用户名: 密码: 验证码:
旋转填充床中耦合吸收CO_2和NH_3的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
旋转填充床(即超重力机,RPB)是一种新型的强化相间传质和多相混合的设备,主要由装有填料的转子组成。由于转子的高速旋转,使流经转子填料上的液体受到远大于地球重力的离心力的作用(通常为几十到几百个重力加速度),经过液体和填料间的持续碰撞,液体的湍动效果、表面更新速度都得到了加强,从而大幅度提高了RPB中的微观混合和传质效果。鉴于RPB在强化传质和混合方面具有独特的优势,该设备已经应用于气体吸收、脱硫、纳米材料制备、水处理、精馏等化工过程。
     多组分气体耦合吸收是一种近年来兴起的吸收处理方法。采用新的技术进行耦合吸收能减少生产工序和大幅降低生产成本,使生产企业的综合效益得到大幅提高。本论文主要进行了超重力机中耦合吸收CO_2和NH_3的机制和规律的研究,探索超重力环境下各工艺条件对耦合吸收NH_3和CO_2过程的影响规律,研究了RPB中盐溶液耦合吸收NH_3和CO_2制备无机微纳米材料,为NH_3、CO_2以及相关盐溶液的资源化利用提供新的解决途径。主要内容如下:
     1、以RPB为实验装置,对水和盐溶液耦合吸收NH_3和CO_2的过程特征和机制进行研究。通过采用正确的积分路线,衡算得到了精确的RPB设计方程和分区域设计方程,并建立了RPB中耦合吸收NH_3和CO_2时的吸收反应传质模型,经过验证,传质系数的预测值和实验值一致性较好,误差范围在百分之十以内。
     2、研究了水单独或耦合吸收NH_3和CO_2时,各工艺参数如氨碳比、气体和液体体积流量、超重力机转速、体系温度等对NH_3和CO_2吸收传质效果的影响规律。获得本实验的最适宜操作条件:转速为1000rpm,液体流量为200L h~(-1),气体流量为2400L h~(-1),氨碳比为2,温度为293K。在最适宜条件下NH_3的吸收率可以达到99.2%,传质系数为1.8×10~(-4)mol Pa~(-1) m-3s~(-1);CO_2的吸收率可以达到50.6%,传质系数为2.6×10~(-5)mol Pa~(-1) m-3s~(-1)。
     3、研究了超重力机中饱和氯化钠溶液耦合吸收NH_3和CO_2时,各操作参数如气体和液体体积流量、超重力机转速、氨碳比、体系温度等对NH_3和CO_2传质系数的影响规律。确定了实验条件下饱和氯化钠溶液耦合吸收NH_3和CO_2的最适宜工艺参数:转速为800rpm,液体流量为25L h~(-1),气体流量为1100L h~(-1),氨碳比为2,温度取室温293K,在该条件下,NH_3的吸收率可以达到99.04%,传质系数为7.4×10~(-5)mol Pa~(-1) m-3s~(-1),CO_2的吸收率可以达到42.2%,传质系数为8.1×10~(-5)mol Pa~(-1) m-3s~(-1)。
     4、进行了超重力机中CaCl_2溶液耦合吸收NH_3和CO_2制备纳米CaCO_3的研究。探索体系温度、超重力机转速、液体循环量、原料液浓度、气体流量等操作参数对CaCO_3颗粒物性的影响,获得了本实验中的最适宜工艺参数:温度为293K、转速为1000rpm、气体体积流量是2400L·h~(-1)、液体体积流量是200L·h~(-1)、初始CaCl_2浓度为0.2mol·L~(-1)、CO_2和NH_3的初始浓度分别为7%和14%。在最佳实验参数下,制备出的纳米CaCO_3产品的颗粒度大约为50nm,粒度分布为10-80nm。该方法为CaCl2废液以及NH_3和CO_2气体的资源化利用提供了一条有效途径。
     5、进行了RPB中氯化镁溶液耦合吸收NH_3和CO_2制备碱式碳酸镁的研究。通过实验对产物的XRD,SEM分析,考察了RPB转速、气体流量、液体流量及氯化镁溶液的初始浓度、反应温度等各操作条件对产物形貌、结构以及尺寸的影响规律。获得了在本实验参数范围内的最适宜操作参数:转速1100rpm,液体流量300L h~(-1),气体流量1000L h~(-1),氯化镁溶液的初始浓度为0.3mol·L~(-1),CO_2和NH_3的初始浓度分别为6%和12%,反应温度为343K。在该条件下,得到了碱式碳酸镁的平均粒径为5.3μm,纳米片厚度为25nm,粒度分布2.8-7μm的碱式碳酸镁。随着对该方法的进一步深入研究,可望为卤水以及含NH_3和CO_2气体的资源化利用提供了一条新的解决途径。
A rotating packed bed (RPB, also called Higee device) is a novelequipment for the intensification of mass transfer and multiphase mixing.It consists mainly of a packed rotor. Due to the high-speed rotation of therotor, liquid is submitted to the action of a strong centrifugal force,usually dozens to thousands times larger than the gravitationalacceleration on the earth, when flowing through the packed rotor.Because of the continuous collision between liquid and packing, theturbulence and surface renewal rate of the liquid is enhanced, leading to asignificant increase of the mass transfer and micromixing efficiency inthe RPB. In view of the unique properties of RPB in mass transfer andmixing, it has been widely used in chemical processes such as absorption,desulfurization, nanomaterials preparation, water treatment, distillationand so on.
