用户名: 密码: 验证码:
东营凹陷“盐下”深层温压场演化与油气成藏
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
温压场的分布与演化与油气成藏关系密切,在油气藏研究中具有重要的地位。东营凹陷古近系大套膏盐层的存在使其上下形成两个相对独立的含油气系统。“盐下”地层具有优越的油气成藏条件,是深入勘探的重要目标。本论文以东营凹陷油气藏温压场演化为研究主线,结合构造活动、沉积埋藏等常规地质分析,综合研究东营凹陷“盐下”油气藏温压场演化特征及其控制因素,借以探讨“盐下”油气运聚过程、分异成因以及膏盐层对油气成藏的控制作用等。论文主要采用流体包裹体分析来恢复古压力,同时也结合其他的一些常规分析和模拟方法。
     利用微量元素和稀土元素分析了膏盐层的成因,石盐主要来自深部热卤水,石膏主要来自陆源区古石膏层的风化剥蚀,海侵是重要的盐源,但不是主要的。早期气候干旱,在强蒸发条件下,湖盆水体范围的振荡形成了碎屑岩与膏盐岩的韵律层;后气候趋于湿润,深水条件下盐浓度分层作用是膏盐层沉淀的主要原因。
     利用镜质体反射率方法恢复了东营凹陷温度梯度演化史,东营凹陷古地温梯度在早期较高,中期持续降低,降低速率有限,晚期虽然下降较快,但是幅度很小,呈现明显的阶段弧形演化趋势。对比分析了声波时差法、盆地模拟法和流体包裹体法在计算压力方面的适用性,声波时差和盆地模拟法适用于盆地(或凹陷)内部泥岩厚度大且断裂活动不太发育的地区,可以很好地表征烃源岩的地层压力,流体包裹体计算的压力能够很好的代表储层中的流体压力。
     东营凹陷“盐下”深部储层中流体包裹体十分发育,丰8井、丰深1井、丰深2井、丰深10井、坨165井及东风3井样品中均发现了烃类包裹体,而丰深3、丰深4、丰深6、永559、郝科1等井样品中均以盐水包裹体为主,未发现烃类包裹体。
     实验研究了NaCl-H2O体系在低温下的拉曼光谱学特征,揭示了水合物中两种不同的水分子类型及不同的振动类型,在冷冻过程中,盐水会发生浓度分异,使得利用低温盐水合物单点拉曼特征峰定量分析包裹体中流体盐度的可靠性降低,多点测试统计平均值则能更好的反映流体包裹体的盐度。东营凹陷“盐下”深部储层的盐水包裹体及含烃盐水包裹体均以NaCl-H2O体系为主,说明在油气成藏过程中,与油气共同运移的地层水中的盐类主要为NaCl。
     实验获得盐水包裹体的均一温度、冰点和盐度以及烃类包裹体的均一温度、气液比,成分,应用PIT模拟软件进行了PVT模拟,同时应用盐水包裹体均一温度-盐度法,计算了流体包裹体捕获的温压条件,结合热史及埋藏史分析,恢复了储层压力演化史。根据流体包裹体模拟结果,划分出了“盐下”深部储层三个油气成藏期和五个压力演化阶段。
     东营凹陷压力演化主要受控于欠压实作用、生烃增压作用和构造作用,膏盐层主要起到封闭和保持压力的作用。地层的欠压实作用是阶段Ⅰ压力增加的主要因素,后陈南断层的强烈活动使得压力释放。烃类物质的生成和运聚成藏是阶段Ⅱ压力增加的主要因素。地层的抬升剥蚀是阶段Ⅲ压力降低的主要因素,烃类流体活动的减弱是压力降低的促进因素。阶段Ⅳ和阶段Ⅴ与油气的第二期和第三期成藏相对应,油气充注活动的强弱直接影响了储层流体压力的变化。
     在东风3井的岩盐中发现了大量的烃类包裹体,其均一温度主要集中在60~80℃和90~100℃两个温度区间,表明这一石盐层至少经历了两个期次的烃类流体活动。这说明膏盐层对油气并非具有绝对的封盖能力,深断层的发育可以沟通膏盐层上下两个含油气系统,使物质发生交换。深断裂或盐构造发育区的“盐上”地层是油气藏发育的有利区。
     论文完善了东营凹陷北部陡坡带“盐下”深部油气成藏的模式。东营凹陷民丰地区“盐下”深部油气藏过程经历了三个阶段:古油藏雏形期(35.0~24.6 Ma)、古油藏成形期(14.0~5.0 Ma)和现今油气藏形成期(5.0~0 Ma),经过三期油气充注,在温度、压力和构造位置等因素的影响下,形成了现今的油气藏分布格局。
The distribution and evolution of geotemperature-geopressure has a close relationship with hydrocarbon accumulation. It plays an important role in studying hydrocarbon reservoirs. The very thick paleogene gypsum-salt strata vertically divided Dongying sag into two relatively independent petroleum systems. The formation underlying gypsum-salt strata has advantageous hydrocarbon accumulation conditions, and it is an important goal for further exploration. Based on conventional geological analysis, such as tectonic activities and sedimentary burial, this paper mainly studies the evolution characteristics of geotemperature and geopressure fields of hydrocarbon accumulations below gypsum-salt strata in Dongying sag. Furthermore, aimed at the hydromcarbon reservoirs, we discuss the hydrocarbon accumulation process, differentiation causes and the controlling function of gypsum-salt strata on hydrocarbon accumulation. Combined with conventional analysis and some simulation methods, fluid inclusion analysis was mainly used to analyze paleopressure of reservoirs.
