用户名: 密码: 验证码:
蜀南气矿采气井筒结垢机理与防垢措施研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油气田开发过程中,生产系统普遍存在结垢现象,尤其是在开发后期产水量增加时。井筒结垢导致井筒流通截面减小,流体输送效率下降,还可能导致井筒腐蚀穿孔甚至报废,严重影响油气的安全生产。另外,频繁修井会耗费大量时间、人财物力。迄今为止,有关油田管线结垢已有很多人研究,但是,针对气田生产管线结垢研究较少。本文以中石油西南油气田公司蜀南气矿(简称蜀南气矿,以下同)的工况为依托,分析了采气井筒结垢机理和结垢趋势,研究了防垢措施,提出防垢工艺。
     具体进行了以下几方面工作:
     (1)选定具有典型结垢特征、能够反映蜀南气矿特点的井26井、桐18井、付1井、合8井、H1井等井作为研究对象,提取水样和垢样,按照《油气田水分析方法》(SY/T5523-2000)规定,通过化学滴定法、X—射线衍射光谱法等检测手段,分析了化学成分,确认了蜀南气矿的水属CaCl2水型,证明了该气田的气田水中成垢离子主要是Ca2+、 Mg2+、Sr2+、Ba2+、HCO3-(?)和SO42-,垢样中成分主要是CaCO3、CaSO4、MgCO3、SrCO3、 BaSO4及其他菌类代谢产物等,其中以CaCO3垢所占比例为最大。
     (2)通过分析研究蜀南气矿的地质特征、开发方案、回注水的离子组成和工艺条件等,并依照《油田水结垢趋势预测》(SY/T0600-1997)中油气田常用的CaCO3垢饱和度指数公式预测结垢趋势,分别采用气液两相流模型和液体单相流模型对采气井筒结垢趋势分析,两种模型的结垢趋势预测结果一致,均表明在采气井筒的工作环境下,CaCO3垢的生成是必然的,且结垢趋势随温度升高而增加,符合理论推测和现场实际;同时也得知,可以用单相结垢预测模型来预测采气井筒结垢趋势。
     (3)根据预测油田CaCO3垢的最大结垢量公式,建立预测气田采气井筒内出现CaCO3最大结垢量的模型。通过模拟计算,发现井筒结垢量最大的部位在离井底500m的范围内,与现场实际情况一致,为针对性除垢提供了依据。
     (4)在对比分析多种防垢方法的前提下,重点研究了化学防垢措施。由于蜀南气矿的垢物中以CaCO3、CaSO4垢比例最大,故选用五种油田常用的防CaCO3垢效果较好的单一防垢剂聚丙烯酸钠(PAAS)、氨基三甲叉膦酸(ATMP)、羟基乙叉二膦酸(HEDP)、乙二胺四甲叉膦酸钠(EDTMPS)、水解聚马来酸酐(HPMA),按照正交实验法分析它们同时对CaSO4的防垢作用。通过在实验室试验研究,从这五种防CaCO3垢效果较好的防垢剂中筛选出针对CaSO4垢预防效果也较好的三种防垢剂,再将它们进行两两复配配方,改变配方比例,并进行优选。实验结果表明复配的防垢剂防垢效果优于单剂,有的配方防垢率达80%以上,具有较好的应用价值,但是配方应根据不同井口水样进行调整。
     (5)针对典型气井水样,除了研究上述液体防垢方法外,还研究了固体防垢方法。通过试验制作出缓蚀和防垢效果较好的固体防垢块,得到了适合蜀南气矿的防垢块载体材料、防垢剂和缓蚀剂的优化配比。试验结果显示,用乙烯醇(PVA1799)为载体,聚丙烯酸钠(PAAS)和苯并三氮唑(BTA)为防垢剂和缓蚀剂制作出来的防垢块防垢率可达到80%以上,缓蚀率达57%,具有较强的实用性,是一种有前途的气田生产防垢药剂,但是其综合性能还有待提高。
     (6)由于影响井筒结垢的因素较多,既包括气田水组成,又包括回注工艺和操作条件,为了进一步提高防垢效果,还提出了合理选择气田水回注井、注意回注水与地层水配伍性、采取措施降低回注水温度、提高回注水流速和压力、在地面对回注水进行预处理(固体杂质的去除、H2S去除、杀菌)、井筒酸洗除垢等工艺措施。
In the development process of the oil and gas fields, there generally exists scale deposit in production systems, especially when water production increases in the late development. Wellbore scaling will lead to that the decrease of wellbore flow area, and the decline of fluid transportation efficiency, may also lead to well bore corrosion perforation or even out of use, seriously affecting the oil and gas production safety. In addition, frequent work over will spend a lot of time, manpower, financial and material resources. So far, the oil field pipeline scaling has been studied by a lot of people, but less for the gas field production pipeline scaling. Depending on the field practice of Shunan gas field of Petro China Southwest Oil and Gas Field Company (commonly abbreviated to Shunan gas field) the paper analyzed gas production wellbore scaling mechanism and scaling tendency, studied the anti-scaling measures, and proposed anti-scaling technology.
