用户名: 密码: 验证码:
2050精轧机组辊系结构优化和稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CVC轧机是一种轧辊凸度连续可变的,具有良好板形控制能力的新型轧机,是由德国SMS公司在1984年推出的。宝钢2050机组是成套引进SMS公司技术与装备的现代化热连轧板带生产线,在1989年建成投产。2050热轧精轧机组是四辊CVC轧机,带S形曲线的工作辊装配有轴向移动装置,通过改变工作辊的凸度来调节辊缝大小。工作辊上的四列滚子轴承主要承受弯辊力和轴向力,而支撑辊上的油膜轴承主要承受轧制力和绝大部分弯曲力矩。随着轧制负荷和轧制速度的不断增加,轧机的动态冲击、振动、磨损等对构件的影响显得日益重要,极大地影响着轧机辊系的稳定性。
     本文以宝钢热轧厂2050CVC轧机辊系在生产中出现的问题为切入点,以优化轧机辊系结构和提高辊系稳定性为目的,系统总结了CVC轧机的应用和技术特点,针对生产实践中存在的问题提出了一些有助于改善辊系稳定性的措施,主要论述了如下内容:
     1、介绍了CVC轧机的工作原理和结构特点,分析了其弯辊装置和轴向横移装置的典型结构,指出轧辊轴线交叉是轧机产生轴向力的主要原因,并提出了如何解决轧机轴向力过大所引起的一系列故障的措施。
     2、介绍了2050CVC轧机精轧工作辊原组合轴承的结构特点及产生的问题,提出了采用大锥角四列圆锥滚子轴承作为新的轴承设计方案,并校核了新设计轴承的寿命。综合运用SolidWorks、HyperMesh和MSC.Marc进行工作辊轴承和轴承座的有限元分析,得出了滚动轴承中各滚子所受载荷的变化规律。最后,对滚动轴承动态运行行为进行实验研究,获得了组合轴承列间载荷分布和轴向力的特点,为新轴承方案的实施提供了实验依据。
     3、介绍了宝钢2050精轧CVC轧机工作辊轴向横移及锁紧机构的机械结构及液压控制系统,系统论述了CVC轧机常见的机械和液压故障,并采用故障树分析方法对CVC辊系的常见故障进行了定性分析。故障树关系模型的建立极大地提高了故障诊断和改进使用维修方案的效率,节省了停机维修时间。
     4、介绍了宝钢2050支撑辊系的结构特点和油膜轴承的密封结构形式,制定了避免油膜轴承进水的相关技术措施,设计了一种用于阻止水直接冲击密封装置的防水罩。该技术措施在轧线上取得了显著的成效,能够保证在极短的时间内判定进水点及其原因,基本避免了大量水夹带氧化铁皮侵入系统所出现的进水现象。
CVC mill, launched by German company SMS in 1984, is a new kind of mill which has a continuously variable roll crown and a good shape controlling capability. Founded and put into operation in 1989, Baosteel 2050 unit is a wholesale introduction of SMS technology and equipment of the modern hot continuous rolling strip production line. Hot Rolling Finishing Mill 2050 is a four-high CVC mill with S-shaped curve of the working rolls equipped by axial movable devices. It adjusts the roll gap by changing crown of the working rolls. Four-row roller bearings on the working rolls mainly bear roll-bending force and axial force, while the oil film on the backup roll mainly bear rolling force and most of the bending moment. With the rolling load and rolling speed increasing, effects of the mill’s dynamic impact, vibration and wear on the components become increasingly important. It greatly affects the stability of roll system.
     Making the problems in the 2050CVC roll system of Baosteel Hot Rolling Plant the breakthrough point, and with the purpose of optimizing roll system structure and improving the stability, this paper systematically summarizes applications and technical characteristics of the CVC mill, and raise up some help to improve the stability of roll system based on the practical problems during production, mainly discussed the following:
     1. This chapter introduces the working principle and structural characteristic of CVC mill; studies the typical structure of roll-bending and axial movable devices; points out that roll axis crossing is the main reason for producing axial force; and proposes the measures of solving a series of failures caused by too large mill axial force.
     2. This chapter introduces the structural feature and problems of original combined bearing used in 2050CVC finishing mill work roll; proposes using a large cone angle four-row tapered roller bearing as a new bearing design; and checks the life of new bearing. Changing regularity of load on each roller has been obtained by the finite element analysis on work roll bearings and bearing chock using SolidWorks, HyperMesh and MSC.Marc comprehensively. Finally, features of column load distribution of combined bearing and axial force have been obtained by experimental studying on dynamic operation behavior of rolling bearing. It also provides an experimental basis for implementation of the new bearing design.
