用户名: 密码: 验证码:
端足目钩虾亚目种类养殖生态学的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文运用实验生态学方法,对以中华原钩虾为代表种的端足目钩虾亚目种类的养殖生态学进行了研究。测定了中华原钩虾的半致死温度、半致死盐度和繁殖情况等,对养殖池和虾池内钩虾和蜾蠃蜚群落的变动规律进行了研究,获得如下的实验结果:
     1.中华原钩虾基础生态学的初步研究
     1.1温度和盐度对中华原钩虾存活率的影响采用室内受控实验方法研究中华原钩虾的半致死温度和半致死盐度。研究结果表明:大规格中华原钩虾半致死温度上限为29.70℃,小规格中华原钩虾的半致死温度上限为33.16℃。大规格中华原钩虾半致死盐度上下限分别为46.24和3.36,小规格中华原钩虾的半致死盐度上下限分别为52.02和3.07。由此,中华原钩虾应属于喜冷广温广盐种。
     1.2不同温度和干露条件对中华原钩虾存活率的影响
     采用室内受控实验方法研究干露条件和温度对中华原钩虾存活率的影响。实验设2个处理,每个处理组分别设立3个温度处理,即按双因子2×3的组合,设置6个实验组。研究结果表明:在相同的干露条件下,10℃组对应的半致死时间显著长于其他各组(P<0.05)。在相同的温度条件下,湿润处理对应的半致死时间显著长于干燥组。温度和干露条件对中华原钩虾的半致死时间均有极显著影响,同时干露条件与温度双因子的交互作用对中华原钩虾的半致死时间的影响亦达极显著水平。本研究为中华原钩虾的运输方式的选择提供了一定的科学依据。
     1.3温度对中华原钩虾种群的影响
     采用室内受控实验方法研究了温度对中华原钩虾的繁殖和种群参数的影响。结果表明,在15~25℃范围内,中华原钩虾的首次抱卵时间和繁殖节律随温度的上升而降低,而总抱卵次数则是在20℃达到最大值,实验得出了中华原钩虾各实验种群参数和繁殖参数与温度的回归方程。在15~25℃范围内,通过不同温度下实验种群参数和繁殖参数的比较得出: 15~20℃是本实验条件下中华原钩虾种群最适宜繁殖的温度。本研究为中华原钩虾种群的繁殖和利用提供了一定的基础数据。
     2.钩虾和蜾蠃蜚群落在养殖池塘中变动规律的研究
     2009年8月至2010年8月,对某养殖池钩虾和蜾蠃蜚群落进行了调查研究。钩虾的优势种为中华原钩虾;蜾蠃蜚的优势种具有明显的交替性,2010年4月前,优势种为隐居蜾蠃蜚,其后优势种为日本大螯蜚。钩虾和蜾蠃蜚的生物量在2010年3月达到最大值;钩虾的丰度在2010年3月达到峰值,蜾蠃蜚的丰度在2009年12月和2010年4月出现两个高峰。同时,钩虾和蜾蠃蜚群落不同体长个体的丰度百分比差异明显,表现出一定的周期性变化规律。由此,确定钩虾和蜾蠃蜚群落的在池内繁殖高峰出现的时间,并对温度对钩虾和蜾蠃蜚的繁殖的影响以及钩虾和蜾蠃蜚收获方式的选择提出了建议。
     3.钩虾和蜾蠃蜚群落在日本对虾养殖池塘中变动规律的研究
     2009年4月至7月,对移入日本对虾养殖池的钩虾和蜾蠃蜚群落进行了研究。共调查到2种钩虾,3种蜾蠃蜚。钩虾的优势种为中华原钩虾;蜾蠃蜚的优势种具有明显的交替性,放养后53天前,优势种为大蜾蠃蜚,78天后,优势种为隐居蜾蠃蜚。钩虾群落的物种多样性(H′)与均匀度(J)在放养当天达到最高,放养后第67天出现差异显著;蜾蠃蜚群落的物种多样性(H′)与均匀度(J)在放养后第64天最高,第90天出现差异显著。钩虾的生物量和丰度放养后第30天达到最大值,随后快速下降;蜾蠃蜚的生物量和丰度放养后第14天达到最大值,其丰度在第64天达到第二个高峰。同时,钩虾和蜾蠃蜚群落不同体长个体的丰度百分比差异明显,表现出一定的周期性变化规律。由此,初步分析了引起群落变化的两类原因,提出了钩虾和蜾蠃蜚群落结构的调控方案。
In this paper, Eogammarus sinensis Ren as a representative specie and other species belonging to Amphipoda Gammaridea were studied on basic ecology. The semi-lethal temperature, the semi-lethal salinity and reproduction were determined. The study were designed Gammarus and Corophium in the farm pond and transplanted into farm pond-reared prawns Penaeus japonicus. Detials on three main studies of this paper were as follows:
     1. Preliminary study on ecologfical ecology of E. sinensis.
     1.1 Effects of temperature and salinity on survival of E. sinensis.
     The effects of medial lethal temperature and medial lethal salinity of E. sinensis were studied. Results showed that the medial lethal temperature for larger sized group of E. sinensis was 29.70°C, while smaller sized group was 33.16°C The results of metial lethal lower and upper salinity of larger sized group of E. sinensis were 3.36 and 46.24, while smaller sized group were 3.07 and 52.02. Therefore, the result indicated that E. sinensis belongs to eurytherm and eurythaline.
     1.2 Effects of temperature and exposure on survival of E. sinensis.
     The effects of temperature (10°C, 20°C and 30°C) with wet and dry exposure to E. sinensis were studied. Results showed that the medial lethal time of 10°C group was significantly affected by the same exposure. The dry environment was significantly affected by the same temperature. The intereaction of the temperature and exposure is significant on the medial lethal time of E. sinensis.
     1.3 Effects of temperature on reproduction of the population of E. sinensis.
     The effects of experimental population parameters and reproduction parameter of E. sinensis were studied. Results showed that under 15 to 25°C, ovigeous time and reproductive rhythm were decreased while the temperature went up. Numbers of broods in life cycle of E. sinensis reached its highest value at 20°C. The equation of experimental population parameter and temperature and the equation of reproduction parameter and temperature for E. sinensis had been conducted. Under 15 to 25°C, it could be concluded that 15 to 20°C were the optimum temperature for the reproduction of the experimental population.
     2. Studies on the variation of Gammarus and Corophium Communities in the farm pond.
     During August 2009 to August 2010, the study was designed Gammarus and Corophium Communities in the farm pond. Two Gammarus species were collected, among which, Eogammarus sinensis Ren was predominant. Two Corophium species were investigated, the dominant species were alternating obviously. Before Apirl 2010, Corophium insidiosum Crawford was predominant, and after Apirl 2010, Grandidierella japonica Stephensen was predominant. The biomass of Gammarus and Corophium community were highest in March 2010, when the abundance of Gammarus community was highest. The abundance of Corophium community were highest in December 2009, and there was a second peak in Apirl 2010. Meanwhile, there were significant differences in abundance percentage of different body length in Gammarus community and Corophium community, and some cyclical variation was showed. Thus it could determine the time for peak breeding of Gammarus community and Corophium community in the farm pond. It could be suggested that effects of temperature on reproduction and the choice of harvesting of Gammarus community and Corophium community.
