, 1996.
    [90] E. J. Kuhar, C. V. Stahle. Dynamic transformation method for modal synthesis. American Institute of Aeronautics and Astronautics Journal, 1974, 12: 672–678.
    [91] K. Kubomura. Theory of substructure modal synthesis. Journal of Applied Mechanics, Transactions of ASME, 1982, 49: 903–909.
    [92] K. Kubomura. Component mode synthesis for structures with general stiffness, damping and mass matrices. Orlando, FL, USA, 1985.
    [93] K. Kubomura. Component mode synthesis for damped structures. American Institute of Aeronautics and Astronautics Journal, 1987, 25: 740–745.
    [94] A. Curnier. On three modal synthesis variants. Journal of Sound and Vibration, 1983, 90: 527–540.
    [95] R. C. Engels. Convergence improvement for component mode synthesis. American Institute of Aeronautics and Astronautics Journal, 1992, 30: 490–495.
    [96] C. Farhatt, M. Geradin. On a component mode synthesis method and its application to incompatible substructures. Computers and Structures, 1994, 51: 459–473.
    [97] C. Thonon, M. Geradin, A. Cardonna, et al. Unification of the impedance and component mode formulations in the assembling of flexible structures. Application to linear systems. Report VA–144. LTAS, University de Liege, 1995.
    [98] D. Rixen, C. Farhat, M. Geradin. Two–step, two–field hybrid method for the static and dynamic analysis of substructure problems with conforming and non–conforming interfaces. Computer Methods in Applied Mechanics and Engineering, 1998, 154: 229–264.
    [99] R. Ohayon, R. Sampaio, C. Soize. Dynamic substructuring of damped structures using singular value decomposition. Journal of Applied Mechanics, Transactions ASME, 1997, 64: 292–298.
    [100] F. Bourquin, F. Hennezel. Intrinsic component mode synthesis and plate vibrations. Computers and Structures, 1992, 44: 315–324.
    [101] F. Bourquin. Component mode synthesis and eigenvalues of second–order operators: discretization and algorithm. Math Model Number Annual, 1992, 26: 385–423.
    [102] S. Hou. Review of modal synthesis techniques and a new approach. Shock and Vibration Bulletin, 1969: 25–39.
    [103] D. J. Ewins, M. G. Sainsbury. Mobility measurements for the vibration analysis of connected structures. Shock and Vibration Bulletin, 1972, 42: 105–122.
    [104] J. W. Lund. The stability of an elastic rotor in journal bearings with flexible, damped supports. Journal of Applied Mechanics, Transactions of ASME, Series E, 1965, 87: 911–920.
    [105] E. J. Gunter. The influence of internal friction on the stability of high speed rotors. Journal of Engineering for Industry, Transactions of ASME, Series B, 1967, 89: 683–688.
    [106] J. W. Lund, B. Sternlicht. Rotor–bearing dynamics with emphasis on attenuation. Journal of Basic Engineering, transactions of ASME, Series D, 1962, 84: 491–502.
    [107] J. Dworski. High speed rotor suspension formed by fully floating hydrodynamic radial and thrust bearings. Journal of Engineering for Power, Transactions of ASME, Series A, 1964, 86: 149–160.
    [108] E. J. Gunter. Influence of flexibly mounted rolling element bearing on rotor response, Part I–linear analysis. Journal of Lubrication Technology, Transactions of ASME, Series F, 1970, 92: 59–75.
    [109] R. G. Kirk, E. J. Gunter. The effect of support flexibility and damping on the synchronousresponse of a single–mass flexible rotor. ASME Journal of Engineering for Industries, 1972, 94: 221–232.
    [110] W. D. Pilkey, B. P. Wang and D. Vannoy. Efficient optimal design of suspension systems for rotating shafts. ASME Journal of Engineering for Industries, 1976: 1026–1029.
    [111] R. Gasch. Vibration of large turborotors in fluid–film bearing on an elastic foundation. Journal of Sound and Vibration, 1976, 47: 53–73.