     (1) Jing26well, Tong18well, Ful well, He8well and H1well which are of typical scaling characteristics and can reflect the unique feature of Shunan gas field were selectedas object of study, extracting water samples and scale samples, in accordance with the regulations of Oil And Gas Fields Water Analysis Method (SY/T5523-2000), analyzing chemical composition by means of chemical titration and X-ray diffraction spectroscopy detection, confirming that the water quality in Shunan gas field is belong to CaCl2water type. and finally proving that, scale forming ions in the gas field water mainly include Ca2+Mg2+. Sr2+, Ba2+, HCO3-and SO42-, the gas field, the main composition in scale sample are of CaCO3, CaSO4, MgCO3, SrCO3, BaSO4and other fungi metabolic product, etc., in which the proportion of CaCO3scale is the highest.
     (2) By means of analyzing and studying the geological features, development programs, ion composition and process conditions of recalculated water in the Shunan gas field, the scaling tendency was predicted in accordance with the saturated index formula of CaCO3scale commonly applied in oil and gas fields in Predication Of Oil Field Water Scaling Tendency (SY/T0600-1997), adopted welibore scaling tendency of gas production well was analyzed by adopting using gas-liquid two-phase flow model and gas single-phase flow model respectively and the scaling tendency predicted with the two models are consistent, which indicated that formation of CaCO3scale is inevitable under the wellbore working environment of the gas well, and the scaling tendency increases with increasing temperature, consistent with theoretical speculation and field practice; meanwhile which also informed that the single-phase scaling forecasting model can be used to predict the scaling tendency of the wellbore of gas well.
     (3) The model predicting maximum amount of scale buildup of CaCO3appeared in gas well wellbore was established according to prediction formula for maximum amount of scale build up of CaCO3scale. By simulating, it was found that the position with largest amount of scale build up with in wellbore is within the range of500m from the well bottom, in line with the actual situation providing a reference for targeted removal of scale.
     (4) It is focused on the study of the chemical scale measures after comparative analysis of a variety of anti-scaling method, the proportion of CaCO3and CaSO4scale in the scaling product of Shunan gas field is the largest, so five kinds of single scale inhibitor of CaCO3scale such as sodium polyacrylate (PAAS), Amino Trimethylene Phosphon-ic Acid (ATMP),1-Hydroxy Ethylidene-1,1-Diphosphonic Acid (HEDP), Ethylene Diamine Tetra (Methylene Phosphonic Acid) Sodium (EDTMPS), Hydrolyzed Polymaleic Anhy-dride (HPMA),which is of high efficiency preventing CaCO3scale and commonly applied in oil field, were selected to analyzed the anti-scaling action of these scale inhibitor on CaSO4in accordance with the orthogonal experiment analysis. Through a ex-perimental study in the laboratory, three high efficiency scale inhibitors preventing CaSO4scale were selected from these five CaCO3scale inhibitors and, formula were formed by compounding the two agent among three, and then the formula proportion were changed and optimized. Experimental results show that the antiscale effect of antiscaling comp-ound is superior to a single dose, antiscale effect of some formula can reach up to more than80%, and have the good application value, but the formula should be adjust basedon different wellhead water samples.
     (5) For a typical gas well water samples, in addition to the study of the above described liquid anti-scaling method, the solid anti-scaling method was also studied. Solid anti-scaling block that is of good effect for corrosion and scale control was manufactured through experiment, finding carrier material of anti-scaling block suit for Shunan gas field, the optimum ratio of scale inhibitor and corrosion inhibitor. The test results showed that anti-scaling block produced with vinyl alcohol (PVA1799)as the carrier, sodium polyacrylate (PAAS) and benzotriazole (BTA) as for scale inhibitors and corrosion inhibitors respectively can reach the efficiency of control scale of more than80%, the efficiency of corrosion control of57%, with a strong practicability. Therefore, the anti-scaling block is a promising anti-scaling agent of gas field production, but its overall performance is to be further improved.
