用户名: 密码: 验证码:
碳酸盐岩烃类包裹体形成机制及其对油气成藏的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烃类包裹体在成矿、成藏等研究领域得到越来越广泛的重视,但是由于烃类包裹体成分和热力学行为的复杂性,其捕获条件的恢复及其捕获机制一直是一个难点,人工合成流体包裹体可以被用来研究包裹体的形成机制。本论文利用高温高压釜中人工愈合裂隙的方法,以方解石为主矿物,设计了10组不同目的的合成烃类包裹体实验,讨论了不同的油水比、温度、压力、盐度及原油性质对碳酸盐岩烃类包裹体捕获的影响,并通过显微测温、原位拉曼光谱、红外光谱和色谱等测试,获取合成包裹体温度、盐度、成分等参数,在此基础上分析了碳酸盐岩储层烃类包裹体的捕获机制以及其对油气运聚成藏的响应。
     首次在接近实际储层温压条件及纯油条件的实验中成功合成了烃类包裹体,是合成包裹体实验的新进展,带来了许多与油气成藏和储层地质学有关的新认识和重要启示。
     均一法测温发现由于压力差的存在,样品中盐水包裹体均一温度主要分布区间的平均值与实验设定温度即捕获温度存在一定差异,这个差值随着压力的变化而变化。利用合成的盐水包裹体均一温度与捕获温度的差异,建立了不同盐度条件下储层盐水包裹体均一温度校正曲线。应用热力学模拟软件与本文建立的储层盐水包裹体均一温度校正曲线相结合获取包裹体捕获温度压力是切实可行的。合成盐水包裹体的均一温度经过压力校正后得到的捕获温度压力忠实地反映了实验设定的温压条件,这说明储层中盐水包裹体能够记录其捕获时的温压条件。
     用冷冻法及拉曼光谱对盐水包裹体进行低温原位分析。冰点结果表明包裹体捕获的盐水溶液能够代表原始母液的盐度和成分。配置不同浓度的标准NaCl盐溶液进行实验,利用激光拉曼光谱在低温下测试NaCl-H2O体系溶液图谱。利用水合物特征峰值与冰峰值比和盐度之间的线性关系建立确定流体包裹体盐度的工作曲线。
     结合合成实验分析测试结果、储层多相渗流机制以及包裹体捕获条件恢复提出了均一条件下和非均一条件下烃类包裹体的捕获机制,均匀捕获又分油水共存(水主导)、油水共存(油主导)以及纯油条件三种情况。结合晶体生长理论提出了烃类包裹体的四种捕获模式:点模式、线模式、面模式及体模式。
     实验中出现加入一种原油而出现两种成熟度的烃类包裹体的情况,说明烃类包裹体捕获过程中的原油存在分馏,分馏机制可能有两种:物理机制,主要为色层效应;化学反应,原油发生裂解。
     实验模拟结果表明:油气饱和度增大对储层矿物的生长的抑制作用会增强,但并不会完全停止其生长。快速的油气成藏过程可以被油气包裹体记录下来。烃类流体包裹体可以记录油气成藏的整个过程,而不是含油饱和度较低的早期和晚期成藏过程。较高温度会产生酸性成岩环境,对方解石晶体产生溶蚀抑制其生长并捕获包裹体。温度较低时则可能会造成碱性成岩环境,促进方解石晶体的生长。相对于重质油来说,轻质油对方解石及石英晶体生长的抑制作用较强。较高盐度对晶体生长及包裹体捕获有利,但盐度过大反而会导致晶体生长速度减缓,因此只有在一定的盐度范围内,晶体的生长速度才是有效而合理的。
     针对合成包裹体均一温度的离散现象,探讨了包裹体的形状、大小及成分与其均一温度的关系。结果表明:包裹体的均一温度与包裹体的大小没有明显相关关系;形状较规则的包裹体较准确地反映其捕获温度的均一温度;包裹体的成分是影响包裹体均一温度的主要因素。在实际应用中应挑选形状较规则,气液比较为接近的一组包裹体进行测量,采用均一温度分布峰值进行研究,舍弃离散值。
Hydrocarbon inclusions were valued in mineralise and petroleum area. But because the composition and thermodynamic behavior of hydrocarbon were complexity, there were some problems in recovery of capture condition and mechanism. Synthetic inclusions can be used to verified assumptions. In this paper, hydrocarbon inclusions were synthesized in calcite under high pressurem and temperature. Ten series of experiments with different aim were carried out in calcite. The effect of different oil/water ratios, temperature, pressure, salinity and distinct petroleum to hydrocarbon inclusion trapped in carbonate were disscussed. And microthermometry, Raman spectrum, infrared spectrum and chromatographic analysis were carried out on synthetic hydrocarbon inclusions to gain their homogenization temperature(Th), salinity, composition and phase transition. Based on these parameters, Trapping Mechanism of Hydrocabon Inclusion in Carbonate and Its Response to Hydrocarbon Accumulation were discussed.