     3. This chapter introduces the work roll axial sliding, locking mechanism and hydraulic control system of Baosteel 2050CVC finishing mill; systematically discusses the common mechanical and hydraulic failure of CVC mill, and analysis such common failures using fault tree analysis method. The establishment of fault tree relation model has greatly improved the efficiency of fault diagnosis and maintenance programs mend, saves the repairing down time.
     4. This chapter introduces the structural features of Baosteel 2050 backup roll unit and the sealing structure of film bearing; Develops relevant technical measures to avoid influent water in oil film bearing, and designs a waterproof cover to avoid direct impact of water on seal device. This technical measure has achieved remarkable effect in the rolling line which can guarantee to determine influent water spots and its causes in a very short period of time. It essentially avoids the occasional phenomenon of influent water caused by intrusion of a large number of water entrained oxide scale.
引文
[1]陈占福.四辊板带轧机辊系问题的理论与实验研究[博士后论文].上海:上海交通大学. 2003.
    [2]陈占福. 2050CVC热连轧机工作辊滚动轴承运行行为及自适应均载方法研究[博士论文].秦皇岛:燕山大学. 2000.
    [3]杨广,金学俊,解建平.现代化的宝钢2050mm热轧机组.轧钢. 2002(2):41~43.
    [4]周建南,陈长征,周劬惟.轧钢机械滚动轴承.北京:冶金工业出版社. 2001:128-150.
    [5] Johnson K L. One hundred years of Hertz contact.Proc.InstmMech.Engins.,Vol.196,No.39,1982.
    [6]邹家祥.轧钢机械(第3版).北京:冶金工业出版社. 2000:201-309.
    [7]黄庆学等,.轧钢机械设计.北京:冶金工业出版社. 2007:106-200.
    [8]程志彦,刘英林. CVC轧机的应用及技术问题分析.山西科技. 2007(3):131~132.
    [9]陈奎,张晓伟.六辊CVC轧机的结构原理及优点.一重技术. 2006(8):11~12.
    [10]王国栋,吴国良.板带轧制理论与实践.北京:中车铁道出版社. 1990:320-324.
    [11]何伟. CVC辊型曲线模型开发及其辊系弹性变形研究[硕士论文].沈阳:东北大学. 2006.
    [12]文庆明,李森林.轧钢机械.北京:化学工业出版社. 2004:101-112.
    [13]颜景星.对带钢与辊辊间弹性压扁分布函数的研究.钢铁技术. 1998(3):18~20.
    [14]李友荣,刘安中,万晓丹,许瑞璋.四辊轧机轴向力研究.重型机械. 2001(4):8~10.
    [15]邹家祥等.冶金机械的力学行为.北京:科学出版社. 1999:46-49.
    [16]艾厚庄,王金元,邓效忠,舒寅清.四辊轧钢机工作辊轴向力的建模和求解.河南科技大学学报. 2007(2):14~16.
    [17]赵林,金国田等.轧制轴向力问题研究现状与发展.轧钢. 1997(1):47~50.
    [18] Shen G, Aizawa T, Huang Q. Elastic-plastic Contact Analysis by the Boundary Element Method. Elsevier Science Publishers. 1993(1):251-260.
    [19] SKF. Large bearings for heavy engineering applications. Sweden :VLT PRESS AB. 1993:603-606.
    [20]万长森.滚动轴承分析方法.北京:机械工业出版社.1987:21-58.
    [21]滚动轴承额定动载荷和额定寿命.北京:国家技术监督局, GB/T6391-1995.
    [22] American National Standards Institute. Load Ratings and Fatigue Life for Rolling Bearing. American National Standard(ANSI/AFBMA). Std11-1990.
    [23]于开平,周传月,谭惠丰等. HyperMesh从入门到精通.北京:科学出版社. 2005:3-101.
    [24] SolidWorks公司. SolidWorks基础教程:零件与装配体.北京:机械工业出版社. 2008:6-121.
    [25]陈火红. Marc有限元实例分析教程.北京:机械工业出版社. 200.:255-28.3.
    [26]蒋学武,吴新跃,朱石坚.综合应用UG,HyperMesh和MSC.Marc软件进行有限元分析.计算机辅助工程. 2006(2):11~13.
