用户名: 密码: 验证码:
辽河盆地大民屯凹陷中部地区潜山裂缝分布规律方法研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以辽河盆地大民屯凹陷太古界变质岩裂缝性储层为研究对象,从技术研究的角度出发,首次探索了利用钻井取芯、测井和地震资料综合预测潜山裂缝发育的方法。利用岩芯标定测井资料,研究了裂缝性储层的测井响应,进而借助于地震相干体技术、三维可视化、地震多属性参数、地球物理特征曲线重构、测井约束地震反演和测井特征曲线反演等多项技术开展了全三维地震构造精细解释和潜山裂缝性储层横向预测研究,形成了多属性、多参数综合预测变质岩裂缝性储层的方法。在以上工作的基础上,进行了圈闭评价和井位部署,并在实际钻探中获得了重大突破。
     1、在裂缝储集层中,油气储集、渗滤的空间、通道以构造裂缝为主。构造裂缝的形成和分布与局部构造作用(断层、褶皱作用)有关。区域裂缝与构造裂缝叠加形成的裂缝系统,有助于油气的储集和渗滤。
     2、辽河大民屯中部地区主要储集岩是太古界的区域变质岩和混合岩类,尤以裂缝发育和经过碎裂化的刚性变质岩类的储集性能最佳。变质岩储集空间以构造和物理风化成因的裂缝为主,结晶成因的储集空间次之,这些孔、缝经过化学淋溶作用不同程度的改造,更有利于油气的储集。影响裂缝发育的主要因素是构造、物理风化和化学淋溶作用。裂缝发育—碎裂化强烈的储集岩主要分布在断裂带及其附近,即构造断裂带控制着变质岩储层的形成发育和分布。提出了低潜山裂缝发育带也是有利的勘探目标。
     3、运用有限元方法模拟计算不同角度裂缝的双侧向电阻率测井响应。主要利用测井系列中的孔隙度测井及双侧向测井在钻井剖面上识别裂缝发育段。当有基岩断裂在井削面上通过时,若补偿中子增大与地层密度变小同步发生,双侧向测井电阻率有明显变低并有正差异出现,则可以判别为裂缝发育带;当补偿中子增大,地层密度变小及双侧向幅度变小都不太明显时,则可以利用井剖面中频繁出现的侵入岩脉来确定裂缝发育段。
     4、探索性地研究了全三维构造解释、潜山裂缝预测的技术及原理。首次利用地震相干数据体技术、地震反演技术进行变质岩裂缝性储层的预测,并形成了配套的技术系列,为今后该领域的研究提供了有益的技术思路和手段。
     5、通过研究工作形成了多属性、多参数综合预测变质岩裂缝性储层的方法,该方法在辽河大民屯坳陷中部地区试用后取得了良好的钻探效果,新发现了胜20南、胜20东、胜21北和安40西4个断块圈闭,总面积约15km~2,具体评价了安40西等4个断块,建议部署4口探井,批准并实施3口,其中两口井获得工业油流。
Focused on Archaean fractured reservoir of metamorphic rock in the Damintun depression of Liaohe basin, by the newly studied methods, the author predicts fractures in buried hills by drilling, coring, well logging and seismic data intergrately. Firstly, well logging responses of fractured reservoir have been worked out by using rock core to calibrate well logging data. Secondly, with the help of the seismic coherence cube, 3D volume visualization, seismic multi-attribute parameter, the curves of geophysical characteristics restructed, seismic data inversion with well logging restrict, the well curves inversion and so on, much work has been done, such as the full 3D seismic data fine structure interpretation and the studies for predicting the fractured reservoir in buried hills. A technique has been invented to predicting the fractured reservoir of metamorphic rock in buried hills with the integration of the multi-attribute and the multi-parameters. Based on those, the traps are evaluated and the well sites a
    re planned, and the important breakthrough has been obtained by drilling.