     Synthetic hydrocarbon-bearing inclusions in carbonate at the temperature and pressure which were closed to natural reservoir and pure oil was new development of inclusion synthesized. Some new knowledge and inspiration about hydrocarbon accumulation and reservoir geology were bring out by the experiment.
     Through microthermometry, There were different between average of aqueous inclusions’Th in main distribution range and temperature set in experiment. Because the different was resulted from differential pressure, it was changed along with pressure changed. Using this different, calibration curve of aqueous inclusions with different salinity were established. Trapping condition of synthetic inclusions were resumed by using thermodynamic analogy software FIT and calibration curve,and which was coincidence with experimental pressure. After pressure correction, the trapping temperature and presssure of brine inclusions was coincidence with experimental condition, which demonstrated that brine inclusions could record their trapping conditions in reservoir.
     Freezing method and Raman spectrum were adopted to carry out low temperature in-situ measurement on aqueous inclusions. It was found from measurements that brine lixiviant trapped in inclusions was representative of original salinity and composition of mother solution. NaCl-H2O solution with different concentration were freezed for Raman spectrum measurement. The curve to define salinity of NaCl-H2O system was presented utilizing relationship between ratio of peak of hydrate and ice and salinity.
     Homogeneous and heterogenetic hydrocarbon trapping mechanism were present on the basis of experimental result, multiphase filtration mechanism in reservoir and recovery of inclusion trapping condition. Homogeneous trapping were classified as oil and water (oil dominance or water dominance) and pure oil condition. Combined with mechanism of crystal growth, four trapping model were presented. And they were point model, line model, area model and volume model.
     Because of composition differentiation of oil, two type degree of ripeness oil could be trapped in inclusions in experiment with one oil. And the differentiation mechanism could be divided as physical mechanism which was chromatograph and chemical mechanism which was pyrolysis of oil.
     Inclusions trapping would be constrained but not ceased by high O/W ratios. And inclusions could record rapid hydrocarbon accunulation. And the whole procedure of accunulation could be recorded in inclusions. The critical period of hydrocarbon charging correspond with great quantity of inclusions trapping. Relative high temperature could generate acid diagenetic environment which constrainted growth of calcite and inclusion trapped through denudation. In contrary, relative low temperature could generate alcaline diagenetic environment which accelerated growth of calcite. Inhibition of clean oil to growth of calcite was more intensive than that of heavy oil. higher salinity solution was favour of growth of calcite. But excessive salinity would slow down crystal growth. So crystal growth would be high efficient in particular salinity limit.
     The relationship between Th and composition, shape and size of inclusions synthized were discussed. Composition of inclusion was main affecting factor of its Th and there was no obvious relationship between shape and size and Th of inclusion. Inclusions with regulation shape and approximate gas/liquid ratios should be selected for thermometry. Adopt the peak of Th distribution range and abandon the discrete value.
引文
白国平.包裹体技术在油气勘探中的应用研究现状及发展趋势[J].石油大学学报(自然科学版),2003,27(4):136-140
    蔡进功,张枝焕,朱筱敏等.东营凹陷烃类充注与储集层化学成岩作用[J].石油勘探与开发, 2003,30(3):79-83
    蔡李梅,陈红汉,李纯泉等.济阳坳陷东营凹陷沙三中亚段流体包裹体古流体势场恢复[J].石油与天然气地质,2009,30(1):17-25
    曹剑,姚素平,胡文瑄等.油气包裹体中水的检出及其意义[J].科学通报, 2006,51(13):1583-1588
    陈红汉,董伟良,张树林.流体包裹体在古压力模拟研究中的应用[J].石油与天然气地质, 2002,23(3):207-211
    陈晋阳,郑海飞,曾贻善.流体包裹体的喇曼光谱分析进展[J].矿物岩石地球化学通报,2002,21(2):133-138
    陈晋阳,郑海飞,曾贻善.高温下合成包裹体中流体水分子氢键的拉曼光谱分析[J].岩矿测试, 2002,21(3):166-170
    陈晋阳,郑海飞,曾贻善,孙樯.以合成包裹体为腔体进行高温下流体的拉曼光谱原位分析[J].光谱学与光谱分析, 2003,23(4):726-729
    陈晋阳,郑海飞,曾贻善.高压—现代科学的一门新技术[J].科技导报,2000,6:13-14
    陈晋阳,张红,肖万生,翁克难,郑海飞,曾贻善.金刚石压腔高温高压原位谱学研究的评述[J].2004,21(21):209-216
    陈维涛,周瑶琪,陈勇等.平南油田油气成藏期次研究[J].断块油气田,2007,14(6):8-10
    陈勇,周瑶琪,刘超英等.CH4-H2O体系流体包裹体均一过程激光拉曼光谱定量分析[J].地学前缘, 2005,12(4):592-596
    陈勇,周瑶琪,颜世永等.激光拉曼光谱技术在获取流体包裹体内压中的应用及讨论[J].地球学报,2006,27(1):69-73
    陈勇,周瑶琪.天然流体包裹体中甲烷水合物生成条件原位变温拉曼光谱研究[J].光谱学与光谱分析,2007,27(8):1547-1550
    陈勇,周瑶琪,查明,等.CH4-H2O体系流体包裹体拉曼光谱定量分析与计算方法[J].地质论评,2007,53(6):814-853
    陈勇,葛云锦.人工合成烃类包裹体研究进展[J].地质论评,2008,54(6):731~737.