     3. Studies on the variation of Gammarus and Corophium Communities in farm pond-reared prawns Marsupenaeus japonicus.
     During April 2009 to July, the study was designed Gammarus and Corophium transplanted into three farm pond-reared prawns Penaeus japonicus. Two Gammarus species were collected, among which, Eogammarus sinensis Ren was predominant. Three Corophium species were investigated, the dominant species were alternating obviously. Before 53 days after stocking, Corophium major Ren was predominant, and after 78 days, Corophium insidiosum Crawford was predominant. There was a significant difference in the Shannon-Weaver diversity index (H′)and evenness(J) at 67th day after stocking in Gammarus community, with the maximum index at. And there was a significant difference in the Shannon-Weaver diversity index (H′)and evenness(J) at 90th day after stocking in Corophium community, with the maximum index at 64th day. The biomass and density of Gammarus community were highest at 30th day after stocking, and then declined rapidly. The biomass and density of Corophium community were highest at 14th day after stocking, and there was a second peak of density at 64th day. Meanwhile, there were significant differences in abundance percentage of different body length in Gammarus community and Corophium community, and some cyclical variation was showed. Thus two types of reasons that caused community variable were analyzed, and the control scheme of Gammarus community and Corophium community was proposed.
引文
[1]张伟权.山东半岛南部沿岸蜾蠃蜚属( Corophium)的一个新种[J].海洋科学集刊,1974:139-146.
    [2]任先秋.胶州湾底栖钩虾类(甲壳动物:端足目)研究[J].甲壳动物论文集,1992,(3):215-317.
    [3]任先秋.香港及大亚湾临近水域的钩虾类[J].海洋科学集刊,1994,(35):215-317.
    [4]任先秋.中国海蜾蠃蜚属( Corophium)的研究[J].甲壳动物学论文集,2003,(4):154-280.
    [5]闫启仑,韩明辅,陈红星等.辽宁沿岸海洋底栖钩虾类的种类组成与分布[J].海洋环境科学, 1998, 17(1):26-29.
    [6]尹大强,金洪钧,于红霞,等.钩虾胆碱酯酶(ChE)和谷胱甘肽转硫酶(GST)的敏感性和特异性比较研究[J].应用生态学报,2001, (4):615-618.
    [7]武云飞,韩凤进,江涛,等.青海钩虾配合饲料对罗非鱼两品系生长效果的研究[J].青岛海洋大学学报,2003, 33(2):199-205.
    [8]刘艳春,苑春亭,蒋万钊,等.藻钩虾在池塘生态养虾中的利用[J].齐鲁渔业,2007, 24(1):28-29.
    [9]林霞.温度、盐度和饵料对象山港两种优势桡足类摄食与存活的影响[D].硕士论文,2003.
    [10]郭彪,王芳,侯纯强,等.温度突变对凡纳滨对虾己糖激酶和丙酮酸激酶活力以及热休克蛋白表达的影响[J].中国水产科学,2008,9(5):885~889.
    [11]管越强,俞志明,宋秀贤.主要环境因子对虾类免疫反应及疾病发生的影响[J].海洋环境科学, 2008,10(5):554~550.
    [12]陈昌生,黄标,叶兆弘,等.南美白对虾摄食、生长及存活与温度的关系[J].集美大学学报.2001.12(4):296~300.
    [13]潘鲁青,姜令绪.盐度、pH突变对2种养殖对虾免疫力的影响[J].青岛海洋大学学报,2002, 32(6):903-910.
    [14]杨红生.温度对墨西哥湾扇贝耗氧率及排泄率的影响[J].海洋学报,1998, 20(4):91-96.
    [15]张继红,方建光,金显仕等.低温对栉孔扇贝能量收支的影响[J].中国水产科学,2002, 9(1):48-51.
    [16]梁云波.海湾扇贝苗运输环境条件的研究[J].海洋环境科学, 1996, 15(2):44-50.
    [17]陆彤霞,龙仲杰,陈清建.酸碱度和干露对墨西哥湾扇贝幼虫和稚贝的影响[J].水产科学,2003, 22(2):6-8.
    [18]于瑞海,王昭萍,孔令峰等.不同发育期的太平洋牡蛎在不同干露条件状态下的成活率研究[J].中国海洋大学学报,2006, 36(4):617-620.
    [19]吴根福,宣晓东.杭州西湖底泥释磷的初步研究[J].中国环境科学,1998, 18(2):107-110.