     This thesis concluded the origin of the gypsum-salt strata with trace elements and REE analysis. The halite of gypsum-salt strata mainly came from deep hot brine, and the gypsum mainly came from the eroding product of terrestrial ancient gypsum layers. Furthermore, transgression of sea played an important, but not major, role in providing salt resource for gypsum-salt strata. When the climate was dry in the early paleogene, the transpiration was very strong. As a result, the lake water oscillation led to the formation of rhythmic layers with clastic rocks and gypsum-salt rocks. Later, when the climate was a little humid, the layering effect of salinity in deep water resulted in deposition of gypsum-salt rocks.
     Using the data of vitrinite reflectance, this thesis calculated geothermal gradient evolution of Dongying sag. The geothermal gradient, which was high in early stage, decreased at a stable rate in medium stage, and decreased sharply in late stage. The evolution curve tends to be arc-shaped. It analyzed the applicability in pressure calculation of SDT, basin simulation and fluid inclusions. The first two methods are suitable in the interior of basin/sag where is filled with thick mudstone and lack of faults. They can correctly calculate the geopressure of source rocks. The method of fluid inclusions shows the fluid pressure of reservoirs correctly.
     The deep reservoirs of Dongying sag are abundant in fluid inclusions. Large quantities of hydrocarbon inclusions are found in F8 well, FS1 well, FS2 well, T165 well and DF3 well. FS3, FeS4, FS6, Y559 and HK1 are rich in brine inclusions and lack of hydrocarbon inclusions.
     An experiment studied the cryogenic Raman spectroscopy of the system NaCl-H2O. It clarified two types of water molecules and different vibrations in each type of water molecules in hydrohalite. Hydrohalite would differentiate with the cooling process. This decreased the reliability of using cryogenic Raman spectra of hydrohalite at one single point to determine the salinities of fluid inclusions. Instead, it is more reliable to use statistical values of Raman peaks of hydrohalite at multiple collecting points. The brine inclusions and hydrocarbon-bearing brine inclusions in the deep reservoirs in Dongying Sag mainly are NaCl-H2O system. This illustrates that the type of formation water along with oil-gas migration in hydrocarbon accumulation process mainly is NaCl-H2O.
     The experiments provided homogenization temperatures, ice points/salinities of brine inclusions and homogenization temperature, vapour/liquid ratios, composition of hydrocarbon inclusions. PVT simulations of fluid inclusions were completed with PIT simulation software. The capturing temperature and pressure are calculated using PVT simulation of hydrocarbon inclusions and homogenization temperature-salinity method of brine inclusions. Combined with geothermal history and burial history, this thesis illustrated the evolution of reservoir geopressure. According to simulation results, it divided the geopressure history into five stages and identified three stages of hydrocarbon accumulation.
     The uncompaction, hydrocarbon generation and tectonic activities were the main three factors of the overpressure development in Dongying Sag, and gypsum-salt layers played an important role in preserving the pressure. The principal element of pressure increase in stage I is undercompaction, and the badly activity of Chennan Fault released overpressure. The pressure increase in stage II mainly result from generation and accumulation of hydrocarbon. The uplifting and eroding of formation chiefly lead to the pressure decrease in stage III, and the diminution of hydrocarbon activity also weakened the pressure. The stage IV and V of geopressure evolution were equivalent with the second and third stages of hydrocarbon accumulation, and the fluid pressure varied with the intensity of hydrocarbon activity.
     Large quantities of hydrocarbon inclusions exist in the halite of DF3 well. This halite layer at least experienced two stages of hydrocarbon activities, because the homogenization temperature concentrated in two intervals of 60~80℃and 90~100℃. This suggests that the sealing ability of gypsum-salt strata is not absolutely effective. Discordogenic faults may communicate the two independent hydrocarbon systems under and upon gypsum-salt strata, and lead to material exchange. The formation upon the gypsum-salt strata along with deep fault and/or salt structure is the important zone for hydrocarbon accumulation.
     This thesis improved the hydrocarbon accumulation model of deep reservoirs underlying the gypsum-salt strata in northern Dongying sag. There are three hydrocarbon accumulation stages of deep reservoirs in Minfeng area, Dongying Sag: embryo stage of ancient reservoir (35.0-24.6 Ma), shaped stage of ancient reservoir (14.0-5.0 Ma) and forming stage of present reservoir (5.0-0 Ma). After three stages of hydrocarbon injection, the present distribution characteristic of oil and gas reservoirs was formed under the control of temperature, pressure, tectonic position and so on.
引文
[1]龚育龄,王良书,刘绍文,等.济阳坳陷大地热流分布特征[J].中国科学(D辑), 2003, 33(4) : 384-391.
    [2]杨绪充.东营凹陷地温特征及深部勘探问题[J].石油学报, 1984, 5(3) : 19-26.