    [27] Harris T A. Rolling Bearing Analysis.3rd.New York:1991
    [28]叶新功.轧机用四列圆柱滚子轴承有限元分析[硕士论文].西安:西安交通大学. 2003.
    [29]俞瑞霞.轧机轴承优化设计及其有限元分析[硕士论文].西安:西安交通大学. 2003.
    [30]刘宁,张钢,高刚,赵志峰.基于Analysis的圆柱滚子轴承有限元应力分析.轴承. 2006(12):8~10.
    [31]张业,任成祖,刘远新.非线性有限元软件MSC.Marc及其在轴承分析中的应用.机械设计. 2004(10):52~53.
    [32] Loveell M.R.. A finite element analysis of the frictional forces between a cylindrical bearing element and MoS2 coated and uncoated surfaces. Wear. 1996, 194:60-70.
    [33]周劬惟,马江波.轧机四列圆锥滚子轴承当量动载荷的研究.沈阳工业大学学报. 2000(5):373~375.
    [34] Etewart H. Revised Theory Leads to More Accurate Prediction of Bearing Life. Design Engineering. 1989, 6:53-54.
    [35] Morrissey, T. Selecting the Right Rolling element Bearing-Part 2. Power Transmission Design. 1991, 4:48-50.
    [36]冯宪章,崔艳梅.滚动轴承接触问题的有限元分析.润滑与密封. 2007(7):51~53.
    [37]蒋德军,唐开明.大锥角圆锥滚子轴承优化设计及有限元分析.机械工程与自动化. 2008(4):61~62.
    [38] Hartnett, M. J. A general solution for elastic body contact problems. ASME.AMD.1980,39.
    [39] Honeygosky, M.A., Garcia T.A.,Butine J.A. Finite Element of a Work Roll Chock and Roll Bearing Assembly. Iron and Steel Engineer. 1993 (1):46-49.
    [40]陈占福,申光宪,束学道.大型轧机滚动轴承延寿理论与方法研究.中国机械工程. 2001(10):1089~1092.
    [41] Lundberg, G, Palmgren, A. Dynamic capacity of rolling bearing. Acta Polyrechnica Mechanical Engineering Series 1(3).
    [42]刘鸿文.材料力学.北京:高等教育出版社. 1995:210-218.
    [43]徐芝纶.弹性力学.北京:人民教育出版社. 1983:16-1061.
    [44]叶新功,张萍,王丽君.轧辊轴承失效机理分析及改进措施.通用机械. 2003(8):64~66.
    [45]周劬惟,孙德志.用三维有限元法分析轧机四列圆锥滚子轴承的负荷分布.重型机械. 2000(6):46~48.
    [46]史荣,申光宪,陈占福. CVC轧机轧辊轴承载荷工况在线检测.机械工程学报. 2003(1):107~110.
    [47]黄庆学,申光宪,陈占福等.宝钢2050mm轧机组合轴承载荷特性的边界元解析及试验研究.机械工程学报. 2001(2):43~46.
    [48]史荣,黄庆学,陈占福等.大型板带轧机工作辊轴承载荷分布实验研究.钢铁. 2002(6):54~58.
    [49]景根荣,黄志坚.轧机CVC故障分析.冶金丛刊. 2003(4):9~11.
    [50]叶维明,徐致让,斐令明,亢令明.热轧CVC液压控制系统故障分析与排除.科技创新导报. 2009(13):114~116.
    [51]王训安.基于故障树的液压系统油液污染控制.液体传动与控制. 2008(4):29~30.
    [52]陈章位,路甬祥,付周东.液压设备状态监测与故障诊断技术.液体与气动. 1995(2):3~7.
    [53]郭清泉,李树青.现代大型连轧机油膜轴承(技术与应用).北京:机械工业出版社. 1998:9-14.
    [54]林峰.热轧下支承辊油膜轴承定位系统故障分析.山西冶金. 2008(5):54~55.
    [55]袁巨,邵鸿德.轧钢机支承辊油膜轴承密封及状态管理.冶金设备. 1998(5):27~28.
    [56]王庚福. DF密封的三个状态.太原重型机械学院学报. 2002(9):81.
    [57]武建琦等. CVC轧机工作辊轴承布置.重型机械科技. 2000(2):7~10.
    [58]徐灏.机械设计手册(第2版).北京:机械工业出版社. 2000:39-123.
    [59]沈久珩,景作军.四辊式板带热轧机工作辊轴承的早期失效与轧辊轴向力.有色金属加工. 1996(4):24~27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700