    [20]任先秋.中国动物志,无脊椎动物,第四十一卷,端足目,钩虾亚目(一)[M].北京:科学出版社,2006:132-374.
    [21]黄宗国.中国海洋生物种类与分布[M].北京:海洋出版社,1994:532-533.
    [22]武云飞,吴翠珍,黄勇,等.一种新蛋白源——青海钩虾营养价值的初步研究[J].青岛海洋大学学报,1996, 26(3):309-311.
    [23]郭焱,张人铭,蔡林钢,等.赛里木湖钩虾营养及渔业效应分析[J].淡水渔业,2002, 32(4):52-54.
    [24]郑严,李茂堂,田凤琴.蜾蠃蜚在对虾养殖中的应用研究[J].海洋科学,1985, (9):35.
    [25]王克行.解决大面积养虾饲料的一点设想[J].全国海水养殖增殖发展途径学术会议论文报告汇编,1980, 200-203.
    [26]韩方训,王道和,韩丰贵,等.沙蚕在对虾养殖生产中的应用[J].海洋科学,1990, (3):4-6.
    [27]张志南,于子山,段榕琦,等.虾池纳潮期日本刺沙蚕幼虫数量及其沉降的研究[J].海洋与湖沼,1994, 25(3):248-257.
    [28]周一兵.沙蚕移植在对虾养殖中的应用及生态效益[J].海洋学通报,1999, 34(11):12-15.
    [29]邓锦松.投放双齿围沙蚕和毛蚶移对虾池的生物修复作用[D].硕士论文,2006:13-32.
    [30]张士华,杨秀霞,林式柱,等.几种对虾在黄河三角洲地区生长及移植饵料生物效果的比较[J].青岛海洋大学学报,2002, 32(4):543-550.
    [31]张庆文,孔杰,栾生,等.日本囊对虾亲虾人工繁育技术初步研究[J].海洋水产研究,2005, 26(4):14-16.
    [32]刘文亮.长江河口大型底栖动物及其优势种探讨[D].硕士论文,2007:22-53.
    [33]闫启仑,韩明辅.辽宁沿岸海洋底栖钩虾类的种类组成与分布[J].生态学报,1996, 18(5):95-100.
    [34]袁兴中,陆健健.围垦对长江口南岸底栖动物群落结构及多样性的影响[J].生态学报, 2001, 21(10):1643-1644.
    [35]钱迎倩,马克平.生物多样性的原理与方法[M].中国科学技术出版社,2006:140-166.
    [36]郑新庆.端足类啃食作用对筼筜湖大型海藻群落影响的初步研究[D].硕士论文,2008:64-73.
    [37]王超,闫启仑,陈红星,等.端足类河蜾蠃蜚生活周期及其沉积物毒理敏感性研究[J].华东师范大学学报,2009, 3:1-5.
    [38]王超,王睿睿,闫启仑,等.温度对底栖端足类河蜾蠃蜚(Corophium acherusicum)存活、生长和发育的影响[J].海洋环境科学, 2009, 28(2): 138–141.
    [39]孙儒泳.动物生态学原理[M].北京师范大学出版社,2001:478-480.
    [40]海洋调查规范[M].北京:海洋出版社,2007.
    [41]全国海岸带和海涂资源综合调查简明规程[M].北京:海洋出版社,1986.
    [42]扈传昱,王正方.海水和海洋沉积物中总磷的测定[J].海洋环境科学,1999, 18(3):48-52.
    [43]游奎,马甡 .对虾养殖生态系中有机碳的初步研究[J].青岛海洋大学学报,2002, 32(1):51-55.
    [44]刘国才.虾池生态系各有机碳库的储量[J].生态科学,2000,20(6):l056-1060.
    [45]杨逸萍.精养虾池主要水化学因子变化规律和氮的收支[J].海洋科学1999,(1):l5-17.
    [46]张哲.封闭式围栏养虾的效益及水质调控研究[D].硕士论文,2002:30-42.