     (6) Many factors affect the wellbore scaling, including both composition of gas field water and reinjection process and operating conditions.For this, In order to further improve the scaling effect, the following process measures also were put forward, which include reasonable selection of reinjection well of gas field water, attention paid to compatibility of the reinjection water and formation, measures to reduce the injection water temperature and to improve reinjection water flow rate and pressure, the pretreatmentof the reinjection water on the ground surface(removal of solid impurities and hydrogen sulfide, disinfection) and acid cleaning the wellbore for scale control.
引文
[1]毛川勤,黎永杰.川南地区气田水防垢方法应用[J].天然气工业,1995,15(6).32-34
    [2]Marin Cikes A.Successful treatment of formation damage caused by high-density brine.SPE Production Engineering[Z],1990,5(2)
    [3]Evan H Street J等著,张宏样译.防垢有助于天然气开采[J].天然气勘探与开发,1990
    [4]Plummer L N, Busenberg E. The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90℃, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O. Geochim Cosmochim Acta[J].1982,46(3):1011-1040
    [5]Morizot A P and Neville A:Heriot-Watt U:Using an Electrochemical Approach for Monitoring Kinetics of CaCO3 and BaSO4 Scale Formation and Inhibition on Metal Surfaces, SPE 71712
    [6]左景栾.井下挤注化学防垢技术研究,中国石油大学(华东)博士论文,2009:3-12
    [7]舒干,邓皓,王蓉沙.对油气田结垢的几个认识[J].石油与天然气化工.1996(03):176-178
    [8]万仁溥.采油工艺手册[M].北京:石油工业出版社,2000:554-566
    [9]巨全义,罗春勋,武平仓.低渗注水油田地层结垢的防治技术[J].油田化学,1994,11(2):113-117
    [10]曹维政,石京平,张栋杰等.储层结垢与防治物理模型应用[J].矿物岩石,2002,22(4):78-82
    [11]王鑫,张玉奎,朱平生等.榆树林油田注水井结垢及其机理研究[J].油田化学,1997,14(2):139-142
    [12]朱义吾,赵作滋,巨全义等.油田开发中结垢机理及其防治技术[M].西安:陕西科技出版社,1995
    [13]万里平,唐酞峰,孟英峰.长庆油田油井井筒腐蚀机理与防护措施[J].石油与天然气化工,2006,35(4):311-313
    [14]Takeshi O, Toshio S, Kiyoshi S. The formation and transformation mechanism of calcium carbonate in water[J]. Geochim Cosmochim Acta,1987,151(4):2757-2767
    [15]刘良霞,肖英玉,曹怀山纯化油田油井腐蚀、结垢原因分析及治理措施[J].石油与天然气化工2004,33(2):127-128
    [16]Brecevic L. Solubility of amorpHous calcium carbonate[J]. J Cryst Growth,1989, 98(2):504-510
    [17]Kralj D, Brecevic L, Kontrec J. Vaterite growth and dissolution in aqueous solution III:kinetics of transformation[J]. J Cryst Growth,1997,177(4):248-257
    [18]Dyers J, Graham GM.The effect of temperature and pressure on oilfield scaie formation[J].J Petrol Sci Engng,2002(35):95-107
    [19]蔡爱斌.中原油田回注水结垢问题分析[J].石油化工腐蚀与防护,2004,21(2):62-64
    [20]Oddo J E, Smith J P, Tomson M B, etal. Analysis of and Solutions to the CaCO3 and CaSO4 Scaling Problems Encountered in Wells Off shore IndonesIa [R].SPE 22782
    [21]Jordan M M, Archibald I, Ebnaldson L, et al.Deployment, monitoring and optimization of combined scale/corrosion inhibitor with a subsea facility in the North Sea BaSIn[Z].SPE 80214,2003
    [22]Wylde J J, williams G D M, Careil F, et al.Deep downhole chemical injection on BP operated miller:experience and learning[Z].SPE 92832,2005