    陈勇,葛云锦,周瑶琪等.实际储层温压条件下成功合成碳酸盐岩烃类包裹体及其启示意义[J].地学前缘,2009,16(3):11-16
    丁俊英,倪培,饶冰,等.显微激光拉曼光谱测定单个包裹体盐度的实验研究[J].地质论评,2004,50(2):203-209
    段菁春,庄新国,何谋春.不同变质程度煤的激光拉曼光谱特征[J].地质科技情报,2002,21(2):65-68
    葛云锦,陈勇,周瑶琪.流体包裹体成分测定的低温相变和显微拉曼光谱分析技术研究进展[J].岩矿测试,2008,27(3):207-210
    葛云锦,陈勇,周瑶琪.不同成岩条件下油气充注对碳酸盐岩成岩作用的影响[J].中国石油大学学报(自然科学版),2009,33(1):18-22
    葛云锦,陈勇,周瑶琪.不同油水比条件下人工合成碳酸盐岩烃类包裹体特征实验研究[J].地质学报,2009,83(4):542-549
    郝保红,黄俊华,晶体生长机理的研究综述[J].北京石油化工学院学报,2006,14(2):58-64
    胡海燕.油气充注对成岩作用的影响[J].海相油气地质,2004,9(1-2):85-89.
    黄海平,张水昌,苏爱国.油气运移聚集过程中的地球化学作用[J].石油实验地质,2001,23(3 ):278-284
    姜福杰,姜振学,庞雄奇,田丰华.含油包裹体丰度指数确定油气运聚范围及应用[J].西南石油学院学报,2006,28(5):15-18
    蒋有录,刘华,张乐等.东营凹陷油气成藏期分析[J].石油与天然气地质,2003,24(3):215-218
    李明诚.地壳中的热流体活动与油气运移[J].地学前缘,1995,2(4):155-161
    李维华,段玉然.傅里叶变换拉曼探针测定九种气体的定量因子[J].岩矿测试,1999,18(2):111-116
    连承波,钟建华,渠芳等. CO2成因与成藏研究综述[J].特种油气藏,2007,14(5):7-12
    刘斌.不混溶流体包裹体作为地质温度计和地质压力计[J].科学通报,1986,18:1432-1436
    刘斌,沈昆.包裹体流体势图在油气运聚研究方面的应用[J].地质科技情报,1998,17(增刊):81-86
    刘斌,沈昆.流体包裹体热力学[M].北京:地质出版社,1999,46-49
    刘斌,烃类包裹体热动力学[M].北京:科学出版社,2005,1-280
    刘超英,周瑶琪,陈勇,郭建卿.人工合成碳酸盐岩流体包裹体实验与定量分析[J].岩矿测试,2004,23(3):161-167
    刘超英,周瑶琪,陈勇,王强.高温高压合成碳酸盐岩流体包裹体实验[J].硅酸盐通报,2007,26(1):168-172
    刘超英,周瑶琪,杜玉民,陈勇.利用合成流体包裹体研究碳酸盐岩包裹体(NaCl-H2O)捕获机理[J].中国石油大学学报(自然科学版),2007,31(2):25-29
    刘德汉.包裹体研究—盆地流体追踪的有力工具[J].地学前缘,1995,2(3-4):149-154
    刘德汉,宫色,刘东鹰.江苏句容-黄桥地区有机包裹体形成期次和捕获温度、压力的PVTsim模拟计算[J].岩石学报,2005,21(5):1435-1448
    刘德汉,肖贤明,熊永强等.四川东部飞仙关组鲕滩气藏储层含自然硫不混溶包裹体及硫化氢成因研究[J].中国科学D辑-地球科学,2006,36(1):1-13
    刘德汉,卢焕章,肖贤明.油气包裹体及其在石油勘探和开发中的应用[M].广州:广东科技出版社,2007
    刘德汉,肖贤明,田辉等.含油气盆地中流体包裹体类型及其地质意义[J].石油与天然气地质,2008,29(4):491-501
    刘建章,陈红汉,李剑.鄂尔多斯盆地伊-陕斜坡山西组2段包裹体古流体压力分布及演化[J].石油学报,2008,29(2):226-234
    卢焕章,范宏瑞,倪培,欧光习,沈昆,张文淮.流体包裹体[M].北京:科学出版社,2005,227-229
    陆现彩,侯庆锋,尹琳,赵连泽,刘显东.几种常见矿物的接触角测定及其讨论[J] .岩石矿物学杂志,2003,22(4):397-400
    吕新彪,姚书振,何谋春.成矿流体包裹体盐度的拉曼光谱测定[J].地学前缘,2001,8(4):429-433
    米敬奎,肖贤明,刘德汉等.鄂尔多斯盆地上古生界储层中包裹体最小捕获压力的PVTsim模拟[J].地球化学,2002,4:402-406
    米敬奎.鄂尔多斯盆地上古生界天然气运聚特征[D].广州:中科院广州地球化学研究所,2003
    米敬奎,肖贤明,刘德汉等.利用储层流体包裹体的PVT特征模拟计算天然气藏形成古压力[J].中国科学D,2003,33(7):679-685
    米敬奎,戴金星,张水昌.含油气盆地包裹体研究中存在的问题[J].天然气地球科学,2005,16(5):602-605
    倪培,饶冰,丁俊英,张林松.人工合成流体包裹体研究及其在激光拉曼探针测定方面的应用[J].岩石学报,2003,19(2):319-326