     Simultaneous absorption of multicomponent gases is an emergingabsorption process in recent years. The production processes and cost canbe reduced by using the simultaneous absorption processes, resulting in the increase of comprehensive benefits of enterprises. This dissertationinvestigated the mechanism and rule of the simultaneous absorption ofCO_2and NH_3into water in an RPB. The effects of different operationconditions on the absorption process of CO_2and NH_3into water in theRPB were studied. In order to develop a feasible methodology for theutilization of NH_3, CO_2and certain salt solution, the preparation ofinorganic micro/nano-materials by simultaneous absorption of NH_3andCO_2in salt solution in an RPB was also studied. The main researchcontents are as follows:
     1. Investigated the mechanism and characteristics during thesimultaneous absorption of CO_2and NH_3into water, NaCl solution,CaCl2solution, and MgCl_2solution in an RPB. The precise designequation and part design equation of an RPB were deduced by adoptingthe practical boundary conditions. A reaction mass-transfer model wasestablished and used for the prediction of the mass-transfer coefficient(KGa) of the simultaneous absorption of CO_2and NH_3into water in anRPB. By the comparison of the predicted value and experimental value,we found that the deviation is within10%, and the model exhibits goodprediction ability for KGa value in the RPB.
     2. Investigated the effects of different operating conditions,including NH_3/CO_2molar ratio, rotation speed, liquid volumetric flowrate, gas volumetric flow rate and temperature, on the mass-transfer coefficient of NH_3and CO_2during the simultaneous or separateabsorption of CO_2and NH_3into water in an RPB. And the optimaloperating conditions of a rotation speed of1000rpm, a liquid volumetricflow rate of200L h~(-1), a gas volumetric flow rate of2400L h~(-1), aNH_3/CO_2molar ratio of2and a temperature of293K were obtained inthis simultaneous absorption process. A NH_3absorption rate of99.2%, aNH_3mass-transfer coefficient of1.8×10~(-4)mol Pa~(-1) m-3s~(-1), a CO_2absorption rate of50.6%and a CO_2mass-transfer coefficient of2.6×10~(-5)mol Pa~(-1) m-3s~(-1)can be achieved under the optimal operating conditions.
     3. Investigated the effects of different operating conditions,including rotation speed, liquid volumetric flow rate, gas volumetric flowrate, NH_3/CO_2molar ratio and temperature, on the mass-transfercoefficient of NH_3and CO_2during the simultaneous or separateabsorption of CO_2and NH_3into saturated NaCl solution in an RPB. Andthe optimal operating conditions of a rotation speed of800rpm, a liquidvolumetric flow rate of25L h~(-1), a gas volumetric flow rate of1100L h~(-1),a NH_3/CO_2molar ratio of2and a temperature of293K were obtained inthis simultaneous absorption process. A NH_3absorption rate of99.04%, aNH_3mass-transfer coefficient of7.4×10~(-5)mol Pa~(-1) m-3s~(-1), a CO_2absorption rate of42.2%, a CO_2mass-transfer coefficient of8.1×10~(-6)mol Pa~(-1) m-3s~(-1)can be achieved under the optimal operating conditions.
     4. Investigated the preparation of nano-CaCO_3by simultaneous absorption of NH_3and CO_2into CaCl2solution in an RPB, andinvestigated the effects of different operating conditions, includingreaction temperature, rotation speed, liquid volumetric flow rate, gasvolumetric flow rate and initial concentration of CaCl_2solution, on thecharacteristic of nano-CaCO_3. And the optimal operating conditions of arotation speed of1000rpm, a liquid volumetric flow rate of200L h~(-1), agas volumetric flow rate of2400L h~(-1), a NH_3/CO_2molar ratio of2, atemperature of293K, a NH_3concentration of14%and a CO_2concentration of7%were obtained in this process. The nano-CaCO3witha mean size of50nm, a particle size distribution of10-80nm wasprepared under the optimal operating conditions. The process provides apromising pathway for the utilization of CaCl_2wastewater and NH_3-andCO_2-containing exhausts as resources.