    [3]杨绪充.试论济阳坳陷的地温场[J].华东石油学院学报, 1985, (1) : 14-25.
    [4]陈墨香.华北地热[M].北京:科学出版社, 1988: 50-100.
    [5]熊振.东营凹陷现代热流场特征及地热异常成因[J].石油勘探与开发, 1999, 26(4) : 38-41.
    [6]郭随平,施小斌,王良书.胜利油区东营凹陷热史分析——磷灰石裂变径迹证据[J].石油与天然气地质, 1996, 17(1) : 32-36.
    [7]邱楠生,李善鹏,曾溅辉.渤海湾盆地济阳坳陷热历史及构造-热演化特征[J].地质学报, 2004, 78(2) : 263-269.
    [8]邱楠生,苏向光,李兆影,等.济阳坳陷新生代构造-热演化历史研究[J].地球物理学报, 2006, 49(4) : 1127-1135.
    [9]李善鹏,邱楠生.应用镜质体反射率方法研究东营凹陷古地温[J].西安石油学院学报(自然科学版), 2003, 18(6) : 9-11, 25.
    [10]李善鹏,邱楠生.磷灰石裂变径迹方法研究沉积盆地古地温——以东营凹陷为例[J].西南石油学院学报, 25(4) : 4-8.
    [11]柳忠泉,韩立国,徐佑德,等.济阳坳陷新生代热演化特征研究[J].地质学报, 2008, 82(5) : 663-668.
    [12]赵国欣.烃源岩层中异常高压研究——以渤海湾盆地东营凹陷古近系为例[J].石油实验地质, 2008, 30(4) : 341-344.
    [13]张守春,张林晔,查明,等.东营凹陷压力系统发育对油气成藏的控制[J].石油勘探与开发, 2010, 37(3) : 289-296.
    [14]张守春,张林晔,查明,等.压力抑制条件下生烃定量模拟实验研究——以渤海湾盆地济阳坳陷为例[J].石油实验地质, 2008, 30(5) : 522-526.
    [15]刘晖,操应长,姜在兴,等.渤海湾盆地东营凹陷沙河街组四段膏盐层及地层压力分布特征[J].石油与天然气地质, 30(3) : 287-293.
    [16]刘士林,郑和荣,林舸,等.渤海湾盆地东营凹陷异常压力分布和演化特征及与油气成藏关系[J].石油实验地质, 32(3) : 233-238.
    [17]张善文,张林晔,张守春,等.东营凹陷古近系异常高压的形成与岩性油藏的含油性研究[J].科学通报, 2009, 54(11) : 1570-1578.
    [18]刘斌,段光贤. NaCl-H2O溶液包裹体的密度式和等容式及其应用[J].矿物学报, 1987, 7(4) : 345-351.
    [19]刘斌,沈昆.流体包裹体热力学[M].北京:地质出版社. 1999.
    [20]刘斌.利用不混溶流体包裹体作为地质温度计和地质压力计[J].科学通报, 1986, 31(18) : 1432-1436.
    [21]李昌存,韩秀丽,邹继兴.栾木场金矿石英流体包裹体及成矿预测[J].矿物岩石, 1999, 19(1) : 55-57.
    [22] Zhang Y. G. and Frantz J. D. Determination of the homogenization temperatures and densities of supercritical fluids in the system NaCl-KCl-CaCl2-H2O using synthetic fluid inclusions[J]. Chemical Geology, 1987, 64 : 335-350.
    [23]陈勇,周瑶琪,倪培.一种获取包裹体内压的新方法——二氧化碳拉曼光谱法[J].岩矿测试, 2006, 25(3) : 211-214.
    [24]李善鹏,邱楠生,尹长河,等.利用流体包裹体研究沉积盆地古压力[J].矿产与地质, 2003, 17(2) : 161-165.
    [25]卢焕章,范宏瑞,倪培,等.流体包裹体[M].北京:科学出版社, 2004: 56-58.
    [26]张永刚,许卫平,王国力,等.中国东部陆相断陷盆地油气成藏组合体[M]. 2006,北京:石油工业出版社.
    [27]李善鹏,邱楠生,曾溅辉.利用流体包裹体分析东营凹陷古压力[J].东华理工学院学报, 2004, 27(3) : 209-212.
    [28] Aplin A. C., Macleod G., Larter S. R., et al. Combined use of confocal Laser Microscopy and PVT simulation for estimating the composition and physical properties of petroleum in fluid inclusions [J]. Marine and Petrolum Geology, 1999, 16 : 97-109.
    [29] Aplin A. C., Larter S. R., Bigge M. A., et al. PVTX history of the North Sea’s Judy oilfield [J]. Journal of Geochemical Exploration, 2000, 60-70 : 641-644.
    [30] Liu D H, Xiao X M, Mi J K et al. Determination of trapping pressure and temperature of petroleum inclusions using PVT simulation software-a case study of Lower Ordovician carbonates from the Lunnan Low Uplift, Tarim Basin[J]. Marine and Petroleum Geology, 2003, (20) : 29-43.
    [31]米敬奎,肖贤明,刘德汉,等.鄂尔多斯盆地上古生界储层中包裹体最小捕获压力的PVTsim模拟[J].地球化学, 2002, 4 : 402-406.