    [112] J. M. Vance, B. T. Murphy, H. A. Tripp. Critical speeds of turbomachinery: computer predictions vs. experimental measurements–Part II: effect of tilt–pad bearing and foundation dynamics. ASME Journal of Vibration Acoustics, Stress, Reliability in Design, 1987, 109: 8–14.
    [113] R. W. Stephenson, K. E. Rouch. Generating matrices of the foundation structure of a rotor system from test data. Journal of Sound and Vibration, 1992, 154: 467–484.
    [114] N. S. Feng, E. J. Hahn. Including foundation effects on the vibration behavior of rotating machinery. Mechanical Systems and Signal Processing, 1995, 9(3): 243–256.
    [115] S. Edwards, A. W. Lees, M. I. Friswell. Experimental identification of excitation and support parameters of a flexible rotor–bearings–foundation system from a single run–down. Journal of Sound and Vibration, 2000, 232(5): 963–992.
    [116] Y. Kang, Y. P. Chang, J. W. Tsai, et al. An investigation in stiffness effects on Dynamics of rotor–bearing–foundation systems. Journal of sound and vibration, 2000, 231(2): 343–374.
    [117] P. Bonello, M. J. Brennan. Modeling the dynamic behavior of a supercritical rotor on a flexible foundation using the mechanical impedance technique. Journal of Sound and Vibration 2001, 239(3): 445–466.
    [118] K. L. Cavalca, P. F. Cavalcante, E. P. Okabe. An investigation on the influence of the supporting structure on the dynamics of the rotor system. Mechanical Systems and Signal Processing, 2005, 19: 157–174.
    [119]焦映厚,陈照波,夏松波,等.非线性转子动力学的研究现状与展望.哈尔滨工业大学学报, 1999, 31(3): 1–4.
    [120]黄文虎,武新华,焦映厚,等.非线性转子动力学研究综述.振动工程学报, 2000, 13(4): 497–508.
    [121]高亹,张新江,张勇.非线性转子动力学问题研究综述.东南大学学报(自然科学版), 2002, 32(3): 443–451.
    [122]闻邦椿.故障旋转机械非线性动力学近期研究综述.振动工程学报, 2004,17(S): 1–5.
    [123] E. E. Messal, R. J. Bonthron. Subharmonic rotor instability due to elastic asymmetry. Journal of Engineering for Industry, 1972, 94(1): 185–192.
    [124] D. L. Taylor, B. R. Kuma. Nonlinear responses of short squeeze film dampers. Transaction of ASME, Journal of Lubrication Technology, 1980, 102: 51–58.
    [125] F. F. Ehrich. Some observations of chaotic vibration phenomena in high speed rotordynamics. ASME Journal of Vibration and Acoustics, 1991, 113: 50–57.
    [126] Y. Ishida. Nonlinear vibrations and chaos in rotordynamics. JSME International Journal, Series C: Dynamics, Control, Robotics, Design and Manufacturing, 1994, 37(2): 237–245.
    [127] J. B. Zhen, G. Meng. Bifurcation and chaos response of nonlinear crack rotors. International Journal of Bifurcation & Chaos, 1998, 8(3): 597–607.
    [128] R. Brancati, E. Rocca, M. Russo, et al. Journal orbits and their stability for rigid unbalanced rotor. ASME Journal of Tribology, 1995, 117: 709–716.
    [129] G. Adiletta, A. R. Guido, C. Rossi. Chaotic motions of a rigid rotor in short journal bearings. Nonlinear Dynamics, 1996, 10 (6): 251–269.
    [130] W. Zhang. Nonlinear dynamic analysis of rotor under a new unsteady nonlinear oil–film force model for finite journal bearings. Proceedings of Asia–Pacific Vibration, 1999.
    [131]邱鹏庆,崔升,张文,等.有限长轴承非线性非稳态油膜力的矩阵表示.复旦学报(自然科学版): 1999, 38(2): 182–189.
    [132] S. B. Xia, Y. H. Jiao, Z. P. Chen. An efficient calculation method of nonlinear oil film forces in journal bearing. Proceedings of the 6th International Conference on Rotor Dynamics, Sydney, Australia, 2002.