     5. Investigated the preparation of basic magnesium carbonate (BMC)by simultaneous absorption of NH_3and CO_2into MgCl2solution in anRPB, and investigated the effects of different operating conditions,including rotation speed, liquid volumetric flow rate, gas volumetric flowrate, reaction temperature and initial concentration of MgCl_2solution, onthe shape, structure and size of BMC. And the optimal operatingconditions of a rotation speed of1100rpm, a liquid volumetric flow rateof300L h~(-1), a gas volumetric flow rate of1000L h~(-1), a NH_3/CO_2molarratio of2, a temperature of343K, a NH_3concentration of6%and a CO_2 concentration of12%were obtained in this process. The BMC with amean size of5.3μm, a nano-slice microstructure of25nm, a particle sizedistribution of2.8-7μm was prepared under the optimal operatingconditions. This process shows potentials for the utilization of MgCl_2wastewater and NH_3-and CO_2-containing exhausts as resources.
引文
[1]化学工程手册第13篇,气液传质设备[M].化学工业出版社,1989,2-120.
    [2]杨致芬,郭春绒.超重力技术研究进展[J].安徽农业科学,2008,36(20):8432-8435.
    [3]王玉红,郭锴,陈建峰,等.超重力技术及其应用[J].金属矿山,1999,4:25-29.
    [4]官益豪,黄卫星,肖泽仪,等.超重力技术及其应用研究进展[J].化工机械,2005,1:55-59.
    [5]宁方尧,黄悦刚.超重力传递机理初探[J].中国甜菜糖业,2005,1:35-37.
    [6]郭锴,柳松年,陈建峰,等.超重力工程技术应用的新进展[J].化工进展,1997,1:1-4.
    [7] Vivian J E, Brian P L T, Krukonis V J. The influence of gravitational force on gasabsorption in a packed column[J]. AIChE J.,1965,11(6):1088-1090.
    [8] Ramshaw C, Mallinson R. Mass transfer process[P]. European Patent0002568,1979-3-17.
    [9] Ramshaw C, Mallinson R. Process and apparatus for effecting mass transfer[P].European Patent0023745,1981-02-11.
    [10] Ramshaw C, Mallinson R. Higee distillations an example of process intensification[P].European Patent0084410,1983-02-13.
    [11]陈炳文,金光海,刘传富.新型离心传质设备的研究[J].化工学报,1989,5:635-639.
    [12]朱慧铭.超重力场传质过程的研究及其在核潜艇内空气净化中的应用[D].天津:天津大学,1991.
    [13]沈浩,施南庚.用离心传质机对含氨废水进行吹脱[J].南京化工学院学报,1994,16(4):60-62.
    [14]郭锴.超重机转子填料内液体流动的观测与研究[D].北京:北京化工大学,1996.
    [15]竺洁松.旋转床内液体微滴化对气-液传质强化的作用[D].北京:北京化工大学,1997.
    [16]杨村.旋转床超重力场流体力学与传质特性及应用研究[D].北京:北京化工大学,1991.
    [17]杨旷.超重力旋转床微观混合与气液传质特性研究[D].北京:北京化工大学,2011.
    [18]陈建峰,初广文,邹海魁.一种超重力旋转床装置及在二氧化碳捕集纯化工艺的应用[P].中国专利.200810103231. X,2008.
    [19]万冬梅.超重机技术用于工业尾气脱硫化学吸收过程的研究[D].北京:北京化工大学,1995.
    [20]周绪美,郭锴,王玉红,等.超重力场技术用于油田注水脱氧的工业研究[J].石油化工,1994,23(12):807-808.
    [21]李华.超重力吸收法脱除H2S的实验研究[D].北京:北京化工大学,2011.
    [22]张健.旋转床超重力场分离气溶胶的研究[D].北京:北京化工大学,1994.
    [23]王刚.旋转床中拟塑性非牛顿流体性质的研究[D].北京:北京化工大学,1995.
    [24]贾志谦.超重力反应结晶法合成纳米碳酸钙及表面改性研究[D].北京:北京化工大学,1997.
    [25] Chen J F, Li Y L, Wang Y H, et al. Preparation and characterization of zinc sulfidenanoparticles under high-gravity environment[J], Mater. Res. Bull.,2004,39:185-194.
    [26] Zhong J, Shen Z G, Yang Y, Chen J F, et al. Preparation and characterization of uniformnanosized cephradine by combination of reactive precipitation and liquid anti-solventprecipitation under high gravity environment[J]. Int. J. Pharm.,2005,301:286-293.
