用户名: 密码: 验证码:
南四湖区农田氮磷流失特征及面源污染评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南四湖是我国华北地区最大的淡水湖泊,也是南水北调东线工程的必经之地,其水质直接影响东线调水工程的成败。南四湖属富营养湖类型,富营养化主要是氮、磷、悬浮物和其他有机物大量入湖引发的。随着南水北调工程的进展,关停了一大批污染企业,点源污染治理取得显著成效。近年来,由于沿南四湖区规模化禽畜养殖业的迅速发展,畜禽粪便的产生量迅猛增加,农田施用成为消纳畜禽粪便的主要方式,导致农业面源污染问题。有效地控制有机肥料的氮磷流失,对于控制农田面源污染、保障南水北调东线工程水质安全具有重要意义。本文选取南四湖沿岸的典型区域,采用田间径流试验、小流域监测、模拟降雨试验及化学分析相结合的方法,研究了小麦-玉米、玉米-大蒜两种种植模式下有机肥料的肥效及盈亏,探讨了不同有机肥种类、施肥方式对氮磷流失的影响,明确了作物对有机肥中的养分利用率与农田氮磷流失的主要特征;并通过对典型闭合小流域的水质监测,对面源污染进行了初步评价;主要结论如下:
     1.有机肥的当季利用率较低,随着施肥量的增加而降低,并受栽培季节的影响。小麦-玉米种植模式下小麦季鸭粪处理的N、P表观利用率平均分别为14.10%、6.03%,牛粪处理的N、P表观利用率平均分别为9.25%、4.97%;大蒜-玉米模式下大蒜季腐熟鸡粪处理的N、P表观利用率平均分别为9.17%、4.03%。小麦-玉米模式下玉米季鸭粪处理的N、P表观利用率平均分别为27.29%、15.99%,牛粪处理的N、P农学利用率平均分别为17.58%、13.20%,大蒜-玉米模式下玉米季腐熟鸡粪处理的N、P表观利用率平均分别为26.40%、13.92%。
     2.农田消纳有机肥增加土壤中养分的积累,有机肥中N、P在土壤中的表观积累量及其占施肥量的比例随有机肥用量的增加而增加,N、P表观积累量占施肥量的比例受有机肥种类、施用方法的影响。在小麦-玉米种植模式下,牛粪处理N、P积累量占施肥量的比例平均分别为39.06%、63.59%,鸭粪处理N、P积累量占施肥量的比例平均分别为26.37%、60.49%,在大蒜-玉米种植模式下腐熟鸡粪土壤N、P表观积累量占施肥量比例平均分别为33.52%、60.70%;牛粪沟施N、P表观积累量占施肥量的比例大于表施,有机肥沟施可增加养分在土壤的积累。
     3.农田消纳有机肥造成部分养分的损失,有机肥中N、P的表观损失量及其占施肥量的比例随有机肥用量的增加而增加,N、P表观积累量占施肥量的比例受有机肥种类、施用方法的影响。在小麦-玉米种植模式下牛粪N、P表观损失量占施肥量的比例平均分别为15.35%、13.84%,鸭粪N、P表观损失量占施肥量的比例平均分别为19.29%、18.07%,在大蒜-玉米种植模式下腐熟鸡粪N、P表观损失量占施肥量的比例平均分别为16.32%、14.96%;牛粪沟施土壤N、P表观损失量占施肥量的比例要小于表施,有机肥沟施可减少养分的损失。
     4.施肥量显著影响地表径流液和侵蚀泥沙中总氮浓度,施肥量增加,浓度增高;表层追施有机肥后短期内降雨会明显增加地表径流液和侵蚀泥沙中总氮浓度,但对渗漏液总氮浓度影响不大。施肥量明显影响地表径流液和侵蚀泥沙中总磷浓度,施肥量增加,浓度升高;表层追施有机肥后短期内降雨会明显增加地表径流液和侵蚀泥沙中总磷浓度,但对渗漏液总磷浓度影响不大。一定降雨条件下,追施相同量的有机肥,条施处理比表施处理径流总氮、侵蚀泥沙总氮、径流总磷、侵蚀泥沙总磷降低,但渗漏液总氮升高、渗漏液总磷浓度差异不大。相同施肥方式等量施肥的条件下,施用牛粪处理的地表径流液、渗漏液和侵蚀泥沙中TN、TP浓度均比施用鸭粪处理的偏低,但差异并不显著。
     5.径流总氮流失是总氮流失的主要途径,平均径流总氮流失占总氮流失量的50.83%,其次为渗漏氮流失,占35.37%,土壤侵蚀造成的总氮流失量相对较低,占13.8%。侵蚀泥沙磷流失是总磷流失的主要途径,平均侵蚀泥沙磷流失占总磷流失量的49.90%,其次为径流磷流失,占33.35%,渗漏造成的总磷流失量相对较低,占16.75%。
     6.在不同降雨强度和相同施肥水平条件下,不同施用方式中混施能够显著降低不同氮素形态的流失浓度,且降雨强度越大,其降低幅度越大,总氮、硝态氮、铵态氮、颗粒态氮和水溶性有机氮的降幅均为120mm/h降雨强度最大,分别为31.66%、24.94%、22.43%、24.49%、24.17%。在不同降雨强度和相同施用方式条件下,随施肥水平的提高,地表径流汇中不同形态氮素流失浓度均增大,其增幅均随降雨强度的增强而增大,均在120mm/h降雨强度时最大,分别为47.21%、61.93%、35.17%、56.93%、33.01%。在不同降雨强度之间,地表径流各形态氮素所占总氮百分比变异不显著。在相同施肥水平条件下,混施施用方式不同形态氮素占总氮流失百分比的总变化量均是在低施肥水平时低于表施施用方式,在高施肥水平时高于表施施用方式,最高变化量分别为-3.13%和2.58%,其中在不同降雨强度条件下,均增加铵态氮占总氮流失浓度百分比变化量,最高达4.29%;在相同施用方式,地表径流不同形态氮素占总氮百分比的变化量均随施肥水平的提高而变化各异,其中在不同降雨强度条件下均增加硝态氮占总氮百分比变化量,最高达10.00%。
     7.在相同施肥水平条件下,混施施用方式比表施施用方式能够降低总磷、水溶性无机磷、水溶性有机磷、水溶性总磷和颗粒态磷流失浓度平均分别降低35.79%、27.01%、33.95%、27.96%、39.08%;在相同施用方式条件下,施肥水平提高一倍时,总磷、水溶性无机磷、水溶性有机磷、水溶性总磷和颗粒态磷流失浓度分别平均提高了106.00%、47.87%、57.15%、48.82%、150.55%。相同施肥水平条件下,混施施用方式不同形态磷素占总磷百分比的总变化量基本上高于表施施用方式,平均总变化量增加25.91%;在不同施肥水平条件下,混施施用方式与表施施用方式各种形态磷素占总磷百分比的变化量在不同降雨强度条件下各不相同,但均有一定程度的变化。在相同施用方式条件下,除了颗粒态磷外,各形态磷素占总磷百分比变化量均随着施肥水平的升高而降低,各形态磷的总变化量平均为降低56.87%,其中颗粒态磷占总磷百分比变化量随施肥水平的提高而增加,平均增加21.06%。
     8.水质指标与下垫面要素相关性较大。土地利用结构对流域面源污染方面,不同土地利用类型的影响强度有所不同。其中,农村居民点用地对水质的影响最大,耕地次之,林地和湖泊自然水面影响最小。南四湖地区闭合小流域氮磷输出主要源自种植业与居民生活两个方面,流失总氮、总磷量分别为1494.26kg、55.63kg,降雨产生的径流水质达到中—富营养或富营养化水平。