    倪培,丁俊英,饶冰.人工合成H2O及NaCl-H2O体系流体包裹体低温原位拉曼光谱研究[J].科学通报,2006,51(9):1073-1078
    倪培,王一刚.人工合成烃类包裹体初步研究[J].岩石学报,2007,23(9):2033-2038
    倪培,孟凡巍.碳酸盐岩中烃类包裹体的人工合成实验研究[J].岩石学报,2008,24(1):161-165
    欧光习,李林强,孙玉梅.沉积盆地流体包裹体研究的理论与实践[J].矿物岩石地球化学通报,2006,25(1):1-8
    潘长春,周中毅,解启来.油气和含油气包裹体及其在油气地质地球化学研究中的意义[J].沉积学报,1996,14(4):15-23
    潘立银,倪培,欧光习.油气包裹体在油气地质研究中的应用——概念、分类、形成机制及研究意义[J].矿物岩石地球化学通报,2006,25(1):19-28
    邱隆伟,姜在兴.陆源碎屑岩的碱性成岩作用[M].北京:地质出版社,2006
    沈照理,朱宛华,钟佐燊.水文地球化学基础[M ] .北京:地质出版社,1993:5- 59
    施继锡,李本超,傅家谟,刘德汉,彭平安.有机包裹体及其与油气的关系[J].中国科学(B辑),1987,3:318-325
    宋明水.含烃流体包裹体丰度法追溯古油水界面的局限性[J].油气地质与采收率,2007,14(3):5-8
    孙樯,谢红森,郭捷等.含油气沉积盆地流体包裹体及应用[J].长春科技大学学报,2000,30(1):42-45
    孙樯,郑海飞.金刚石压腔(DAC)实验技术[J].地学前缘,2005,12(1):131-136
    孙玉梅,席小应,黄正吉.流体包裹体分析技术在渤中25-1油田油气充注史研究中的应用[J].中国海上油气地质,2002,16(4):238-244
    覃建雄,张长俊.西昌盆地流体包裹体及其在油气勘探中的应用[J].石油及天然气地质,1994,15(3):216-225
    谈迎,刘德良,杨晓勇等.应用流体包裹体研究古流体势及油气运移[J].中国科学技术大学学报,2002,32(4):470-480
    陶士振,张宝明,赵长毅.流体包裹体方法在油气源追踪对比中的应川—以四川盆地碳酸盐岩大型气田为例[J] .岩石学报,2003,19(2):327-336
    田辉,王招明,肖中尧,李贤庆,肖贤明.原油裂解成气动力学模拟及其意义[J].科学通报,2006,51(15):1821-1830
    王飞宇,张水昌,庞雄奇.石油运移途径探测和古油柱识别技术及其在石油勘探中的应用[A].第十四届全国流体包裹体及地质流体会议论文集[C],2004:61-63
    王飞宇,师玉雷,曾花森,刘可禹.利用油包裹体丰度识别古油藏和限定成藏方式[J].矿物岩石地球化学通报,2006,25(1):12-18
    王飞宇,周勇,王波等.含油气盆地流体包裹体显微测温和油气成藏时限[A].第十五届全国流体包裹体会议论文集[C],2007:75-77
    王金志,杨少武,将森堡等.流体包裹体热动力学模拟技术的古压力恢复方法及应注意的问题[J].中国石油勘探,2008,1:44-47
    韦昌山,翟裕生.定向流体包裹体群的面状要素与微裂隙生成关系测量法[J].地质科技情报,1996,15(3):81-85
    许浩,汤达帧,魏国齐等.川西北地区须家河组二段储层中包裹体流体势研究[J].石油与天然气地质,2004,25(5):582-585
    徐培苍,李如璧,王永强等.地学中的拉曼光谱[M].陕西科学技术出版社.1996,1-150
    闫志为,张志卫.氯化物对方解石和白云石矿物溶解度的影响[J].水文地质工程地质,2009,1:113-118
    于炳松,赖兴运.成岩作用中的地下水碳酸体系与方解石溶解度[J].沉积学报,2006,24(5):627-635
    袁东山,张枝焕,朱雷,刘洪军.油气聚集对石英矿物成岩演化的影响[J].岩石学报,2007,23(9):2315-2320
    詹秀春,马光祖,刘玉山.流体包裹体的合成方法及分析应用[J].岩矿测试,2000,19(3):194-197
    张鼐,张大江,张水昌等.氯盐溶液的拉曼光谱特征及测试探讨[J].岩矿测试,2005,24(1):40-42
    张鼐,张水昌,李新景等.塔中117井储层烃类包裹体研究及油气藏史[J].岩石学报,2005,21(5):1473-1478
    张鼐,张大江,张水昌,等.在-170℃盐溶液阴离子拉曼特征及浓度定量分析[J].中国科学D辑,2005,35 (12):1165-1173
    张鼐,宋孚庆,王汇彤.石油中饱合烃类的喇曼特征[J].矿物岩石地球化学通报,2006,25(1):33-36
    张鼐,田作基,冷莹莹等.烃和烃类包裹体的拉曼特征[J].中国科学:D辑,2007,37(7):900-907
    张鼐,田作基,毛光剑等.沥青包裹体的拉曼光谱特征[J].地球化学,2009,38(2):174-178
    张文准,陈紫英.流体包裹体地质学[M].中国地质大学出版社,武汉:1993.1-3.
    张毅刚.人造气液包裹体方法及其在研究热液性质中的应用[J].地质科学,1992,2:141-148