    [27]毋伟,张新军,陈建峰,等.超重力法纳米氧化锌的制备表征及其应用.北京化工大学学报:自然科学版[J],2005,2:25-28.
    [28] Chen J F, Shao L, Guo F, et al. Synthesis of nano-fibers of aluminum hydroxide in novelrotating packed bed reactor[J]. Chem. Eng. Sci.,2003,58:569-575.
    [29] Hu T T, Wang J X, Shen Z G, Chen J F, et al. Engineering of drug nanoparticles by HGCPfor pharmaceutical applications[J]. Particuol.,2008,6:239-251.
    [30] Trent D, Tirtowidjojo D, Quarderer G. Reactive stripping in a rotating packed bed for theproduction of hypochlorous acid[R]. Proceedings of the3rd International Conference onProcess Intensification for the Chemical Industry, BHR Group Ltd., London, U. K.,1999,217-231.
    [31] Burns J R, Ramshaw C. Process intensification: Visual study of liquid maldistribution inrotating packed beds[J]. Chem. Eng. Sci.,1996,51:1347-1352.
    [32]张军,郭锴,郭奋,等.旋转床内液体流动的实验研究[J].高校化学工程学报,2000,04:378-381.
    [33]杨旷,初广文,邹海魁,陈建峰,等.旋转床内流体微观流动PIV研究[J].北京化工大学学报,2011,38(2):07-11.
    [34] Guo F, Zheng C, Guo K, et al. Hydrodynamics and mass transfer in cross-flow rotatingpacked bed[J]. Chem. Eng. Sci.,1997,52(21/22):3853-3859.
    [35] Mujal S, Dudukovic M P, Ramachandran P A. Mass-transfer in rotating packed beds-I.Development of gas-liquid and liquid-solid mass-transfer correlations[J]. Chem. Eng.Sci.,1989,44(10):2245-2256.
    [36]张军.旋转床内流体流动与传质的实验研究与计算模拟[D].北京:北京化工大学,1995.
    [37] Basic A, Dudukovic M P. Liquid holdup in rotating packed beds: Examination of the filmflow assumption[J]. AIChE. J.,1995,41:2-5.
    [38]王玉红.旋转床超重力场装置的液泛和传质研究[D].北京:北京化工大学,1992.
    [39] Kumar M P, Rao D P. Studies on a High-Gravity gas-liquid contactor[J]. Ind. Eng. Chem.Res.,1990,5:29-31.
    [40] Zheng C, Guo K, Feng Y D. Industrial Practice of HIGRAVITREC in waterdesecration[R]. Proceedings of the2nd International Conference on ProcessIntensification in Practice, BHR Group Conference Series28, BHR Group Ltd., London,U. K.,1997,273-287.
    [41]李振虎,郭锴,陈建铭等.旋转填充床气相压降特性的研究[J].北京:北京化工大学,1997.
    [42] Keyvany M, Gardner N C. Operating characteristics of rotating beds[J]. Chem. Eng.Progress,1989,9:48-52.
    [43] Tung H H, Mah R S H. Modeling liquid mass transfer in HIGEE separation[J]. Chem.Eng. Commun.,1985,39:147-153.
    [44]陈海辉,简弃非,邓先和.化学吸收法测定旋转填料床有效相界面积[J].华南理工大学学报,1999,27(7):32-38.
    [45]陈海辉,邓先和,张建军,等.化学吸收法测定多级离心雾化旋转填料床有效相界面积及体积传质系数[J].化学反应工程与工艺,1999,15(1):91-96.
    [46] Yang K, Chu G W, Zou H K, et al. Determination of the effective interfacial area inrotating packed bed. Chem. Eng. J.,2011,168(3):1377-1382.
    [47] Mujal S, Dudukovic M P, Ramachandran P A. Mass-transfer in rotating packed beds-II.Experimental results and comparison with theory and gravity flow[J]. Chem. Eng. Sci.,1989,44(10):2257-2268.
    [48]郭奋,郑冲,李振虎.燃煤烟气脱流技术交流会论文集[P].青岛:中国环境科学学会.青岛:1998,111-119.
    [49]张政,张军,郑冲.旋转床填料空间液体的液相传质分析[J].工程热物理学报,1998,19(1):86-89.
    [50]许明.超重力旋转床中的气液两相流体流动和传质过程的数值模拟研究[D].北京:北京化工大学,2004.
    [51]许明,张建文,陈建峰等.超重力旋转床中水脱氧过程的模型化研究[J].高校化学工程学报,2005,19(3):309-314.
    [52]易飞.超重力技术脱除二氧化碳的实验和模拟研究[D].北京:北京化工大学,2008.
    [53] Yi F, Zou H K, Chu G W, Chen J F, et al. Modeling and experimental studies onabsorption of CO2by Benfield solution in rotating packed bed[J]. Chem. Eng. J.,2009,45:377-384.