    [133]沐华平.转子–轴承系统油膜失稳机制的研究.博士学位论文,北京:清华大学, 1994.
    [134]武新华,刘荣强,夏松波.非线性油膜力作用下滑动轴承涡动轨迹及稳定性分析.振动工程学报, 1996, 9(3): 302–307.
    [135]张宇,陈予恕,毕勤胜.转子–轴承–基础非线性动力学研究.振动工程学报, 1998, 11(1): 24–30.
    [136]徐小峰,张文.一种非稳态油膜力刚性转子的分岔和混沌特性.振动工程学报, 2000, 13(2): 247–253.
    [137]张文,崔升,徐小峰,等.动载轴承非稳态非线性油膜力的一般数学模型.工程力学进展.北京:北京大学出版社, 1998: 158–167.
    [138]焦映厚,陈照波,夏松波等.转子–非圆轴承系统非线性动力学行为的研究.航空动力学报,2000, 15(4): 413–418.
    [139]丁千,陈予恕.弹性转子–滑动轴承系统稳定性分析.应用力学学报, 2000, 17(3): 111–116.
    [140]张新江,武新华,夏松波,等.弹性转子–轴承–基础系统的非线性振动研究.振动工程学报, 2001, 14(2): 228–232.
    [141]荆建平,孟光,李剑钊,等.实际高维转子–轴承系统非线性动力学行为计算研究.热能动力工程, 2005, 20(3): 242–245.
    [142] R. Gasch. Dynamic behavior of a simple rotor with a cross sectional crack. C178/76, Proceeding of ImechE, Vibrations in Rotating Machinery, 1976: 123–128.
    [143] R. Gasch. A Survey of the dynamic behavior of a simple rotating shaft with a transverse crack. Journal of Sound and Vibration, 1993, 160(2): 313–332.
    [144] I. W. Mayes, et al. Analysis of the response of a multi–rotor–bearing system containing a transverse crack in a rotor. ASME Journal of Vibration, Acoustics, Stress and Reliability in Design, 1984, 106: 139–145.
    [145] G. Meng. The nonlinear influences of whirl speed on the stability and response of a cracked rotor. Journal of Machine Vibration, 1992, 4: 216–230.
    [146] T. Inagaki, et al. Transverse vibrations of a general cracked–rotor–bearing system. ASME Journal of Mechanical Design, 1982, 104: 345–355.
    [147] H. D. Nelson, et al. The dynamic of a rotor system with cracked shaft. ASME Journal of Vibration, Acoustics, Stress and Reliability in Design, 1986, 108: 189–196.
    [148] C. W. Lee, et al. Modeling of a simple rotor with a switching crack and its experimental verification. ASME Journal of Vibration and Acoustics, 1992, 114: 217–225.
    [149]顾家柳.有裂纹悬臂转子的振动特性.航空动力学报, 1986, 1(2): 117–120.
    [150] T. A. Henry, et al. Vibrations in cracked shafts. IMechE, 1976: 15–19.
    [151]赵玫.具有横向裂纹轴系振动特性及其诊断方法的研究.博士学位论文.上海:上海交通大学, 1986.
    [152] A. Tamura, Y. Iwata, H. Sato. Unstable vibration of a rotor with a transverse crack. IMechE, 1988, C322/88: 647–653.
    [153] B. Grabowski. The vibrational behavior of a turbine rotor containing a transverse crack. ASME Journal of Mechanical Design, 1980, 102: 140–146.
    [154] J. B. Zheng, G. Meng. Dynamic behavior of a cracked flexible rotor supported on journal bearing. Chinese Journal of Aeronautics, 1997, 10(1): 28–35.
    [155]郑吉兵,孟光.考虑非线性涡动时裂纹转子的分叉与混沌特性.振动工程学报, 1997, 10(2): 190–197.
    [156]朱厚军,赵玫.裂纹转子振动特性分析.应用力学学报, 2001, 18(4): 65–70.
    [157]蒲亚鹏,陈进,邹剑,等.裂纹转子振动的非线性特性分析.上海交通大学学报, 2002, 36(6): 849–852.