    1 . in fractured reservoir, the spaces and the paths of reserving and percolating for oil and gas are mainly structural fractures. The forming and distribution of the structural fractures are related to the local tectonics (e.g. the rifting and the folding). The fractured system is very advantageous to the reserving and the percolating for oil and gas, which is formed by stacking of the regional fracture and the structural fracture,
    2. The mainly reservoirs in the middle of Damintun depression of Liaohe basin are the regional metamorphic rocks and the migmatites, which are more fractured and rigid by the cataclastics. The space of metamorphite is the mainly fractures, which are produced by the tectogenesis and the physical weathering. The space produced by the crystallization is the second. The pores and the fractures, which have been remade by the chemical dissolution, are more favourable for the oil and the gas to store up. The main factors influenced fractures development are the tectogenesis, the physical weathering and the chemical dissolution. The reservoirs, which are more fractured and cataclasm, are mainly distributed in fracture belt or near it. That is, the distribution of metamorphite reservoirs is influenced by the structural fracture belts. It is put forward further more that the fracture belts of lower buried hills are the favourable exploration targets.
    3. The response of Dual-laterolog Resistance Log for different angle fractures has been simulately computed by use of the finite element method. The fracture belts in drilling cross section are identified with the porosity logging and the Dual-laterolog method. When basement rock rupture pass through the well cross section, the fracture belts can be identified with some evidences, for example, the compensate neutron increasing and the stratum density diminishing synchronization, the dual-laterolog resistance diminishing greatly and the positive difference between the deep laterolog resistance and the shallow laterolog resistance appearing. When the compensate neutron increase, the stratum density diminishing
    
    
    and the dual-laterolog resistance value diminishing slightly, the fracture belts can be confirmed with the intrusive vein at high frequency in well cross section.
    4. The techniques and the principles of full 3D structural interpreting and the buried hill fracture predicting have been studied exploringly. The reservoir fractures of the metamorphic rock can be predicted using the seismic coherence cube and the seismic inversion technique. The series of techniques are formed. The beneficial technical methods and means in the field are provided for future.
    5. The method of predicting the fractured reservoir with the integration of the multi-attribute and multi-parameter is provided through studying. The method has been used in the middle of Damintun depression of Liaohe basin and got well drilling result. The 4 fault-block traps are found recently, such
引文
1 丁贵明,张一伟,吕鸣岗,金之钧,等编著.油气勘探工程[M].北京:石油工业出版社,1997.29~30