    [32]米敬奎,杨孟达,刘新华.利用PVTsim计算鄂尔多斯盆地上古生界砂岩储层中包裹体的捕获压力[J].湘潭矿业学院学报, 2002, 17(3) : 22-26.
    [33] Thiéry R., Pironon J., Walgenwitz F., et al.. PIT(Petroleum Inclusion Thermodynamic) : a new modelling tool for the characterisation of hydrocarbon fluid inclusions from volumetric and microthermometric measurements [J]. Journal of Geochemical Exploration, 2000, 69-70 : 701-704.
    [34] Thiéry R., Pironon J., Walgenwitz F. Fluid inclusions and PVTX modelling : examples from the Garn formation in well 6507 2/2, Haltenbanken, Mid-Norway [J]. Marine and Petroleum Geology, 2002a, 19 : 755-765.
    [35] Thiéry R., Pironon J., Walgenwitz F., et al. Individual characterization of petroleum inclusions (composition and P-T trapping conditions) by microthermometry and confocal scanning laser microscopy : inferences from applied thermodynamics of oils [J]. Marine and Petroleum Geology, 2002b, 19 : 847-859.
    [36] Montel F. Phase equilibria needs for petroleum exploration and production industry[J]. Fluid Phase Equilib, 1993, 84 : 343-367.
    [37] Jǒrg O. W. G., Jacques P., Stéphane T., et al. Recognition and differentiation of gas condensates and other types using microthermometry of petroleum inclusions[J]. Journal of Geochemical Exploration, 2003, (78-79) : 367-371.
    [38]刘斌.烃类包裹体热动力学[M].北京:科学出版社, 2005.
    [39]张鼐,张水昌,李新景等.塔中117井储层烃类包裹体研究及油气藏史[J].岩石学报, 2005, 21(5) : 1473-1478.
    [40] Pironon J., Thiéry R., Teinturier S., et al. Water in petroleum inclusions : Evidence from Raman and FT-IR measurements, PVT consequences [J]. Journal of Geochemical Exploration, 2000, 69-70 : 663-668.
    [41] Teinturier S., Pironon J. Experimental growth of quartz in petroleum environment. part I : Procedures and Fluid Trapping [J]. Geochimica et Cosmochimica Acta, 2004, 68(11) : 2495-2507.
    [42]陈红汉,董伟良,张树林.流体包裹体在古压力模拟研究中的应用[J].石油与天然气地质, 2002, 23(3) : 207-211.
    [43] Hall D. L., Shentwu W., Sterner S. M., et al. Using fluid inclusions to explore for oil and gas[EB/OL]. http://www.continental-labs.ab.ca/fit3a.htm, 2011-03-24.
    [44] Hall D. L., Sterner S. M., Shentwu W., et al. Applying fluid inclusions to petroleum exploration and production[EB/OL]. http://www.searchanddiscovery.net/documents/donhall/ index.htm, 2011-03-24.
    [45] Dilley L. M., Norman D. I. Using fluid inclusion stratigraphy analysis to distinguish producing wells from non-producing wells in the Coso Geothermal Field, California[C]. Proceedings of World Geothermal Congress 2005, Antalya, Turkey, 2005: 1-6.
    [46] Norman D. I., Dilley L., McLin K., et al. Applying fluid inclusion stratigraphy analysis to geothermal systems[C]. Abstracts of the 16th Annual V M Goldschmidt Conference, New York: Elsevier, 2006: A449.
    [47] Faber E., Stahl W. Geochemical surface exploration for hydrocarbons in North Sea[J]. AAPG Bulletin, 1984, 68(3) : 363- 386.
    [48] Burtell S. G., Jones V. T. Benzene content of subsurface brines can indicate proximity of oil, gas[J]. Oil & Gas Journal, 1996, 94(23) : 59-63.
    [49] Hall D. L., Sterner S. M., Shentwu W. Fluid inclusion evidence for hydrocarbon microseepage and applications to prospect evaluation[C]. AAPG Annual Meeting Expanded Abstracts, Tulsa: AAPG, 2000: 62.
    [50] Al-Shaieb Z., Puckette J. O., Close A. Seal characterization and fluid-inclusion stratigraphy of the Anadarko Basin[C]. Circular-Oklahoma Geological Survey, Norman: University of Oklahoma, 2002: 153-161.
    [51] Paddison M., Hall D. L. Application of fluid inclusion stratigraphy (FIS) to oil and gas exploration in Canada[C]. Abstract Volume: Geological Association of Canada. Waterloo: Geological Association of Canada, 2000: 25.
    [52] Liu K., Eadington P. J. A new method for identifying oil migration pathways by combining analysis of well logs and direct oil indicators[C]. AAPG Annual Meeting Expanded Abstracts, Tulsa: AAPG, 2000: 86-87.
    [53] Barclay S. A., Worden R. H., Parnell H., et al. Assessment of fluid contacts and compartmentalization in sandstone reservoirs using fluid inclusions: An example from the Magnus Oilfield, North Sea[J]. AAPG Bulletin, 2000, 84(4) : 489-504.
    [54] Gaboury D., Keita M., Guha J., et al. Mass spectrometric analysis of volatiles in fluid inclusions decrepitated by controlled heating under vacuum[J]. Economic Geology, 2008, 103 : 439-443.