    张永刚,许卫平,王国力等.中国东部陆相断陷盆地油气成藏组合体[M].北京:石油工业出版社,2006
    张振亮,吕新彪,饶冰,王年生.流体包裹体的合成方法及其研究现状[J].地学前缘,2003,10(2):502-503
    张振亮,王秀林,吕新彪,饶冰,张放东,刘绍光.流体沸腾机制探讨及在石油地质中的可能性——来自合成流体包裹体的证据[J].地质学报,2007,81(5):695-700
    张志坚,张文淮.碎屑岩储层中有机包裹体的形成机制研究[J].地质科技情报, 1994,13(1):53-59
    赵子刚,徐启,史连杰等.高温高压下碳酸钙的溶解度及朝阳沟注水油田低渗透储层结垢问题[J].油田化学,2003,20(1):4-6
    郑海飞,段体玉,孙樯,乔二伟.一种潜在的地质压力计:流体包裹体子矿物的激光拉曼光谱测压法[J].地球科学进展,2005,20(7):804-808
    Anderson A J,Sumedha J,Robert A M,Bassett W A,Chou I-Ming.X-ray spectroscopic investigations of fluids in the hydrothermal diamond anvil cell:The hydration structure of aqueous La3+ up to 300℃and 1600 bars[J].American Mineralogist,2002,87(2-3):262–268
    András Fall, J Donald Rimstidt,Robert J Bodnar.The effect of fluid inclusion size on determination of homogenization temperature and density of liquid-rich aqueous inclusions[J].American Mineralogist,2009,94:1569-1579
    APLIN A C,MACHEOD G,LARTER S R,et al.Combined use of confocal laser microscopy and PVT simulation for estimating the composition and physical properties of petroleum in fluid inclusions[J].Marine and Petrolum Geology,1999,32(16):98-101
    APLIN A C,LARTER S R,BIGGE M A,et al.PVTX history of the North sea’s Judy oilfield[J].J of Geochemical Exploration,2000,60(7):641-644
    Bakker R J.and Jannae J B H.Experimental post-entrapment water loss from synthetic CO2-H2O inclusions in natural quartz[J].Geochemica Cosmochimca Acta,1991,55:2215-2230
    Ballhaus C,Ryan C G,Mernagh T P,Green D H.The partitioning of Fe,Ni,Cu,Pt,and Au between sulfide,metal,and fluid phases:A pilot study[J].Geochimica Cosmochimica Acta,1994,58(2):811-826
    Barclay S A,Worden R H.Effects of reservoir wettability on quartz cementation in oil fields.In:Worden R H,Morad S.eds.Quartz Cementation in Sandstones[J]. Special Publication of the International Association of Sedimentologists.New York:Blackwell Science,2000,29:103–117
    Bassett W A,Shen A H,Chou I-Ming.A new diamond anvil cell for hydrothermal studies to 10GPa and -190℃to 100℃[J].Reviews of Scientific Instruments,1993,64(8):2340-2345
    Bodnar R J.Synthetic fluid inclusions:a novel technique for experimental water-rockstudies[J].Water-Rock Interaction WRI-6,1989a:99-102.