    [23]Wylde J J, WilliamsG D M, CareilF, et al.A new type of super-adsorption high-desorbtion scale squeeze chemistry:doubling treatment life on miller wells[Z].SPE 92833,2005
    [24]Wylde J J, williams G D M, Careil F.Innovative, integrated and cost effective chemical managanent on the miller platform[Z].SPE 92834,2005
    [25]Poynton Neil, Kelly Caroline, Ray John, et al. Selection and deployment of a scale inhibitor squeeze chemical for the BP miller field[Z].SPE 87466,2004
    [26]Chilcott N, pHilips D, Sanders M, et al. the development and application of an accurate assay technique for sulpHonated poly-acrylate co-polymer oilfield scale inhibitor[Z]. SPE 60194,2000
    [27]Williams G, MacDonald A, Wylde J, et al.Late-Life production boost for BP miller with combined scale squeeze and chemical water-shutoff treatments[Z].SPE 100660,2006
    [28]ChenP, HagenThomas, BourneHugh, etal.The challenge of squeezing a water senSItive HP/HT reservoir-lab and field experiences with a novel non aqueous inhibitor/squeeze enhance package[Z].SPE 87435,2004
    [29]Collins IR, JordanMM, TaylorSE.The developmentand applieation of a Etovel scale inhibitor for deployment in low water cut, water seaSItive or low pressure reservoirs[Z].SPE 60192,2000
    [30]Wat R, Sele OI M, Borstad H, et al.Scale inhibitor squeeze treatment strategy on Heidrun[Z].SPE 68944,2001
    [31]Chen Ping, Hagen Thomas, MaeLean Alan, et al.Meeting the challenges of downhole scale inhibitor selection for an environmentally senSItive part of the Norwegian North Sea[Z].SPE 74652,2002
    [32]Nasr-EL-Din H A, Saiari H A, Hashem M K, et al.Optimization of a novel emulSIfied scale inhibitor system to mitigate calcium carbonate scale in a sandstone reservoir in Saudi Arabia[Z].SPE 80389, 2003
    [33]Nasr-EL-Din HA, Lynn JD,Hashem M K,et al.Field application of a noval emulSIfied scale inhibitor system to mitigate calcium carbonate scale in a low-tem perature,low-pressure sandstone reservoir in Saudi Arabia[Z].SPE 77768,2002
    [34]Nasr-EL-Din H A, Lynn J D, Hashem M K, et al.Lessom learned from descaling wells in a standstone reservoir in central Saudi Arabia[Z].SPE 74690,2002
    [35]Smith RN, Lawless T A, Bourne H M, et al.Planning and execution of a field trial utilizing new invert emulsion squeeze technology[Z].SPE 60210,2000
    [36]AL-Qahtani A M, Nasr-EL-Din H A, Raju K U.Scale inhibitor squeeze treatment in a tight carbonate reservoir-problems and solutiom[Z].SPE 80402,2003
    [37]J Nasr-EL-Din H A, Lynn J D, AL-Dossary K A.Formation damage caused by a water blockage chemical[Z].SPE 73790,2002
    [38]Hsu J F, AL-Zain A K, Raju K U, et al.Encapsulated scale inhibitor treatment experience in the Ghawar field, Saudi Arabia[Z].SPE 60209,2000
    [39]Al-Thuwaini J S, Burr B J, ArabJan T R.Encapsulated scale inhibitor treatment[Z].SPE 37790,1997
    [40]李景全,赵群,刘华军.河南油田江河区油井防垢技术[J].石油钻采工艺,2002,24(2):57-60
    [41]Weghorn S J, Stegmann D W.Enhancing chemical efficiency using slow-release corrosion inhibitors[J].SPE 93 169.