    [55] Coelho C. E. S., Volk H., George S. C., et al. Use of the distribution and geochemistry of oil-bearing fluid inclusions to unravel petroleum charge histories: An example from offshore Brazil[C]. 10th ALAGO Congress on Organic Geochemistry, Salvador: Latin American Association of Organic Geochemistry, 2006: 183-185.
    [56] Owens L., Dilley L., Norman D. Identifying fracture using fluid inclusion stratigraphy:Insights from fluid inclusion thermometry[C]. Proceedings of Thirty-Third Workshop on Geothermal Reservoir Engineering, Stanford: Stanford University, 2008.
    [57]漆家福,肖焕钦,张卫刚.东营凹陷主干边界断层(带)构造几何学、运动学特征及成因解释[J].石油勘探与开发, 2003, 30(3) : 8-12.
    [58]宗国洪,肖焕钦,李常宝,等.济阳坳陷构造演化及其大地构造意义[J].高校地质学报, 1999, 5(3) : 275-282.
    [59]戴俊生,李理.油区构造分析[M].东营:石油大学出版社, 2002: 106-129.
    [60]戴俊生.构造地质学[M].北京:石油工业社, 2006: 165.
    [61]张世奇,纪友亮.东营凹陷早第三纪古气候变化对层序发育的控制[J].石油大学学报(自然科学版), 1997, 22(6) : 26-30.
    [62]李丕龙,姜在兴,马在平,等.东营凹陷储集体与油气分布[M].北京:石油工业出版社, 2002: 113~120.
    [63]王淑萍.东营凹陷民丰地区沙四下亚段膏盐层系储层成岩作用研究[D].东营:中国石油大学(华东), 2007.
    [64]王艳忠.东营凹陷北带古近系次生孔隙发育带成因机制及演化模式[D].青岛:中国石油大学(华东), 2010.
    [65] Paula L., Hansley, Vito F. N. Upper Cretaceous Shannon Sandstone reservoirs, Powder River basin, Wyoming; evidence for organic acid diagenesis[J]. AAPG Bulletin, 1992, 76 : 781-791.
    [66]钱峥,赵澄林,刘孟慧.济阳坳陷深层天然气致密砂岩储集空间成因[J],石油大学学报(自然科学版), 1994, 18(6) : 21-25.
    [67] Ezat H. and William J. W. Massive Recrystallization of Low-Mg Calcite at High Temperatures in Hydrocarbon Source Rocks: Implications for Organic Acids as Factors in Diagenesis[J]. AAPG Bulletin, 2002, 86 : 1285-1303.
    [68] Katz B. J. and Robison V. D. Oil quality in deep-water settings: Concerns, perceptions, observations, and reality[J]. AAPG Bulletin, 2006, 90 : 909~920.
    [69] Dove P. M. The dissolution kinetics of quartz in aqueousmixed cation solutions[J]. Geochim Cosmochim Acta, 1999, 63(22) : 3715-3728.
    [70]邱隆伟,姜在兴,操应长,等.泌阳凹陷碱性成岩作用及其对储层的影响[J].中国科学(D辑), 2001, 31(9) : 752-759.
    [71]邱隆伟,潘耀.柯克亚凝析气田石英的溶解现象及其成因[J].矿物学报, 2005,25(2) : 183-190.
    [72]钟大康,朱筱敏,周新源,等.初论塔里木盆地砂岩储层中SiO2的溶蚀类型及其机理[J].地质科学, 2007, 42(2) : 403-414.
    [73]叶瑛,沈忠悦,郑丽波,等.塔里木盆地中新生界储层砂岩自生矿物组合与两种成岩环境[J].浙江大学学报(理学版), 2000, 27(3) : 307-314.
    [74]袁静,张善文,乔俊,等.东营凹陷深层溶蚀孔隙的多重介质成因机理和动力机制[J].沉积学报, 2007, 25(6) : 840-846.
    [75]张善文,袁静,隋凤贵,等.东营凹陷北部沙河街组四段深部储层多重成岩环境及演化模式[J].地质科学, 2008, 43(3) : 576-587.
    [76]袁静,王乾泽.东营凹陷下第三系深部碎屑岩储层次生孔隙垂向分布及成因分析[J].矿物岩石, 2001, 21(3) : 43-47.
    [77]袁静.东营凹陷下第三系深层成岩作用与次生孔隙发生特征[J].煤田地质与勘探, 2003, 31(3) : 20-23.
    [78]钟大康,朱筱敏,张枝焕,等.东营凹陷古近系砂岩次生孔隙成因与纵向分布规律[J].石油勘探与开发, 2003, 30(6) : 51-53.
    [79]朱筱敏,王英国,钟大康.济阳坳陷古近系储层孔隙类型与次生孔隙成因[J].地质学报, 2007, 81(2) : 197-204.
    [80]张琴,朱筱敏,钟大康,等.山东东营凹陷古近系碎屑岩储层特征及控制因素[J].古地理学报, 2004, 6(4): 493-502.
    [81]蔡进功,张枝焕,朱筱敏,等.东营凹陷烃类充注与储集层化学成岩作用[J].石油勘探与开发, 2003, 30(3) : 79-83.