    [54]成都科技大学化工原理编写组编著,化工原理(上下册)第二版[M].成都科技大学出版社,1991.
    [55]谭天恩,麦本熙,丁惠华,化工原理[M].北京:化学工业出版社,1988.
    [56] Hanratty T J. Heat transfer through a homogeneous isotropic turbulent field[J]. AIChE.J.,1956,2:359-360.
    [57] Toor H L, Marchello J M. Film-penetration model for mass and heat transfer[J]. AIChE.J.,1958,4:97-99.
    [58] Dobbin W E. BOD and oxygen relationships in streams[J]. San. Eng. Div. ASCE,1964,53:53-55.
    [59] Danckwerts P V. Significance of liquid-film coefficients in gas absorption[J]. Ind. Eng.Chem.,1951,43:1460-1462.
    [60] Perlmutter D D. Surface-renewal models in mass transfer[J]. Chem. Eng. Sci.,1961,16:287-289.
    [61] Marchello J M, Toor H L. A mixing model for transfer near a boundary[J]. Ind. Eng.Chem. Fundam.,1963,2:8-10.
    [62] Harriott P. A random eddy modification of the penetration theory[J]. Chem. Eng. Sci.,1962,17:149-150.
    [63] Levich V G. Physicochemical hydrodynamics[R]. Prentice Hall Englewood Cliffs,1962.
    [64] King C J. Turbulent liquid phase mass transfer at a free gas liquid interface[J]. Ind. Eng.Chem. Fundam.,1966,5:1-3.
    [65] Fortescue G E, Pearson J R A. Gas absorption into a turbulence liquid[J]. Chem. Eng.Sci.,1967,22:1163-1176.
    [66] Lamout J C, Scott D S. An eddy cell model of mass transfer into the surface of aturbulent liquid[J]. AIChE. J.,1970,16:513-516.
    [67] Luk S, Lee Y H. Mass transfer in eddies close to air-water interface[J]. AIChE. J.,1986,32:1546-1554.
    [68] Petty C A. A statistical theory for mass transfer near interfaces[J]. Chem. Eng. Sci.,1975,30:413-418.
    [69]邹德正.物质传递及新型塔设备[M].重庆大学出版社,1991,66-86.
    [70]苗容生.两相流气泡界面附近湍流场和浓度场的激光测量及局部传质理论研究[D].天津:天津大学,1993.
    [71] Vasilis Bontozoglout, Anastasios J. Karabelas, Simultaneous absorption of H2S and CO2in NaOH solutions: Experimental and numerical study of the performance of aShort-Time contactor[J]. Ind. Eng. Chem. Res.,1993,32(1):165-172.
    [72] Mandal B P, Bandyopadhyay S S. Simultaneous absorption of carbon dioxide andhydrogen sulfide into aqueous blends of2-amino-2-methyl-1-propanol anddiethanolamine[J]. Chem. Eng. Sci.,2005,60(22):6438-6451.
    [73] Keshavarz P, Fathikalajahi J, Ayatollahi S. Mathematical modeling of the simultaneousabsorption of carbon dioxide and hydrogen sulfide in a hollow fiber membranecontactor[J]. Sep. Purif. Technol.,2008,63:145-155.
    [74] Chandrasekara P K, Chung S J, Raju T. Il-Shik Moon. Experimental aspects of combinedNOxand SO2removal from flue-gas mixture in an integrated wetscrubber-electrochemical cell system[J]. Chemosphere,2009,76:657-664.
    [75] Susianto M P, Anelie P, Andre Z. Experimental study and modelling of mass transferduring simultaneousabsorption of SO2and NO2with chemical reaction[J]. Chem. Eng.Process.,2005,44:1075-1081.
    [76] Long X L, Xin Z L, Wang H X, Xiao W D, Yuan W K. Simultaneous removal of NO andSO2with hexamminecobalt(II) solution coupled with the hexamminecobalt(II)regeneration catalyzed by activated carbon[J]. Applied Catalysis B: Environmental,2004,54:25-32.
    [77] Zhu H S, Mao Y P, Yang X J, et al. Simultaneous absorption of NO and SO2intoFeII–EDTA solution coupled with the FeII–EDTA regeneration catalyzed by activatedcarbon[J]. Sep. Purif. Technol.,2010,74:1-6.
    [78] Sun W Y, Ding S L, Zeng S S, Su S J, Jiang W J. Simultaneous absorption of NOxandSO2from flue gas with pyrolusite slurry combined with gas-phase oxidation of NO usingozone[J]. J. Hazard. Mater.,2011,192:124-130.