    [47]苏跃朋.封闭式对虾综合养殖池塘生态系底质变动及生物改良的研究[D].硕士论文, 2003:13-23.
    [48] Barnard, J.L., The families and genera of marine gammaridean Amphipoda. [J]. Proceedings of the Uniited States National Museum,1969,271:1-535.
    [49] Barnard, J.L., A biological survey of Bahia de Los Angeles Gulf of California, MexicoⅣ. [J]. Transactions of the San Diego Society of Natural History,1969,15:175-228.
    [50] Barnard, J.L., Gammaridean Amphipoda of the rocky intertidal of California: Monterey Bay to La Jolla. [J]. Bulletin of the Uniited States National Museum,1969,258:1-230.
    [51] Barnard, J.L. & Barnard, C.M., Freshwater Amphipoda of the world,Ⅰ. Evolutionary patterns andⅡ. Handbook and bibliography. [M]. Mt. Vernon, Virginia, Hayfield Associates ,1983.
    [52] Barnard, J.L. & Karaman, G.S., The families and genera of marine Gammaridean Amphipoda (Except marine Gammaroids). Part. 1. [M]. Records of the Australian Museum,1991a.
    [53] Barnard, J.L. & Karaman, G.S., The families and genera of marine Gammaridean Amphipoda (Except marine Gammaroids). Part. 2. [M]. Records of the Australian Museum,1991b.
    [54] Bousfield, E.L., The amphipoda superfamily Talitroidea in the northeastern Pacific region. [J]. National Museum of Natural Science,Ottawa, 1982,11:1-75.
    [55] Bousfield, E. L. & Shih ,C. T., 1994. The phyletic classification of amphipod crustaceans: problems in resolution. [J].Amphipacifica,1994 (3), 76–134.
    [56] Bousfield, E. L. An updated commentary on phyletic classification of the amphipod Crustacea and its applicability to the North American fauna. [J].Amphipacifica.2001(1): 49-113
    [57] Holsinger, J. R. The cave fauna of Pennsylvania (edited by William B. White). [J].In Geology and Biology of Pennsylvania Caves.1976: 72-78
    [58] Derzhavin,A.N., A new forms of freshwater gammarids of Ussury District. [J].Russkii Gidrobiologicheskii Zhurnal, 1927(6):176-179.
    [59] Barnard,J.L.&A.Y.Dai., Four species of Gammarus (Amphipoda) from China. [J].Sinozoologia, 1988. (6):85-112.
    [60] Karaman,G.S., Remarks to the freshwater Gammarus species from Korea,China,Japan and some adjacent regions(Contribution to the knowledge of the Amphipoda 134). [J]. The Montenegrin academy of sciences and arts glasnik of the section of natural sciences, 1984(4):139-162.
    [61] Martynov,A.V., On a new freshwater species of Gammarus from south Ussurjan Land. [J].Russki Gidrobiologicheskii Zhurnal, 1925(4):189-194.
    [62] Hidu,H., Chapman.S.R. , Mook. W., et al. Over-wintering American oyster seed by cold humid air storage [ J ] J Shellfish Res ,1988 ,7 (1):47-50.
    [63] Seaman,M. N., Survival and aspects of metabolism in oyster , Crassostrea gigas, during prolonged air storage [J]. Aquaculture,1991,93:389-395.
    [64] Neuparth,T., Costa.F.O., Costa..M.H., Effects of temperature and salinity on life history of the marine amphiod Gammarus locusta. Implications for ecotoxicological testing [ J ] .Ecotoxicology ,2001 ,11 (1):61-73.
    [65] Maranhao,P., Bengala.N., Pardal.M., et al. The influence of environmental factors on the population dynamics, reproductive biology and productivity of Echinogammarus marinus Leach (Amphipoda, Gammaridae) in the Mondego estuary [J] Acta Oecologica ,2001 ,22:139-152.
    [66] Sainte-Marie,B.A., A review of the reproductive bionomics of aquatic gammaridean amphipods: variation of life history traits with latitude, depth, salinity and superfamily [J] . Hydrobiologia,1991,223:189-227.