    [82] Blatt H, Middleton G and Murray R. The Origin of Sedimentary Rocks (2nd Ed )[M]. Englewood Cliffs (New Jersey): Prentice Hall Inc, 1980, 332-362.
    [83]任拥军,陈勇.东营凹陷民丰洼陷深部天然气储层酸性溶蚀作用的流体包裹体证据[J].地质学报, 2010, 84(2) : 257-262.
    [84]袁静,赵澄林,张善文.东营凹陷沙四段盐湖的深水成因模式[J].沉积学报, 2000, 18(1) : 114-118.
    [85]吉双文.沾车凹陷沙四段膏岩成因分析[J].断块油气田, 2003, 10(6) : 10-12.
    [86]徐磊,操应长,王艳忠.东营凹陷古近系膏盐岩成因模式及其与油气藏的关系[J].中国石油大学学报(自然科学版), 2008, 32(3) : 30-36.
    [87]金强,黄醒汉.东濮凹陷早第三纪盐湖成因的探讨——一种深水成因模式[J].华东石油学院学报, 1985, 9(1) : 1-13.
    [88]刘孟慧,赵林.东濮凹陷文留地区盐下含气层系的储层特征[J].华东石油学院学报, 1986, 10(2) : 1~6.
    [89]袁静,覃克.东营凹陷沙四段深水成因蒸发岩特征及其与油气藏的关系[J].石油大学学报(自然科学版), 2001, 25(1) : 9-12.
    [90]袁文芳.济阳坳陷古近纪咸化成因及古地理重建[D].东营:中国石油大学(华东), 2006.
    [91]赵振宇,周瑶琪,马晓鸣,等.含油气盆地中膏盐岩层对油气成藏的重要影响[J].石油与天然气地质, 2007, 28(2) : 299-308.
    [92]常华进,储雪蕾,冯连君,等.氧化还原敏感微量元素对古海洋沉积环境的指示意义[J].地质论评, 2009, 55(1) : 91-99.
    [93] Pujol F., Berner Z., Stüben D. Palaeoenvironmental changes at the Frasnian / Famennian boundary in key European sections: Chemostratigraphic constraints[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 240(1-2) : 120~145.
    [94]肖焕钦,刘震,赵阳,济阳坳陷地温-地压场特征及其石油地质意义[J].石油勘探与开发, 2003, 30(3) : 68-70.
    [95]刘震,赵阳,梁全胜,等.隐蔽油气藏形成与富集[M].北京:地质出版社. 2007: 3-14.
    [96]冉启贵,胡国艺,陈发景.镜质体反射率的热史反演[J].石油勘探与开发, 1998, 25(6) : 29-34.
    [97]周立宏,刘国芳.利用泥岩声波时差估算地层压力[J].石油实验地质, 1996, 18(2) : 195-200.
    [98] Bodnar R. J. Petroleum migration in the Miocene Monterey Formation, California, USA : Constraints from fluid inclusion studies [J]. Minera1. Magazine, 1990, 54 : 295-304.
    [99] Zhang W. H., Zhang Z. J., Ming H. L., et al. A study on organic inclusions in clastic reservoir rocks and their application to the assessment of oil and gas accumulations[J]. Chinese J. Geochemistry, 1996, 153 : 249-257.
    [100]施继锡,李本超,傅家谟,等.有机包裹体及其与油气的关系[J].中国科学(B辑), 1987, 3 : 318-325.
    [101]张志坚,张文淮.有机包裹体的研究现状[J].地质科技情报, 1995, 143 : 39-43.
    [102]邱楠生,金之钧,胡文碹.东营凹陷油气充注历史的流体包裹体分析[J].石油大学学报, 2000, 244 : 95-99.
    [103]李荣西,金奎励,周雯雯,等.渤中坳陷油气包裹体与油气成藏[J].沉积学报, 2001, 193 : 605-610.
    [104]陶士振,郭宏莉,张宝民,等.沉积岩包裹体的岩相学、分类、术语及常被忽略的问题[J].地质科学, 2002, 382 : 275-280.
    [105]单秀琴,胡国艺,高嘉玉.鄂尔多斯盆地中部奥陶系方解石脉中包裹体流体势研究[J],岩石学报, 2002, 192 : 355-358.
    [106] Dutkiewicz A., Rasmussen B., Buick R. Oil preserved in fluid inclusions in Archaean sandstones[J]. Nature, 1998, 395 : 885-888.
    [107] Dutkiewicz A., Ridley J., Buick R. Oil-bearing CO2-CH4-H2O fluid inclusions : Oil survival since the Palaeoproterozoic after high temperature entrapment[J]. Chemical Geology, 2003, 194 : 51-79.
    [108] Dutkiewicz A., Volk H., Ridley J, et al. Biomarkers, brines, and oil in the Mesoproterozoic, Roper Superbasin, Australia [J]. Geology, 2003, 3111 : 981-984.
    [109] Volk H., Dutkiewicz A., George S, et al. Oil migration in the Middle Proterozoic Roper Superbasin Australia : Evidence from oil inclusions and their geochemistries[J]. Journal of Geochemical Exploration, 2003, 78-79 : 437-441.
    [110]叶松,张文淮,张志坚.有机包裹体荧光显微分析技术简介[J].地质科技情报, 1998, 17(2) : 76-80.