    [79] Pangarkar, V. G. Sharma, M. M. Simultaneous absorption and reaction of two gases:Absorption of CO2and NH3in water and aqueous solutions of alkanolamines[J]. Chem.Eng. Sci.,1974,29:2297-2306.
    [80] Jr. Hatch T F, Pigford R L. Simultaneous absorption of carbon dioxide and ammonia inwater[J]. I&EC Fundamentals,1962,1:209-214.
    [81]陈建峰,周绪美,郑冲.超细颗粒的制备方法[P].中国专利,95105344.2.1995.
    [82]陈建峰.超重力技术及应用-新一代反应与分离技术[M].北京:化学工业出版社,2003.
    [83]陈建峰,周绪美,王玉红等.超细碳酸钙的制备方法[P].中国专利,95105343.4.1995.
    [84] Dirksen J A, Ring T A. Fundamentals of crystallizations kinetic effects on particle sizedistributions and morphology[J]. Chem. Eng. Sci.,1991,46:2389-2427.
    [85] Li X, Chen J F, Chen, G T. Morphological configurations of material elements duringturbulent mixings: experimental study and modelling[J]. Acta Mech. Sinica,1994,26:266-274.
    [86] Chen J F, Shao L. Recent advances in nanoparticles production by high gravitytechnology-from fundamentals to commercialization[J]. Japanese Chem. Eng. J.,2007,40:896-904.
    [87] Yang H J, Chu G W, Zhang J W, Chen J F, et al. Micromixing efficiency in a rotatingpacked bed: experiments and simulation[J]. Ind. Eng. Chem. Res.,2005,44:7730-7737.
    [88] Wang D G, Guo F, Chen J F, et al. Preparation of nano aluminium trihydroxide by highgravity reactive precipitation[J]. Chem. Eng. J.,2006,121:109-114.
    [89] Shao L, Yu Y X, Bian S G, Chen J F, et al. Synthesis of nanosized Y-type TiOPc by a highgravity method[J]. J. Mater. Sci.,2005,40:4373-4374.
    [90] Wang M, Zou H K, Shao L, Chen J F, et al. Controlling factors and mechanism ofpreparing needlelike CaCO3under high-gravity environment[J]. Powder Technol.,2004,142:166-174.
    [91] Chen J F, Shao L, Guo F, et al. Synthesis of nano-fibers of aluminum hydroxide in novelrotating packed bed reactor[J]. Chem. Eng. Sci.,2003,58:569-575.
    [92] Chen J F, Wang Y H, Guo F, et al. Synthesis of nanoparticles with novel technology:high-gravity reactive precipitation[J], Ind. Eng. Chem. Res.,2000,39:948-954.
    [93] Wu W, Luo L L, Chu G W, Chen J F, et al. A novel route to prepare nanocomposites inlarger scale[J]. J. Mater. Sci. Technol.,2007,23:407-411.
    [94] http://eservice.digilib.sh.cn/coking/jb/ejb_details.asp?dbID=5458.
    [95]李志宝,王勇.使用碳酸铵从含氯化镁卤水中制备三水碳酸镁的方法[P].中国科学院过程工程研究所,2008-09-10.
    [96]郭笑荣.螺旋通道型旋转床超重力法制备超细氢氧化镁[D].湖南:湘潭大学,2009.
    [1] Sandilya Pavitra, Rao D P, Sharma A, Biswas G. Gas-phase mass transfer in a centrifugalcontactor[J]. Ind. Eng. Chem. Res.,2001,40:384-392.
    [2] Kelleher T, Fair, J R. Distillation Studies in a High-Gravity Contactor[J]. Ind. Eng. Chem.Res.,1996,35:4646-4655.
    [3] Cheng H H, Tan C S. Removal of CO2from indoor air by alkanolamine in a rotating packedbed[J]. Sep. Purif. Technol.,2011,82:156-166.
    [4] Lin C C, Chen B C. Characteristics of cross-flow rotating packed beds[J]. J. Ind. Eng.Chem.,2008,14(3):322-327.
    [5] Jiao W Z, Liu Y Z, Qi G S. Gas pressure drop and mass transfer characteristics in across-flow rotating packed bed with porous plate packing[J]. Ind. Eng. Chem. Res.,2010,49:3732-3740.
    [6] Chen Y S, Lin C C, Liu H S. Mass transfer in a rotating packed bed with viscousNewtonian and Non-Newtonian fluids[J]. Ind. Eng. Chem. Res.,2005,44:1043-1051.
    [7] Pinsent B R W, Pearson L, Roughton F J W. The Kinetics of combination of carbon dioxidewith ammonia[J]. Trans. Faraday Soc.,1956,52:1594-1598.