    2 丁中一,钱祥麟,霍红,杨友卿.构造裂缝定量预测的一种新方法-二元法[J].石油大学学报(自然科学版),1998,19(1):1~7
    3 中国石油学会物探学会,美国勘探地球物理学家学会.碳酸盐岩石油物探技术研讨会论文集,四川 成都.1990年8月24-29日,204~251
    4 万天丰.古构造应力场[M].北京:地质出版社,1988.35~39
    5 万天丰.郯庐断裂带的演化与古应力场[J].地球科学,1995,20(5):526~534
    6 万天丰.郯庐断裂带的形成与演化综述[J].现代地质,1996,10(2):159~167
    7 万天丰.郯庐断裂带的延伸与切割深度[J].现代地质,1996,10(4):518~525
    8 中国石油天然气总公司勘探局编.储层沉积学[M].北京:石油工业出版社,1998,70~82
    9 石油测井情报协作组编.测井新技术应用[M].北京:石油工业出版社,1998
    10 中国石油学会物探专业委员会短训班教材.开发地震[M].石油勘探开发科学研究院地球物理研究所汇编,1999
    11 中国石油天然气集团公司西北地质研究所科技信息中心编.裂缝性储层研究文集,1999
    12 中国石油天然气股份有限公司勘探与生产分公司编.储层预测技术及应用实例[M].北京:石油工业出版社,2000
    13 牛毓峑主编.石油物探新技术系列凋研成果[M].北京:石油工业出版社,1996
    14 王尚文主编.中国石油地质学[M].北京:石油工业出版社,1983
    15 王秉海,钱凯,主编.胜利油区地质研究与勘探实践[M].山东:石油大学出版社,1992.271~272
    16 王毓俊,王俊兰.渤海海域古潜山油气藏特征[J].复式油气田,1997,4:20~24
    17 王允诚等编著.裂缝性致密油气储集层[M].北京:石油工业出版社,1992
    18 王允诚编著.油气储层评价[M].北京:石油工业出版社,1999.247~276
    19 王永刚,刘礼农,利用相干数据体检测断层与特殊岩性体[J].石油大学学报,2000,24(1):69~72
    20 王永刚,李振春,邵雨.利用地震资料预测储层裂隙发育带[J].石油大学学报,2000,24(4):79~82
    21 王贵文,郭荣坤编著.测井地质学[M].北京:石油工业出版社,2000.178~196
    22 文华川.电阻率测井在裂缝性地层中的应用[M].北京:石油工业出版社,1988
    23 辽河油田石油地质志编辑委员会编.中国石油地质志(卷3)[M].北京:石油工业出版社,1993
    24 孔凡仙主编.埕岛油田地质与勘探实践[M].北京:石油工业出版社,2000.15~22
    25 刘企英编著.利用地震信息进行油气预测[M].北京:石油工业出版社,1994
    26 刘宪斌.石油地质学理论新进展综述,石油地球物理勘探(参考资料),252(3):2~5
    
    
    27 刘宪斌,林金逞,韩春明,穆剑.地震储层研究的现状及展望[J].《地球学报》2002,23(1),73-78
    28 刘雯林.灰岩储层裂缝预测方法[J].石油地球物理勘探,1990,25(4)
    29 刘震,张万选.地震分辨率对古火山识别的影响[J].石油物探,1993,32(1):105~112
    30 刘震编著.储层地震地层学[M].北京:地质出版社,1997
    31 刘素庚,刘秀年.M2号构造灰岩内幕裂缝型储层研究.论文详细摘要.CPS/SEG/EAGE北京98国际地球物理研讨全暨展览.中国北京,10~12
    32 刘雯林.灰岩储层孔缝预测方法[J].石油地球物理勘探,1990,25(4):429~443
    33 刘雯林.油气田开发地震技术[M].北京:石油工业出版社,1996
    34 刘毓荃.石油物探新技术系列调研成果[M].北京:石油工业出版社,1996
    35 林金逞,邓宏文,田世澄,刘宪斌,潘坚.应用深度域高分辨率地震反演识别低渗透薄互层储层研究[J].地学前缘,2001,Vol8.No.4,Oct
    36 杜世通.利用地震资料研究油藏参数的技术,《油藏描述技术》[M],王捷主编.北京:石油工业出版社,1996
    37 李四光.地质力学概论.北京:地质力学研究所,1972
    38 李玲,冯许魁.用地震相干数据体进行断层自动解释[J].引油地球物理勘探,1998,33(增刊1):105~111
    39 李宏伟,许坤.郯庐断裂走滑活动与辽河盆地构造古地理歌剧[J].地学前缘,2001,8(4):467~470
    40 李德同,文世鹏.储层构造裂缝的定量描述和预测方法[J].石油大学学报(自然科学版),1996,20(4):6~10
    41 李志明,张金珠等.地应力与油气勘探开发[M].北京:石油工业出版社,1997
    42 李道品等著.低渗透砂岩油田开发[M].北京:石油工业出版社,1997
    43 朱筱敏编.北京石油学会青年科技论文选[M].北京:石油工业出版社,1996.75~80
    44 张子枢.世界大气田概论[M].北京:石油工业出版社,1991
    45 张子枢.裂缝性油气藏的勘探方法[J].石油地质情报,1990(1)
    46 张厚福,张万选.石油地质学(第二版) [M].北京:石油工业出版社,1989
    47 张莉,岳乐平,杨亚娟.善鄯油田地应力裂缝系统与油田开发.石油与天然气地质,1999,20(4):330~332
    48 张学汝,陈和平,张吉昌,伊万泉编著.变质岩储集层构造裂缝研究技术[M].北京:石油工业出版社,1999
    49 张德林著.地震资料油气显示研究原理与实际[M].北京:石油工业出版社,2000.130~150
    50 张亚中等译.地球物理和地质资料应用中的新事物.石油地球物理勘探(参考资料),1997,(9):10~13
    51 张景廉,刘全新,梁秀文,王斌婷.有关自然伽马能谱测井在储层预测中的应用讨论[J].石油地球物理勘探,2000,(3):395~400
    52 田世澄,毕研鹏.论成藏动力学系统[M],北京:地震出版社,2000
    53 朱庆杰,王波.轮南奥陶系裂缝研究的综合定量方法[J].石油地球物理勘探,1999,
    
    34(2):180~189
    54 汪涵明,张庚骥,李善军等.单一倾斜裂缝的双侧向测井响应[J].石油大学学报(自然科学版),1995,19(6):21~24
    55 宋惠珍、欧阳健等.裂缝性储层定量研究的一套新方法[J].地震地质,1994,16(3)
    56 陈炎珍等.裂缝型低渗砂岩油田开发技术,低渗透油田开发技术-全国低渗透油田开发技术座谈会论文选[M].北京:石油工业出版社,1994
    57 陈丽华,王家华,李应,田崇鲁等编著.油气储层研究技术[M].北京:石油工业出版社,2000