    [111]李荣西,金奎励,廖永胜.有机包裹体显微傅立叶红外光谱和荧光光谱测定及其意义[J].地球化学, 1998, 27(3) : 244-245.
    [112]柳少波,顾家裕.流体包裹体成分研究方法及在油气研究中的应用[J].石油勘探与开发, 1997, 24(3) : 29-33.
    [113]张义杰.准噶尔盆地断裂控油的流体地球化学证据[J].新疆石油地质, 2003, 24(2) : 100-106.
    [114]赵艳军,陈红汉.油包裹体荧光颜色及其成熟度关系[J].地球科学——中国地质大学学报, 2008, 33(1) : 91-96.
    [115]张鼐,田作基,冷莹莹,等.烃和烃类包裹体的拉曼特征[J].中国科学(D辑), 2007, 37(7) : 900-907.
    [116] Goldstein R. H., Reynolds T. J. Systematics of Fluid inclusions in diagenetic minerals[J]. SEPM short course, 1994, 31 : 199.
    [117]张文淮,陈紫英.流体包裹体地质学[M].武汉:中国地质大学出版社, 1993: 190-191.
    [118]毛毳.储层流体包裹体低温原位分析方法及PVT模拟[D].青岛:中国石油大学(华东), 2010.
    [119] Barton P. B., Chou I. M.. Calculation of the vapor-saturated liquids for the NaCl-CO2-H2O system[J]. Geochim Cosmochim Acta, 1993, 57 : 2715-2723.
    [120] Ni, P., Ding, J., Rao, B.. In situ cryogenic Raman spectroscopic studies on the synthetic fluid inclusions in the systems H2O and NaCl-H2O[J]. Chineae Science Bulletin 2006, 51(1) : 108-114.
    [121] Dubessy, J., Audeoud, D., Wilkins, R., et al. The use of the Raman microprobe MOLE in the determination of the electrolytes dissolved in the aqueous phase of fluid inclusions[J]. Chemical Geology, 1982, 37 (1-2) : 137-150.
    [122] Samson, I.M., Walker, R.T. Cryogenic Raman spectroscopic studies in the system NaCl-CaCl2-H2O and implications for low-temperature phase behavior in aqueous fluid inclusions[J]. The Canadian Mineralogist, 2000, 38 : 35-43.
    [123] Baumgartner, M., Bakker, R.J. Raman spectra of ice and salt hydrates in synthetic fluid inclusions[J]. Chemical Geology, 2010, 275 : 58-66.
    [124] Bakker, R.J. Raman spectra of fluid and crystal mixtures in the systems H2O, H2O-NaCl and H2O-MgCl2 at low temperatures: applications to fluid-inclusion research[J]. The Canadian Mineralogist, 2004, 42 : 1283-1314.
    [125]陈勇,周瑶琪,章大港.几种盐水溶液拉曼工作曲线的绘制[J].光散射学报, 2003, 14(4) : 216-223.
    [126]陈勇,林承焰,于雯泉,等.原位低温拉曼光谱技术在储层流体包裹体分析中的应用[J].光谱学与光谱分析, 2010, 30(1) : 95-97.
    [127]杨丹,徐文艺. NaCl-MgCl2-H2O体系低温拉曼光谱研究[J].光谱学与光谱分析, 2010, 30(3) : 697-701.
    [128] Mernagh, T. P., Wilde, A. R. The use of the laser Raman microbe for the determination of salinity in fluid inclusions[J]. Geochimica et Cosmochimica Acta, 1989, 53(4) : 765-771.
    [129] Baumgartner, M., Bakker, R. J. Raman spectroscopy of pure H2O and NaCl-H2O containing synthetic fluid inclusions in quartz - a study of polarization effects[J]. Miner Petrol, 2009, 95 : 1-15.
    [130] Moghaddasi, S. J., Yao, S., Lü, X. Determination of Salinity in Fluid Inclusions withLaser Raman Spectroscopy Technique[J]. Journal of China University of Geosciences, 2000, 11(4) : 108-114.
    [131]丁俊英,倪培,饶冰,等.显微激光拉曼光谱测定单个包裹体盐度的实验研究[J].地质论评, 2004, 50(2) : 203-209.
    [132] Zhang, N., Zhang, D., Zhang, S.,et al. Characteristics and quantitative of negative ion in salt aqueous solution by Raman spectroscopy at -170℃[J]. Science in China: Series D Earth Sciences, 2006, 49 (2) : 124-132.
    [133] Liu D. H., Xiao X. M., Mi J. K., et al. Determination of trapping pressure and temperature of petroleum inclusions using PVT simulation software—a case study of Lower Ordovician carbonates from the Lunnan Low Uplift, Tarim Basin[J]. Marine and Petroleum Geology, 2003, 20 : 29-43.
    [134]米敬奎,肖贤明,刘德汉,等.利用储层流体包裹体的PVT特征模拟计算天然气藏形成古压力——以鄂尔多斯盆地上古生界深盆气藏为例[J].中国科学(D辑), 2003, 33(7) : 679-685.
    [135]王存武,邹华耀,姜丽娜,等.激光扫描共聚焦显微镜精确测量有机包裹体气液比方法研究[J].现代科学仪器, 2008, (1) : 20-22.