    [8] Pazuki G R, Pahlevanzadeh H, Ahooei Mohseni A. Prediction of phase behavior ofCO2-NH3-H2O system by using the UNIQUAC-Non Random Factor (NRF) model[J]. FluidPhase Equilibria.,2006,242:57-64.
    [9] James E, Pelkie P, Concannon J, David B. Manley Bruce E. Poling. Product Distributions inthe C02-NH3-H20System from Liquid Conductivity Measurements[J]. Ind. Eng. Chem.Res.,1992,31:2209-2215.
    [10] Pangarkar V G, Sharma M M. Simultaneous absorption and reaction of two gases:Absorption of CO2and NH3in water and aqueous solutions of alkanolamines[J]. Chem.Eng. Sci.,1974,29:2297-2306.
    [11] Bums J R, Ramshaw C. Process intensification: Visual study of liquid maldistribution inrotating packed beds[J]. Chem. Eng. Sci.,1996,51:1347-1352.
    [12] Onda K, Takeuchi H, Okumoto Y. Mass transfer coefficients between gas and liquid phasesin packed columns[J]. J. Chem. Eng. Jpn.,1968,1(1):56-62.
    [13] Pohorecki R, Moniuk W. Kinetics of reaction between carbon dioxide and hydroxyl ions inaqueous electrolyte solutions[J]. Chem. Eng. Sci.,1988,43:1677-1684.
    [14] Guo F, Zheng C, Guo K. Hydrodynamics and mass transfer in cross-flow rotating packedbeds[J]. Chem. Eng. Sci.,1997,52:3853-3859.
    [15] Chen Y S, Lin F Y, Lin C C, Tai C Y D, Liu H S. Packing characteristics for mass transferin a rotating packed bed[J]. Ind. Eng. Chem. Res.,2006,45:6846-6853.
    [16] Hirschfelder J O, Bird R B, Spotz B L. The transport properties of gases and gaseousmixturesⅡ[J]. Chem. Rev.1949,44:205-231.
    [17]孟晓丽,刘有智,焦纬洲,等.旋转填料床净化磷肥尾气中的氨气[J]化工进展,2008,27(2):308-310.
    [18]丁振亭.氮肥生产中尾气的回收与利用[J].化肥工业,1997,24(6):10-12.
    [1]李振宁.国内外纯碱工业的现状及市场[J].现代化工,2005,25(3):26-56.
    [2] Steinhauser G. Cleaner production in the Solvay process: general strategies and recentdevelopments[J]. Journal of Cleaner Production,2008,16:833-841.
    [3]初顺德,王远,冒梅生.外冷式吸氨塔工艺流程改造[J].纯碱工业,1994,6:21-23,26.
    [4]大连化工研究设计院.纯碱工学[M].北京:化学工业出版社,2004.
    [5]王全.论碳酸化重碱结晶过程和设备技术的发展[J].纯碱工业,1996.(1):24-27.
    [1] Gao C Z, Dong Y, Zhang H J, Zhang J M. Utilization of distiller waste and residual motherliquor to prepare precipitated calcium carbonate[J]. J. Clean. Prod.,2007,15:1419-1425.
    [2] Rohit H D, Pushpito K G. Efficient recovery of potassium chloride from liquid effluentgenerated during preparation of schoenite from kainite mixed salt and its reuse inproduction of potassium sulfate[J]. Ind. Eng. Chem. Res.,2006,45:1551-1556.
    [3]张开仕,曾凤春.低浓度氯化钙废水治理技术及经济性评价[J].现代裕工,2004,24:56-58.
    [4]王树轩,邓良明.高海拔地区纯碱蒸氨废液综合利用技术研究[J].盐业与化工,2007,36:12-13.
    [5] Zhao Z Q. Comprehensive treatment of evaporated waste ammonia liquid of sodaprocess[J]. China Environmental Protection Industry.2001,4:37-39.
    [6] Kasikowski T, Buczkowsk R, Lemanowska E. Cleaner production in the ammonia–sodaindustry: an ecological and economic study[J]. J. Environ. Manage.2004,73:339-356.
    [7] Calban T, Kavci E. Removal of Calcium from Soda Liquid Waste Containing CalciumChloride[J]. Energy Sources.2010,32:407-418.
    [8] Hideo W M, Yoshiaki E, Takeshi X W, Wang F, Masayoshi T M. Effect of initial pH onformation of hollow calcium carbonate particles by continuous CO2gas bubbling intoCaCl2aqueous solution[J]. Adv. Powder Technol.,2009,20:89-93.
    [9]庄斌,徐超,张兴法.由氯化钙制备纳米碳酸钙研究[J].化工矿物与加工.2007,2:26-28.
    [10] Lin C C, Su Y R. Performance of rotating packed beds in removing ozone from gaseousstreams[J]. Sep. Purif. Technol.,2008,61:311-316.