    [158]邹剑,陈进,董广明.含初始弯曲裂纹转子振动特性.上海交通大学学报, 2004, 38(7): 1218–1221.
    [159] A. Muszynska. Rub–an important malfunction in rotating machinery. Proceeding Senior Mechanical Engineering, NV, 1983.
    [160] S. W. Shaw. Forced vibration of a beam with one–sided amplitude constraint: theory and experiment. Journal of Vibration and Acoustics, 1985, 99(2): 199–212.
    [161]王德友.发电机转静件碰摩振动特性的提取与理论研究.博士学位论文.北京:北京航空航天大学, 1995.
    [162]袁惠群.转子系统的若干非线性动力学问题及分岔与混沌研究.博士学位论文.沈阳:东北大学, 2000.
    [163] A. Muszynska, et al. Influence of rubbing on rotor dynamics. NASA Contract No. Nas8–36719, Final Report. Bently Nevada Corporation, March, 1989.
    [164] R. F. Beatty. Differentiation on rotor response due to radial rubbing. Transactions of ASME, Journal of Vibration, Acoustics, Stress, and Reliability in Design, 1985, 107: 151–160.
    [165] F. K. Choy, J. Padovan. Non–linear transient analysis of rotor–casing rub events. Journal of Sound and Vibration, 1987, 113(3): 529–545
    [166] S. W. Shaw, P. J. Padovan. A periodically forced piecewise linear oscillator. Journal of Sound and Vibration, 1983, 90: 129–155.
    [167] F. F. Ehrich. Observations of subcritical superharmonic and chaotic response in rotor dynamics. Journal of Vibration and Acoustics, 1992, 114: 93–100.
    [168] F. F. Ehrich. Rotordynamic response in nonlinear anisotropic mounting systems. Proceedings of IFTOM Fourth International Conference on Rotor Dynamics, Chicago, USA, September, 1994: 1–6.
    [169] S. K. Choi, S. T. Noah. Mode–locking and chaos in a Jeffcott rotor with bearing clearances. Transactions of ASME, Journal of Applied Mechanics, 1994, 61: 131–138.
    [170] J. L. Isaksson. Dynamics of a rotor with annular rub. Proceedings of IFTOM Fourth InternationalConference on Rotor Dynamics, Chicago, USA, September, 1994: 85–90
    [171] D. H. Gonsalves, R. D. Nelson, A. Barr. A study of the response of a discontinuously nonlinear rotor system. Nonlinear Dynamics, 1995, 7: 451–470.
    [172]褚福磊,冯冠平,张正松,等.碰摩转子系统中的阵发性及混沌现象.航空动力学报, 1996, 11(3): 261–264.
    [173] F. L. Chu, Z. S. Zhang. Periodic quasi–periodic and chaotic vibrations of a rub–impact rotor system supported on oil film bearings. International Journal of Engineering Science, 1997, 35: 963–793.
    [174] F. L. Chu, Z. S. Zhang. Bifurcation and chaos in a rub–impact Jeffcott rotor system. Journal of Sound and Vibration, 1998, 210(1): 1–18
    [175]胡茑庆.转子碰摩非线性行为与故障辨识的研究.博士学位论文.长沙:国防科技大学, 2001.
    [176]吴敬东.转子系统碰摩的若干非线性动力学问题研究.博士学位论文.沈阳:东北大学, 2006.
    [177]张勇,荆建平.碰摩转子动力学特性的有限元分析.汽轮机技术, 2005, 47(3): 168–172.
    [178]张文明,孟光,周健斌,等.碰摩微转子系统非线性动力特性研究.机械强度, 2006, 28(4): 475–479.
    [179]叶向好,郝志勇.基于MATLAB的发动机总成悬置系统设计研究.小型内燃机与摩托车, 2004, 5: 12–15.
    [180] A. Berman. Mass matrix correction using an incomplete set of measured modes. American Institute of Aeronautics and Astronautics Journal, 1979, 17(10): 1147–1148.
    [181]张玉萍,荣见华,赵爱琼,等.车辆发动机悬架系统现状与进展.机械强度, 2003, 25(2): 134–140.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700