    [42]Inhibition of Scale Formation from Oil Well Brinea Utilizing A Slow Release Composition.US 5399270,1995
    [43]Hsu J F, Al—Zain A K, Raju K U.Encapsulated scale inhibitor treatments experience in the Ghawar Field, Saudi Arabia[J].SPE 60 209
    [44]巨全义,管慧珠.油田开发中的化学防垢技术[J].石油钻采工艺,1990(4):69-74
    [45]Ross R J Polyspartate Scale Inhibitors-Biodgradable Alteractives to Polyscrylates, Material Performance,1997,36(4):53-57
    [46]江淑娟,吴松林.油田开发[M].北京:石油工业出版社,2002:81-89
    [47]樊泽霞,任韶然等.油田防垢挤注技术的研究与应用[J].油气地质与采收率.2007(05):104-106
    [48]李景全,赵群,刘华军.河南油田江河区油井防垢技术[J].石油钻采工艺.2002(02):57-60
    [49]徐振峰,马广彦.油田结垢治理技术的改进与提高[J].石油工业技术监督.2004(04):11-12
    [50]杨建华.注水井管线酸洗除垢工艺[J].石油工程建设,1998(2):42-43
    [51]R M Easter.T R Grander and F M Glasseock.Scale deposit(?) are controlled now with liquid inhibitors.Oil and Gas Journal, Jan 15,1968
    [52]J C Cowan and D J Weintritt. Water formed scale deposits.Gulf Publishing Co, Houston, Tx,1976
    [53]罗满岐,廖刚,王文东.油田硫酸盐垢防垢剂研究[J].化学工程与装备.2008,7:1-7
    [54]L C Case Watch those mixed injection waters.Oil and Gas Journal Aug 8,1960
    [55]王睿,张岐,丁洁等.防垢剂作用机理研究进展[J].化学工业与工程,2001,18(2):79-87
    [56]何爱江.防垢剂性能及机理研究[D].成都:四川大学,2006
    [57]张洪利.国内防垢剂研究现状及展望[J].化学工程师,2007,139(4):38-41
    [58]马广彦.油田难溶垢的化学处理技术[J].钻采工艺,2000,12(5)
    [59]马广彦.采油井地层深部结垢防治技术[J].石油勘探与开发,2002,29(5):82-84
    [60]刘涛,梁全清.新型油井防垢工艺研究与应用[J].内蒙古石油化工,2003,29:159-160
    [61]杜春安,赵修太,邱广敏等.缓释型固体缓蚀防垢剂的研制与应用[J].石油与天然气化工2005.34(2):128-131
    [62]SY/T 5673-1993油田用防垢剂性能评定方法[S]
    [63]王世强,王笑菡,王勇.油田结垢及防垢动态评价方法的应用研究[J].中国海上油气(工程),1997,9(1):39-53
    [64]刘平,廖柯喜.石油工程、油气储运基础知识培训教材.www.doc88.com/p-006207483060.htmL2012-2-25
    [65]SY/T 5523-2000油气田水分析方法[S]
    [66]SY/T 5329-1994碎屑岩油藏注水水质推荐指标及分析方法[S]
    [67]马广彦.几种钡垢清除剂的室内评价[J].油田化学,1994,11(3):241-243
    [68]陈大均,陈馥等.油气田应用化学[M].北京:石油工业出版社,2005:377-383.
    [69]范嗣英.威远气田水结垢类型和成因[J].天然气工业,1986,1
    [70]邱正阳,李长俊,邱奎.蜀南气矿井筒结垢机理研究.油气田地面工程[J].2011,30(11):19-20
    [71]魏小泉,罗卫东,何文杰,黄斌,任何明,张东.时代蜀南治水先锋[0].人民日报作品定制网,2012.2.5
    [72]祝万鹛等.城市自来水系统碳酸盐平衡与防垢技术[J].水处理技术,1994(3)
    [73]万仁溥.采油工程手册[M].北京:石油工业出版社,2003,45-106
    [74]徐菊芳.川西北气矿中坝须二气田水处理方法.油气田环境保护[J].2005,3
    [75]杨旭,俞平仁,卢富国.气田水回注的水质问题及回注井选择.油气田环境保护[J].1996,6(4)
    [76]Stiff H A, davisl e. A method of predicting the tendency of oil field water to depoSIt calcium Carbonate[J]. Petrol. Trans AIME,1952:195-213
    [77][美]Patton C,李敬波等译.实用水技术[M].北京:石油工业出版社,1992
    [78]杨肖曦,赵磊,张丁涌,谭红旗.注水井井筒中CaCO3结垢预测[J].中国石油大学学报(自然科学版),2010,34(1):114-117