    Bodnar R J,Bruns P R,Hall D L.Synthetic fluid inclusions VI:quantitative evaluation of the decrepiation behavior of fluid inclusions in quartz at one atmosphere confining pressure[J].Metamorphic Geol.,1989b,7:229-242
    Bodnar R J.Petroleum migration in the Miocene Monterey Formation,California,USA:constraints from fluid inclusion studies[J].Mineral.Mag.,1990,54:295-304
    Bodnar R J.Reviced equation and table for determining the freezing point depression of H2O-NaCl solutions[J].Geochimica Cosmochimica Acta,1993,57:683-684
    Burruss R C.Hydrocarbon fluid inclusions in studies of diagenesis.In:Hollister L S and Crawford M L eds[J] . Short Course in Fluid Inclusions : Application to Petrology.Mineralog.Assoc of Canada, 1981,6:138-156
    Cathelieau M,Boiron S,Essarra J S.Restruction of paleofluid migration in microfissures rock[A].Geofluids’93 Contributions to an International Conference on Fluid Evolution,Migration and Interaction in Rock[C].Torquay:British Gas Exporation and Production,1993:162-165
    Chou I-Ming,Jill D P,Jeffery C S.High-density volatiles in the system C-O-H-N for the calibration of a laser Raman microprobe[J].Geochim.Cosmochim.Acta,1990,54:535-543
    Claire R,Michel P and Alain W.Fluid immiscibility in natural processes:use and misuse of fluid inclusion data:II.interpretation of fluid inclusion data in terms of immiscibility[J].Chemical Geology,1982,37(1-2):29-48
    D H Liu,X M Xiao,J K Mi,et al.Determination of trapping pressure and temperature of petroleum inclusions using PVT simulation software-a case study of Lower Ordovician carbonates from the Lunnan Low Uplift Tarim Basin[J].Marine and Petroleum Geology,2003,20:29-43
    Dixon S A,Summers D M and Surdam R C.Diagenesis and prservation of porosity in Norphlet Formation ( Upper Jurassic ) , southern Alabama[J].Am.Assoc.Petrol.Geol.Bull.,1989,73:707–728
    Dubessy J,Audeoud D,Wilkins R,et al.The use of the Raman microscopy mole in the determination of the electrolytes dissolved in the aqueous phase of fluidinclusion[J].Chemical Geology,1982,37:137-150
    Dubessy J,Boiron M C,Moissette A,et al.Determination of water hydrates and pH in fluid inclusions by micro- Raman spectrometry[J].Eur J Mineral,1992,4:885-894
    Dubessy J,Guillaume D,Buschaert S,Fabre C,Pironon J.Production of synthetic fluid inclusions in the H2O-CH4-NaCl system using laser-ablation in fluorite and quartz[J].European Journal of Mineralogy,2000,12:1083-1091
    Dubois M,Weisbrod A,and Shtuka A.Experimental determination of the two-phase (liquid and vapour) region in water-alkali chloride binary systems at 500 et 600°C using synthetic fluid inclusions[J].Chem.Geol.,1994,115,227–238.
    Eadington P J.Fluid history analysis-a new concept for prospect evaluation[J].The APEA Journal,1991,31:202-294
    Eadington P J.Identifying oilwell sites[J].United States Patent Application,1996,5:543-616
    Goldstein R H , Reynolds T J . Systematics of fluid inclusions in diagenetic minerals[J].SEPM ShortCourse,1994,31:1-199
    Guilhaumou N,Szydlowskii N,Pradier B.Characterization of hydrocarbon fluid inclusions by infra-red and fluorescence microspectrometry[J].Mineral.Mag.,1990,54:311-324
    Guillaume D,Teinturier S,Dubessy J,Pironon J.Calibration of methane analysis by Raman spectroscopy in H2O-NaCl-CH4 fluid inclusions[J].Chem.Geol.,2003,194:41–49
    Haszeldine R S,Samson I M,Cornford C.Dating diagenesis in a petroleum basin,a new fluid inclusion method[J].Nature,1984,307:354-357
    Haszeldine R S and Osborne M.Fluid inclusion temperatures in diagenetic quartz reset by burial:implications for oil field cementation[J].Am.Assoc.Petrol.Geol.Bull.,1993,36:35–46
    Ingerson E . Nature of the ore-forwing fluids at various stage-a suggested approach[J].Econ Geol,1954,.9:727-773
    Jacques Pironon.Fluid inclusions in petroleum environments:analytical procedure for PTX reconstruction[J].Acta Petrologica Sinica,2004,20(6):1333-1342
    Kelly J,Parnell J,Chen H H.Application of fluid inclusions to studies of fractured sandstone reservoirs[J].Journal of Geochemical Exploration,2000,69–70:705–709
    Kennedy G C.Pressure-volume-temperature relations in CO2 at elevated temperatures and pressures[J].Amer J Sci,1954,252:225-241
    Lamb W M,Popp R K,and Boockoff L A.The determination of phase relations in the CH4-H2O-NaCl system at 1 kbar , 400 to 600°C using synthetic fluid inclusions[J].Geochim.Cosmochim.Acta,1996,60:1885–1897
    Larese R E and Hall D L.Studying petroleum migration with fluid inclusions:results from hydrothermal burial simulation experiments[J].PACROFI VI.1996,74-75
    Marchand A M E,Haszeldine R S,Smalley P C Calum I M,Anthony E F.Evidence for reduced quartz-cementation rates in oil-filled sandstones[J].Geology,2001,29:915–918
    Marchand A M E,Smalley P C,Haszeldine R S, Fallick A E.Note on the importance of hydrocarbon fill for reservoir quality prediction in sandstones[J].Am.Assoc.Petrol.Geol.Bull.,2002,86:1561–1571
    McLimans R K.The application of fluid inclusions to migration of oil and diagenesis in petroleum reservoirs[J].Appl.Geochem.,1987,(2):585--603.