    [136] Stoller P., Krüger Y., Ricka J., et al. Femtosecond lasers in fluid inclusion analysis: Three-dimensional imaging and determination of inclusion volume in quartz using second harmonic generation microscopy[J]. Earth and Palnetary Science Letters, 2007, 253 : 359-368.
    [137] Blamey N. J. F., Ryder A. G., Feely M., et al. The application of structured-light illumination microscopy to hydrocarbon-bearing fluid inclusions[J]. Geofluids, 2008, 8 : 102-112.
    [138]张旭,徐维奇.激光扫描共聚焦显徽镜技术的发展及应用[J].现代科学仪器, 2001, 2 : 21-23.
    [139]周振柱,周瑶琪,陈勇,等.一种获取流体包裹体气液比的便捷方法[J].地质论评, 2011, 57(1) : 147-152.
    [140]邹育良,霍秋立,俞萱.油气包裹体的显微红外光谱测试技术及应用矿物岩石[J].地球化学通报, 2006, 25(1) : 105-108.
    [141]孙青,翁诗甫,张煦.傅立叶变换红外光谱分析矿物有机包裹体的限制-基体吸收问题初探[J].地球科学——中国地质大学学报, 1998, 23(3) : 248-252.
    [142]孙青,曾贻善.单个流体包裹体成分无损分析进展[J].地球科学进展, 2000, 15(6) :673-678.
    [143] Pironon. J., Thiery. R., Aytougougdal M., et al. FT-IR measurements of petroleum fluid inclusions : methane, n-alkanes, and carbon dioxide quantitative analysis[J]. Geofluids, 2001, 1 : 2-10.
    [144]葛云锦.碳酸盐岩烃类包裹体形成机制及其对油气成藏的响应[D].青岛:中国石油大学(华东), 2010.
    [145]刘德汉,卢焕章,肖贤明.油气包裹体及其在石油勘探和开发中的应用[M].广州:广东科技出版社, 2007.
    [146]王金志,杨少武,将森堡等.流体包裹体热动力学模拟技术的古压力恢复方法及应注意的问题[J].中国石油勘探, 2008, 1 : 44-47.
    [147]潘立银,倪培,欧光习.油气包裹体在油气地质研究中的应用——概念、分类、形成机制及研究意义[J].矿物岩石地球化学通报, 2006, 25(1) : 19-28.
    [148]李丕龙.陆相断陷盆地油气地质与勘探(卷三·陆相断陷盆地油气生成与资源评价)[M].北京:石油工业出版社. 2003: 29-31.
    [149]张守春.东营凹陷异常压力形成机制及其与成烃成藏关系[D].青岛:中国石油大学(华东), 2010.
    [150]郭小文.含油气盆地生烃增压演化研究——以东营凹陷和白云凹陷为例[D].武汉:中国地质大学(武汉), 2010.
    [151]奇林格G. V.,谢列布里亚科夫V. A.,罗伯逊小J. O.,等著.赵文智,柳广弟,苗继军,等译.异常地层压力成因与预测[M].北京:石油工业出版社, 2004: 92-112.
    [152] Deming D. Factors necessary to define a pressure seal[J]. Am. Assoc Pet. Geol Bu1l., 1994, 78 : 1005-1009.
    [153]李丕龙,庞雄奇.陆相断陷盆地隐蔽油气藏形成——以济阳坳陷为例[M].北京:石油工业出版社, 2004: 249-254.
    [154]王东旭,曾溅辉,宫秀梅.膏盐岩层对油气成藏的影响[J].天然气地球科学, 2005, 16(3) : 329-333.
    [155] Kirkland D. W., Evans R. Source rock potential of evaporitic environment[J]. AAPG, 1980, 65(2) : 139-148.
    [156]张朝军,田在艺.塔里木盆地库车坳陷第三系盐构造与油气[J].石油学报, 1998, 19(1) : 6-10.
    [157] Luo Q. Significance of the Tertiary p laster salt rock in Taibei depression to migrationand accumulation of hydrocarbon[J]. Petroleum Exploration and Development, 1999, 27(1) : 29-31.
    [158]孙海龙.渤南洼陷膏盐层发育与深层储层次生孔隙发育的关系[J].河南石油, 2005, 19(2) : 14-18.
    [159]戈红星, Martin P. A. J.盐构造与油气圈闭及其综合利用[J].南京大学学报, 1996, 32(4) : 640-649.
    [160]孙昶旭,崔永刚,罗文生,等.东营凹陷东营三角洲与中央隆起带盐—泥构造形成的关系及其对隐蔽油气藏勘探的意义[J].石油地球物理勘探, 2006, 41(4) : 462-469.
    [161]王文林.东营凹陷古近系深层凝析气藏形成条件[J].油气地质与采收率, 2007, 14(3) : 55-59.
    [162]李延钧,宋国奇,李文涛,等.济阳坳陷东营凹陷北带丰深1井区深层沙四下古油藏与天然气成因[J].石油与天然气地质, 2010, 31(2) : 173-179.
    [163]郭瑞超,李延钧,李卓沛,等,东营凹陷北带沙四下凝析油气成藏模式与主控因素[J].地球与环境, 2010, 38(2) : 146-150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700