    [79]胡业文,冯耀忠,冯鼎.含水油井的结垢计算和预测.试采技术,2010,31(1):44-48
    [80]高波,王勇,李冰,等.天外天气田结垢趋势预测[J].天然气勘探与开发,2009,32(1):71-73
    [81]Zuo Jing-luan, Ren Sao-ran, Fan Ze-xia, et al.Experimental study and field implem entation of scale inhibitor squeeze treatments in ShengLi oilfield of china[Z].SPE 114017,2008
    [82]舒干,邓皓,王蓉沙.油气田防垢技术与应用[J].油气田地面工程,1996,15(4):40-43
    [83]徐振峰.两步法油田油井结垢处理技术及其发展[J].化学清洗,1995,11(1):14-17
    [84]徐振峰,马广彦.油田结垢治理技术的改进与提高[J].石油工业技术监督,2004,4:11-12
    [85]AKZ0 Chemicals Ltd.Oilfield Chemicals阿克苏化学公司油田生产除垢强化生产技术[Z].中英陆上石油技术交流会资料.]992
    [86]赵福麟著.采油化学[M].山东:石油大学出版社,1989
    [87]马广彦.清垢剂CQ-1与采油井化学清垢技术[J].油田化学,1994,11(1):26-3
    [88]朱清泉.油田水处理防垢剂[J].工业水处理,1989(1):15-17
    [89]朱清泉.油田水有机防垢剂的结构与性能[J].石油与天然气化工,1987(3):45-53
    [90]陈复.水处理技术及药剂大全[M].北京:中国石化出版社,2000:68-71
    [91]Drew. Principles of water treatment new jersey [M]. New York Drew Chemical Corporation, 1979:72-84
    [92]Markin A N, Shamanina A N, Vover V L. Biocial activity of steel by bacteria[J].Neft Khoz, 1994(1):65-68
    [93]Quach Loc Columbia M D. Water soluble allylphosphonate copolmers[P]. US 5091491,1992
    [94]张建刚.水处理防垢剂聚天冬氨酸的改性研究.山西农业大学博士论文.2000:65-94
    [95]余育新.聚环氧琥珀酸钠阻碳酸钙垢性能研究.江西理工大学博士论文.2000:81-93
    [96]张治宏,王彩花,王晓昌.一种新型共聚物的合成及其防垢性能[J].工业用水与废水,2005,36(6):68-71
    [97]沈小雷.丙烯酸/2-丙烯酰胺基-2-甲基丙磺酸共聚物的合成[J].化学工业与工程技术,1997,18(1):6-8
    [98]刘光全,邓皓,王蓉莎,肖遥.气田注水防垢剂的研究.石油与天然气化工[J].1999,28(3)
    [99]C M Shaughnessy,金静芷译.普鲁德霍湾油田用EDTA解除地层堵塞[J].1989
    [100]Simulation fluids dissolve oil field scale[J].Pet, Engr.Int,1997,70(1)
    [101]邱正阳,邱奎.蜀南气矿井筒防垢措施研究[J].Applied Mechanics and Materials.2011.11
    [102]周本省.循环冷却水系统中的水垢及其控制[J].腐蚀与防护,2006,1(27):26-32
    [103]盖军.油田水溶性聚合物防垢剂[J].工业水处理,1996(5):7-9
    [104]王新刚,王鸿儒,乔永洛.丙烯酸/丙烯酸羟丙酯共聚物防垢剂的合成及性能研究[J].陕西科技大学学报,2004,22(2):19-23
    [105]于跃芹,董爱想,李忠珍.衣康酸共聚物防垢剂的合成与应用[J].工业水处理,2005,25(10):44-46
    [106]王云峰.表面活性剂及其在油气田中的应用[M].北京:石油工业出版社,1995:225-236
    [107]邱正阳,李长俊,邱奎.井筒固体防垢块的研制.重庆科技学院学报(自然科学版)[J].2012,1:73-74
    [108]查理斯,C.帕托著[英].油田水处理工艺,北京:石油工业出版社,1979
    [109]陆柱,郑士忠,钱滇子等编著.油田水处理技术[M].北京:石油工业出版社,1992
    [110]Pard J E(著),严新新(译).挤注作用的新型防垢剂[J].采油工艺情报,1991(4):87-106
    [111]左景栾,樊泽霞,任韶然等.纯梁油田樊41块油井结垢与挤注防垢技术[J].石油学报,2008,29(4):27-31
    [112]KokalSL, RajuKU, Hector Bayona. Cost-effective design of scale-inhibitor squeeze treatments using a mathematical model[Z].SPE 29819,1996
    [113]Al-Thuwaini J S, Arabian B J.Encapsulated scale inhibitor treatment[J].SPE 37 790

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700