    58 陈遵德编著.储层地震属性优化方法[M].北京:石油工业出版社,1998
    59 周家尧.裂缝性油气勘探文集[M].北京:石油工业出版社,1991
    60 牟永光.储层地球物理学[M].北京:石油工业出版社,1996
    61 吴元燕,陈碧钰.油矿地质学[M].北京:石油工业出版社1996
    62 吴胜和,熊琦华,油气储层地质学[M].北京:石油工业出版社,1998
    63 林金逞,邓宏文,田世澄,刘宪斌,潘坚.应用深度域高分辨率地震反演识别低渗透薄互层储层研究[J].地学前缘,2001,8(4)
    64 赵澄林、刘孟慧等.特殊油气储层[M].北京:石油工业出版社,1997
    65 郑晓东.AVO异常检测技术及其应用[J].石油地球物理勘探,26,643-649,1991
    66 郑晓东.AVO理论和方法的一些新进展[J].石油地球物理勘探,27,305-317,1992
    67 高如增.用地震动力学信息寻找微小断层的尝试[J].石油地球物理勘探,1988,23(4)
    68 谭廷栋.裂缝性地层侧向测井解释新方程[J].地球物理学报,1983,26(6)
    69 谭廷栋.识别裂缝性油层及水淹层的特殊解释方法[J].测井技术,1984,No.4
    70 谭廷栋.裂缝性油气藏测井解释模型与评价[M].北京:石油工业出版社,1991
    71 R.A.纳尔逊.天然裂缝性储层地质分析[Z].北京:石油工业出版社,1988
    72 靳久强.地震异常有助于探测裂缝性产油区[J].石油物探译丛,1989,5:32~35
    73 E.M.斯麦霍夫裂缝性储层勘探的基本原理与方法[M].北京:石油工业出版社,1991
    74 袁秉衡主编.应用地震技术研究储层[M].北京:石油工业出版社,1992
    75 管守锐,赵澄林.岩浆岩及变质岩简明教程[M].山东:石油大学出版社,1992
    76 裘亦楠,薛叔浩,应凤祥.主编中国油气储层研究论文集(续一) [M].北京:石油工业出版社,1993
    77 欧阳健等著.石油测井解释与储层描述[M].北京:石油工业出版社,1994.235~291
    78 欧阳健,王贵文,吴继余,宋惠珍等著.测井地质分析与油气层定量评价[M].北京:石油工业出版社,1999,237~301
    79 童亨茂,钱祥麟.储层裂缝的研究和分析方法[J].石油大学学报(自然科学版),1994,18(6):14~20
    80 裘亦楠,薛叔浩主编.油气储层评价技术[M].北京:石油工业出版社,1994
    81 陆基基孟.地震勘探原理[M].山东:石油大学出版社,1993
    
    
    82 尚作源,欧阳健,冯启宁著.测井新技术与油气层评价进展[M].北京:石油工业出版社,1997.213~224
    83 徐怀大等,主编.从地震地层学到层序地层学[M].北京:石油工业出版社,1997.223~237
    84 揭克常等编著.东胜堡变质岩油藏[M].北京:石油工业出版社,1997.1~31
    85 潘元林,孔凡仙,杨中,郑和荣主编.中国隐蔽油气藏[M].北京:石油工业出版社,1998.125~149
    86 倪逸,杨慧珠,郭玲萱,王倩,张冲.储层油气预测中地震属性优选问题探讨[J].石渍地球物理勘探.1999,34(6):614~626
    87 曾联波.雷家油田下第三系低渗透储层裂缝特征.石油与天然气地质[J],1999,20(1):167~169
    88 徐建斌,李学义,青銮文,周阿波,付子云.四川碳酸盐岩山地地震勘探综述[J].石油地球物理勘探,2000,35(3):386~394
    89 戴弹申,欧振洲.裂缝圈闭及其勘探方法.天然气工业[J],1990(4)
    90 A. Karaman and P. J. Carpenter. Fracture density estimates in glaciogenic deposits from P-wave velocity reductions[J]. Geophysics, 1997, 62(1):138~148
    91 Antonio C. B. Ramos et al. 3-D AVO analysis and modeling applied to fracture detection in coalbed methane reservoir[J]. Geophysics, 1997, 62(6)
    92 Areshev G.E. Reservoirs in fractured basement on the continental shelf[J], Journal of petroleum Geology, 1992(4)
    93 Bahorich M S and Farmer S L. 3-D seismic discontinuity for faults and stratigraphic feathers: The coherence cube [J]. The Leading Edge, 1995,14(10): 1053~1058
    94 B. C. Dyer et al. Crosshole seismic imaging of a fractured reservoir[J].First Break, 1997,15(5)
    95 Bourdet D. Determination of fissure Volume Block Size in fractured reservoir, SPE, 9293
    96 B. Velde et al. Fractal and length analysis of fractures during brittle to ductile changes[J]. Journal of Geophysical Research, 1993, 98(B7)
    97 Byron R Kulander and Stuart L Dean. Coal-Cleat Domain Boundaries in the Alleyheny Plateau of West Virginia[J]..4.4PG, 1993, 77(8): 374~1388
    98 Cartwright J A and L.Lonergan.Volumetric contraction during the compaction of mudrocks: a mechanism for the development of regional-scale ploygonal fault systems. Basin research, 1996, (8): 183~193
    99 Castagna, J.P, Batzle, M. L., and Kan, T.K., Rock physics-the link between rock properties and AVO response,《Offset-dependent reflectivity-Theory and practice of AVO analysis》,135-174,1993