    Meunier J D.Precipitation of minerals between detrital quartz and quartz overgrowths in sandstones[J].Eur.J.Mineral.,1992,4:1401–1406
    Michel P,Claire R and Alain W.Fluid immiscibility in natural processes:Use and misuse of fluid inclusion data:I.Phase equilibria analysis-A theoretical and geometrical approach[J].Chemical Geology,1982,37(1-2):1-27
    Midtb? R E A,Rykkje J M,and Ramm M.Deep burial diagenesis and reservoir quality along the eastern flank of the Viking Graben.evidence for illitization and quartz cementation after hydrocarbon emplacement[J].Clay Miner.,2000,35:227–237
    Moser M R,Rankin A H and Milledge H J.Hydrocarbon-bearing fluid inclusions in fluorite associated with Windy Knoll bitumen deposits[J].Geochim.Cosmochim.Acta,1992,56:155-168
    Montel F . Phase equilibria needs for petroleum exploration and production industry[J].Fluid Phase Equilib.1993,84,343-367
    Munz IA.Iden K.Johansen Heta1.The fluid regime during fracturing of the Embla field,Central Through,North Sea[J].Mar.Petro1.Geol,1998,l5:751-768
    Munz IA.Jabansen H.Holm K et a1.The petroleum characteristics and filling history of the Froy field and the Rind Discovery,Norwegian North Sea[J].Mar.Petro1.Geo1.,1999,16:633-65
    Nedkvitne T,Karlsen D A,Bjurlykke K,et al.Relationship between reservoir diagenetic evolution and petroleum emplacement in Ula Field,North Sea[J].Mar Petrol Geol,1993,255-270
    Peng D Y,Robinson D B.A new two-constant equation of state[J].Ind.Engng Chem.Fundam,1976,15,59-64
    Pironon J.Synthesis of hydrocarbon fluid inclusion at low temperature[J].American Mineralogist,1990a,75:226-229
    Pironon J and Barres O.Semi-quantitative FT-IR microanalysis limits:Evidence from synthetic hydrocarbon fluid inclusions in sylvite[J].Geochimica Cosmochimica Acta,1990b,54:509-518
    Pironon J,Thiéry R,Teinturier S,Walgenwitz F.Water in petroleum inclusions:Evidence from Raman and FT-IR measurements , PVT consequences[J] . Journal of Geochemical Exploration,2000,69-70:663-668
    Pironon J.Fluid inclusions in petroleum environments:analytical procedure for PTX reconstruction[J].Acta Petrologica Sinica ,2004,206:1333 -1342
    Pironon J,Bourdet Julien.Petroleum and aqueous inclusions from deeply buried reservoirs:Experimental simulations and consequences for overpressure estimates[J].Geochimica Cosmochimica Acta,2008,72:4916–4928
    Potter R WⅡ.Pressure correction for fluid inclusion homogenization temperature based on the volumetre properties of the system NaCl-H2O[J].J Res V S Geol Surv,1977,5:603-607
    Ramm M.Porosity-depth trends in reservoir sandstones:theoretical models related to Jurassic sandstones,offshore Norway[J].Mar.Petrol.Geol.,1992,9:324–327
    Roedder E and Kopp O C.A check on the validity of the pressure correction in inclusion geothermometry,using hydrothermally grown quartz[J].Fortschr.Mineral.,1975,52:431–446
    Roedder E.Fluid inclusions[M].Reviews in Mineralogy,1984,12 :251~290.