    [67] Jeong,S., Yu.O., Suh.H., et al. Life history and reproduction of Jassa slatteryi (Amphipoda, lschyroceridae) on a seagrass bed (Zostera marina L.) in southern Korea [J] Journal of crustacean biology ,2007,27:65-70.
    [68] Covi,M.P.& Kneib.R.T., Intertidal distribution, population dynamics and production of the amphiod Uhlorchestia spartinophila in a Georgia, USA,salt marsh. [J].Marine Biology, 1995.121:447-455.
    [69] Prato,E., Biandolino.F., Scardicchio.C., Postembryonic growth, development and reproduction of Gammarus aequicauda in laboratory culture [J] Zoological Studies ,2006,45:503-509.
    [70] Welton,J.S.& Clarke.R.T., Laboratory studies on the reproduction and growth of the amphipod, Gammarus pulex(L.). [J].The Journal of Animal Ecology, 1980.49:581-592.
    [71] Borowsky,B., Reproductive behavior of three tube-building peracarid crustaceans: the amphipods Jassa falcate and Ampithoe valada and thetanaid Tanais cavolinii [J] . Marine Biology,1983,77:257-263.
    [72] Greenstein,D.J.& Tiefenthaler.L.L., Reproduction and population dynamics of a population of Grandidierella japonica (Stephensen) (Crustacea: Amphipoda) in upper Newport Bay, California. [J]. Bulletin of the Southern California Academy of Sciences, 1997.96:34-42.
    [73] Fish,J.D.& Mills.A., The reproductive biology of Corophium volutator and C.arenarium (Crustacea:Amphipoda). [J]. Journal of the Marine Biological Association of U.K., 1979.59:355-368.
    [74] Moore,P.G., The life histories of the amphipods Lembos websteri Bate and Corophium bonnellii Milne Edwards in kelp holdfasts[J]. Journal of Experimental Marine Biology and Ecology,1981,49:1-50.
    [75] Green,B.W., PhelPs,R.p., Alvararenga,H.R., The effete of manures and chemical fertilizers on the Production of Oreochromis niloticus in earthen Ponds [J]. Aquaculture,1989,76:37-42.
    [76] Briggs M.S.P.et al.A nutrient budget of some intensive marine shrimp culture ponds in Thailand [J].Aquaculture and Fisheries Managerring, 1994,25:789-811.
    [77] Bousfield, E. L., An updated phyletic classification andpalaeohistory of the Amphipoda. In Schram, F. R. (ed.), [J]. Crustacean Phylogeny. Crustacean Issues 1983(1): 257–277.
    [78] Birldund J. Biomass, growth and production of the amphipod Corophiurn insidiosum Crawford, and preliminary notes on Corophiurn volutator (Pallas). [J].Ophelia. 1977,16: 187-203.
    [79] Pielou, E.C., Ecological diversity. [M]. New York:John wiley .1975.
    [80] Zupo, V., Lumare, F., Bisignano, V. Feeding of Penaeus japonicus Bate (Decapoda: Penaeidae) in pond cultures: size descriptors and food selection. [J]. Aquaculture .1990, 84(2):125-143.
    [81] Reymond, H. & Lagardère, J.P. Feeding rhythms and food of Penaeus japonicus Bate (Crustacea, Penaeidae) in salt marsh ponds: role of halophilic entomofauna. [J]. Aquaculture 1990, 84: 125-143.
    [82] Sheader, M. Distribution and reproductive biology of Corophium insidiosum (Amphipoda) on the north-east coast of England. [J]. mar. biol. Ass. U. K. 1978, 58: 585-596.
    [83] Nair, K. K. C. & Anger, K. Life cycle of Corophium insidiosum (Crustacea, Amphipoda) in laboratory culture. [J]. Helgoland Marine Research. 1979, 32(3): 279–294.