    [11] Kelleher T, Fair J R. Distillation studies in a high-gravity contactor[J]. Ind. Eng. Chem.Res.,1996,35:4646-4655.
    [12] Hu T T, Wang J X, Shen Z G, Chen J F. Engineering of drug nanoparticles by HGCP forpharmaceutical applications[J]. Particuol.,2008,6:239-251.
    [13] Lin C C, Chien K S. Mass-transfer performance of rotating packed beds equipped withblade packings in VOCs absorption into water[J]. Sep. Purif. Technol.,2008,63:138-144.
    [14] Chen J F, Gao H, Zou H K, et al. Cationic Polymerization in Rotating Packed Bed Reactor:Experimental and Modeling[J]. AIChE J.,2010,56(4):1053-1062.
    [15] Lin C C, Chiang Y J. Preparation of coupled ZnO/SnO2photocatalysts using arotatingpackedbedp[J]. Chem. Eng. J.,2012,181-182:196-205.
    [16] Chen J F, Shao L. Mass production of nanoparticles by high gravity reactive precipitationtechnology with low cost[J]. China Particuol.,2003,1:64-69.
    [17] Dirksen J A, Ring T A. Fundamentals of Crystallizations Kinetic Effects on Particle SizeDistributions and Morphology[J]. Chem. Eng. Sci.,1991,46:2389-2427.
    [18]郭锴.超重机转子填料内液体流动的观测与研究[D].北京:北京化工大学,1996.
    [19] Guo K, Guo F, Feng Y D, Chen J F, Zheng C, Gardner N C. Synchronous visual and RTDstudy on liquid flow in rotating packed-bed contactor[J]. Chem. Eng. Sci.,2000,55:1699-1706.
    [19] Gu Y F, Wang S, Hu L M, Zhang A Z. Morphology control in preparing ultrafine CaCO3particles[J]. J. East China Inst. Chem. Technol.1993,15:550-556.
    [20] Chen J F, Wang Y H, Guo F, et al. Synthesis of nanoparticles with novel technology:high-gravity reactive precipitation[J]. Ind. Eng. Chem. Res.,2000,39:948-954.
    [1] http://baike.baidu.com/view/487251.htm.
    [2]天津化工研究设计院.工业水合碱式碳酸镁[M].行业标准-化工(CN-HG),2000.
    [3]谢英惠.高纯氧化镁的研究[J].海湖盐与化工,2001,30(6):16-18.
    [4]梁久来,胡冬华,杨淑臣,等.新药阿司匹林镁脲的合成研究[J].中国药物化学杂志,2002,12(3):141-142.
    [5]彭菊花,冯伯虎.食品级重质碳酸镁的制备[J].淮海工学院学报(自然科学版),2004,(3):54-56.
    [6]刘红梅, MgC03对镁铝系合金性能的影响[J].铸造设备研究,2003, l,23-24.
    [7] Kloprogge J T, Martens W N, Nothdurft L, et a1. Low Temperature Synthesis andCharacterization of Ncsquchonite[J]. J. Mater. Sci. Lett.,2003,22(11),825-829.
    [8]化学工业出版社.中国化工产品大全(上卷)[M].北京:化学工业出版社.1994.
    [9]胡庆福.镁化合物生产与应用[M].北京:化学工业出版社.2004.
    [10]毛小浩,李军旗,赵平源.氯化镁制备碱式碳酸镁研究[J].山西冶金,2009,6,27-30.
    [11]祁洪波,杨维强.轻质透明碱式碳酸镁生产工艺研究[J].无机盐工业,2008,40(10):36-38.
    [12]王锋,李稳宏,刘焕强,等.高活性氧化镁生产新工艺研究[J].石化技术与应用,2002,20(3):152-154.
    [13] Hao Z H, Du F L. Synthesis of basic magnesium carbonate microrods with a―house ofcards‖surface structure using rod-like particle template[J]. J. Physics Chem. Solids,2009,70:401-404.
    [14] Hao Z H, Pan J, Du F L. Synthesis of basic magnesium carbonate microrods with a surfaceof―house of cards‖structure[J]. Mater. Letters,2009,63:985-988.
    [15] Mitsuhashi K, Tagami N, Tanabe K, et a1. Synthesis of microtubes with a surface of―houseof cards‖structure via needlelike particles and control of their pore size[J]. Langmuir,2005,21:3659-3663.
    [16] Xi G C, Xiong K, Zhao Q B, et a1. Development of an Analytical Method to DeterminePhenolic Endocrine Disrupting Chemicals in Sewage and Sludge by GC/MS[J]. Cryst.Growth Des.,2006,6:577-582.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700