    100 Catherine L. Hanks et al. Lithologic and structural controls on natural fracture distribution and behavior within the Lisburne Group, Northeastern Brooks Rang and North Slope subsurface, Alaska. AAPG, 1997,81 (10): 1700~1720
    101 Chen Q, Sideney S. Seismic attribute technology for reservoir forecasting and monitoring
    
    [J]. The Leading Edge, 1997, 16(5) : 445-456
    102 C. R. Bates et al. The study of naturally fractured gas reservoir using seismic techniques [J]. AAPG , 1999,83(9) : 1392-1407
    103 Dale Stone. Exploration techniques for the Austin chalk. The 61th SEC Ann. Int Mty, 1991, 1054-1057
    104 Daniel P. Hampson, James S. Schuelke, and John A. Quirein. Use of multiattribute transforms to predict log properties from seismic data [J]. Geophysics, 2001, 66(1) : 220-236
    105 Dominguez H, Perez G. Permeability estimation in naturally fractured fields by analysis of Stoneley waves. The Log Analyst, 1991 (March-April): 120-128
    106 E. M. Fitz Gerald, C. F. Bean and R. Reilly. Fracture-frequency prediction from borehole wireline logs using artificial neural networks[J], Geophysical Prospecting, 1999, 47(6) : 1031-1044
    107 Gudmundson A. Stress. Estimates from the Length/Width Ratios of Fractures. Journal of Structural Geology, 1983, 5(6) : 623-626
    108 Hornby B E. Johnson D L. Winkler K W et al. Fracture evaluation using reflected Stoneley wave arrivals. Geophysics, 1989,54(10) : 1274-1288
    109 Howard J H. Nolen-Hoeksema R C. Description of natural fracture systems for quantitive used in petroleum geology[J]. AAPG, 1990. 74(2) 151-162
    110 J. E. Peterson, T. Daley, B. Kaelin, L. R. Myer, J. Queen, P. D'Onfro, and W. Rizer. Fracture detection using crosswell and single well surveys[J], Geophysics, 1997, 62(2) : 495-504
    111 J H Howardand R C Nolen-Hoeksema. Description of Natural Fracture Systems for Quantitative Use in Petroleum Geology. AAPG, 1990, 74(2) : 151-162
    112 John C Lorenz et al. Regional Fracture Ⅰ : A Mechanism for the Formation of Regional Fractures at Depth in Flat-Lying Reservoirs [J]. AAPG, 1991, 75(11) : 1714-1737
    113 John C Lorenz et al. Regional Fracture Ⅱ : Fracturing of Mesaverde Reservoirs in the Piceance Basin, Colorado [J]. AAPG, 1991,75(11) : 1738-1757
    114 Kalkomey, C. T. Potential risks when using seismic attributes as predictors of reservoir properties[J]. The Leading Edge, 1997,16(4) : 247-251
    115 Ladeira F L,Price N J. Relationship between fracture spacing and bed thickness. J. Struct. Geol.. 1981,3(2) , 179-183
    116 Laubach, S. E. Subsurface fractures and their relationships to stress history in East Texas basin sandstone. Tectonophysics, 1989, 156:37-49
    117 Lawrence P. Aramco S. Dhahran and Arabia S. Seismic attributes in characterization of small-scale reservoir in Abqaiq Field [J]. The Leading Edge, 1998,17(4) : 521-525
    118 Li X-Y. Fractured reservoir delineation using multicomponent seismic data[J]. Geophysical Prospecting, 1997, 45(1 ):39-64