    Saigal G,Bjorlykke K,and Larter S.The effects of oil emplacement on diagenetic processes—examples from the Fulmar reservoir sandstones , Central North Sea[J].Am.Assoc.Petrol.Geol.Bull.,1992,76:1024–1033
    Samson I M,Walker R T.Cryogenic Raman spectroscopic studies in the system NaCl-CaCl2-H2O and implications for low-temperature phase behavior in aqueous fluid inclusion[J].The Canadian Mineralogist,2000,38: 35-43
    Sawaki T,Sasada M,Sasaki M,Tsukimura K,Hyodo M,Okabe T,Uchida T and Yag M.Synthetic fluid inclusion logging to measure temperatures and sample fluids in the Kakkonda geothermal field,Japan[J].Geothermics,1997,26(3):281–303
    Shen A H,Chou I M,Bassett W A.Experimental determination of isochors of H2O in a diamond-anvil cell up to 1200MPa and 860℃with prelimininary results in the NaCl-H2O system[A].In:Proceedings of the 4th International Symposium on Hydrothermal Reactions[C],1993,235-239
    Stasiuk L D,Snowdon L R.Fluorescence micro-spectrometry of synthetic and natural hydrocarbon fluid inclusions:crude oil chemistry,density and application to petroleum migration[J].Appl.Geochem.,1997,12:229–241
    Sterner S M,Bodnar R J.Synthetic fluid inclusions in natural quartzⅠ.compositional types synthesized and applications to experimental geochemistry[J].Geochimica Cosmochimica Acta,1984,48(12):2659-2667
    Teinturier S,Pironon J,and Walgenwitz F.Fluid inclusions and PVTX modelling:examples from the Garn Formation in well 6507 2/2 , Haltenbanken ,Mid-Norway[J].Marine and Petroleum Geology,2002,15:755–765
    Teinturier S,Pironon J.Synthetic fluid inclusions as recorders of microfracture healing and overgrowth formation rates[J].American Mineralogist,2003a,88:1204-1208
    Teinturier S,Elie M and Pironon J.Evidence of oil cracking using synthetic petroleum inclusion[J].Journal of Geochemical Exploration,2003b,78-79:421-425
    Teinturier S and Pironon J.Experimental growth of quartz in petroleum environment.part I:Procedures and Fluid Trapping[J].Geochimica et Cosmochimica Acta,2004,68(11):2495-2507
    Thiéry R , Pironon J , Walgenwitz F and Montel F . PIT ( Petroleum Inclusion Thermodynamic):a new modelling tool for the characterisation of hydrocarbon fluid inclusions from volumetric and microthermometric measurements[J].Journal of Geochemical Exploration,2000,69-70:701-704
    Thiéry R,Pironon J,Walgenwitz F.Fluid inclusions and PVTX modelling:examples from the Garn formation in well 6507/2-2,Haltenbanken,Mid-Norway[J].Marine and Petroleum Geology,2002a,19:755-765
    Thiéry R,Pironon J,Walgenwitz F and Montel F.Individual characterization of petroleum inclusions (composition and P-T trapping conditions) by microthermometry and confocal scanning laser microscopy:inferences from applied thermodynamics of oils[J].Marine and Petroleum Geology,2002b,19:847-859
    Tim E R,Simon C G,Mark L,Robinson A Q.Organic compounds trapped in aqueous fluid inclusions[J].Organic Geochemistry,1998,29(1-3):195-205
    Vityk M O,Pottorf R J,Gray G G,Larese D and Hall D.Application of synthetic fluid inclusions to hydrocarbon system analysis[J].ECROFI XVI,2001,455–456
    Walderhaug O.A fluid inclusion study of quartz-cemented sandstones from offshore mid-Norway—possible evidence for continued quartz cementation during oil emplacement[J].J.Sed.Petrol,1990,60:203–210
    William A Bassett,Alan J Anderson,Robert A and Chou I-ming.Hydrothermal diamond anvil cell for XAFS studies of first-row transition elements in aqueous solution up to supercritical conditions[J].Chemical Geology,2000,167(1-2):3–10
    Song Yucai,Chou I-Ming,Hu Wenxuan.Burruss R C and Lu W J.Synthetic fluid inclusions in fused-silica capsules and its applications[J].In:Abstracts of Asian Current Research on Fluid Inclusions,Nanjing University,2006,206-208
    Zerda T W,John A,Chmura K.Raman Studies of Coals[J].Fuel,1981,60(5):375-378
    Zhang Wenhuai,Zhang Zhijian,Ming Houli ,Wu Gang ,Ye Song.A study on organic inclusions in clastic reservoir rocks and their application to the assessment of oil and gas accumulations[J].Geochemistry,1996,153:249-257
    Zhang Y G and Frantz J D.Determination of the homogenization temperatures and densities of supercritical fluids in the system NaCl-KCl-CaCl2-H2O using syntheticfluid inclusions[J].Chem.Geol.,1987,64:335–350

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700