    [84] Anger, K. Untersuchungen zum Lebenszyklus des Amphipoden Bathyporeia sarsi, Microdeutopus gryllotalpa und Corophium insidiosum in der Kieler Bucht..[J]. Mitteilungen ausdem Zoologischen Museum der Universita.1979, 1: 1–6.
    [85] Zimmerman, R., Gibson, R. & Harrington, J. Herbivory and detritivory among gammaridean amphipods from a Florida seagrass community. [J]. Marine Biology .1979, 54:41-47.
    [86] Pomeroy, W.M. & Levings, C.D. Association and Feeding Relationships Between Eogammarus confervicolus (Amphipoda, Gammaridae) and Benthic Algae on Sturgeon and Roberts Banks, Fraser River Estuary. [J]. Can. J. Fish. 1980, 37(1): 1–10.
    [87] Cruz-Rivera, E. & Hay, M.E. Can quantity replace quality? Food choice, compensatory feeding and fitness of marine mesograzers. [J]. Ecology 2000, 81: 201-219.
    [88] Dahl, E. Ecological range of Baltic and North Sea species. [J]. Oikos (Suppl.). 1973, 15:85-90.
    [89] Sheader, M. Distribution and reproductive biology of Corophiuminsidiosum (Amphipoda) on the north-east coast of England. [J]. mar. biol. Ass. U. K. 1978, 58: 585-596.
    [90] Cunha,M.R. Sorbe,J.C.& Moreira,M.H. The amphipod Corophium multisetosum in Ria de Aveiro.. [J]. Marine Biology,2000(137):637-650.
    [91] Theodoros Kevrekidis. Population dynamics, growth and reproduction of Corophium insidiosum (Crustacea: Amphipoda) at low salinities in Monolimni lagoon (Evros Delta, North Aegean Sea). [J]. Hydrobiologia,2004(522):117-132.
    [92] Bigongiari, N. Influence of Temperature on the Mortality and Sensitivity of Corophium orientale.[J].Bull Environ. Contam. Toxicol,2004(72):881–887.
    [93] Brabak, G., Bacterial biovolume and biomass estimations. [J]. Apl. Envirn. Mictrobiol., 1985,49(6):1488-1498.
    [94] Ja?d?ewski, K., Konopacka, A., and Grabowski, M. Recent drastic changes in the gammarid fauna (Crustacea,Amphipoda) of the Vistula River deltaic system in Poland caused by alien invaders. [J].Diversity and Distributions 2004(10):81-87.
    [95] Grabowski, M., Konopacka, A., Ja?d?ewski, K., et al. Invasions of alien gammarid species and retreat ofnatives in the Vistula Lagoon (Baltic Sea, Poland). [J].Helgoland Marine Research, 2006(60):90-97.
    [96] Pinkster, S., Scheepmaker, M., Platvoet, D., et al. Drastic changes in the amphipod fauna (Crustacea)of Dutch inland waters during the last 25 years. [J].Bijdragentot de Dierkunde, 1992(61):193-204
    [97] Zettler, M.L., Erstnachweis von Dikerogammarusvillosus (Sovinski, 1894) und Wiederfund von Gammarus varsoviensis Ja?d?ewski, 1975 in Mecklenburg-Vorpommern (Crustacea: Amphipoda). [J].Archiv der Freundeder Naturgeschichte in Mecklenburg, 1999(38):231-233.
    [98] Holsinger, J. R., Biodiversity of subterranean amphipodcrustaceans: global patterns and zoogeographic implications. [J].Journal of Natural History, 2003(27): 821–835.
    [99] Macdonald, K.S.& Duffy, J. E., Molecular and morphological evolution ofthe amphipod radiation of Lake Baikal. [J].Molecular Phylogenetics and Evolution, 2005(35): 323–343.
    [100] Vonk, R.& Schram, F. R., Ingolfiellidea (Crustacea, Malacostraca, Amphipoda): a phylogenetic and biogeographic analysis. [J].Contributions to Zoology , 2003(72): 39–72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700