    119 Lorenz J C, lawrence W T J, Warpinski N R. Regional Fracture I : A Mechanism for the Formation of Regional Fractures at Depth in Flat-lying Reservoirs [J]. AAPG, 1991,75(11) : 1714-1737
    
    
    120 MarCo Antonellini and Atilla Aydin. Effect of Faulting on Fluid Floeing Porous Sandstones: Petrophysical Propertis. AAPG, 1994,78(3) : 355-377
    121 Mallick, S., A simple approximation to the P-wave reflection coefficients and its implication in the inversion of amplitude variation with offset data, Geophysics, 58,542-552, 1993
    122 Marfurt Kurt J and Kirlin R L 3-D seismic attributes using a semblance-based coherency algorithm [J]. Geophysics, 1998,63(4) : 1150-1176
    123 McCormack, M. D. Neural computing in geophysics[J]. The Leading Edge. 1991, 10:11-15
    124 Michaet C. Mueller. Using shear waves to predict lateral variability in vertical fracture intensity seismic interpretation series[J]. Society of Exploration Geophysicists, 1992, 3:25-36
    125 Murray R. C. Quantitative Fracture Study-Sanish Pool, McKenzie County, North Dakota, AAPG, 1968,52(1) : 57-65
    126 Narr W., and J. B. Currie. Origin of fracture porosity-example from Altamont field, Utah[J]. AAPG, 1982,66(9) : 1231-1247
    127 Narr W. Fracture Density in the Deep Subsurface: Techniques with Application to Point Arguello Oil Field. AAPG, 1991,75(8) : 1300-1323
    128 Narr W, Lerche L. A method for estimating subsurface fracture density in core. AAPG, 1984, 68(5) : 637-648
    129 Nelson R.A. Geologic analysis of Naturally fractured reservoirs. Houston: Gulf Publishing Company, 1987: 167-188
    130 Qin Huang, Angelier J. Fracture spacing and its relation to bed thickness. Tectonophysics, 1989,124(4) , 355-362
    131 Paillet F L. Qualitative and quantitative interpretation of fracture permeability using acoustic full-waveform logs. The Log Analyst, 1991, (May-June):256-270
    132 Robert L Kranz. Comment on " Fractal and length analysis of fractures during brittle to ductile changes"[J]. Journal of Geophysical Research, 1994, 99(B8)
    133 Roberto Aguilera. Geologic aspects of naturally fractured reservoirs [J]. The Leading Edge, 1998,17(12) : 1667-1670
    134 Robert J. Paul. Seismic detection of overpressuring and fracturing: an example from the Qaidam Basin, People's Republic of China[J]. Geophysics, 1993,58(10)
    135 Rutger Gras. Automated 3-D software interprets fault systems[J]. World Oil, 1998, 29(5) : 81-83
    136 Schultz, P. S., Ronen, S., Hattori, M., and Corbett, C. Seismic guided estimation of log properties, parts 1,2, and 3[J]. The Leading Edge. 1994, 13: 305-310, 674-678 and 770-776
    137 Tsingas, C., and Kanascwich, E.R., Seismic reflection amplitude versus angle variation over a thermally enhanced oil recovery site, Geophysics, 56, 291-301, 1991
    138 Yielding G, Walsh J and Watterson J. The prediction of small-scale faulting in reservoirs[J], First Break, 10(12) : 449-460

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700