Nansi Lake is the largest freshwater lake in North China, is also the necessary path of theeastern route of South-to-North Water Transfer project, and its water quality directly effectsthe success or failure of East Route Water Diversion project. Nansi Lake is a eutrophic lake,which is caused mainly by the inflowing water containing more nitrogen, phosphorus,suspended solids and other organic matter. Along with the progress of the South-to-NorthWater Diversion Project, remarkable achievements of controlling point source pollution arebeing made by shutting down a number of polluting enterprises. In recent years, with therapid development of livestock breeding and the increasing production of livestock andpoultry manure in Nansi Lake area, the livestock manure application in farmland is the maindisposal way and result in serious agricultural non-point source pollution. The effectivecontrolling of the nitrogen and phosphorus loss from organic fertilizer can control thepollution of agricultural non-point source, which is of great significance to protect waterquality and safety of South-to-North Water Diversion project. The research was conducted bythe combining methods including field runoff experiment, small watershed monitoring,simulated rainfall experiment and chemical analysis in the typical area of Nansi Lake coast.The effectives and the profit and loss of the organic fertilizer under the wheat-corn, corn-garlic two planting patterns and the effects of different types and application patterns on theloss of nitrogen and phosphorus were discussed in the paper to probe into the nutrientutilization efficient of organic fertilizer and the characteristics of farmland nitrogen andphosphorus loss and to value preliminarily the non-point source pollution by water qualitymonitoring of the small typically closed watersheds. The main conclusions are as follows:
     1. The in-season utilization efficiency of organic fertilizer was relatively lower, anddecreased with the increment in its dosage and affected by cultivation seasons. Morespecifically, under wheat-maize rotation, the apparent recovery efficiency of applied N and Pwere14.10%and6.03%in average after adding duck manure within wheat season,respectively, and they were9.25%and4.97%after incorporating cow dung. Undergarlic-maize rotation, they were9.17%and4.03%after treated by composted chicken manurewithin garlic season. Under wheat-maize rotation, the apparent recovery efficiency of appliedN and P were27.29%and15.99%, respectively, after applying duck manure within maizeseason, and they were17.58%and13.20%after the incorporation of cow manure. Whileunder garlic-maize rotation, they were26.40%and13.92%after adding composted chickenmanure within maize season.
     2. The digestion and sequestration of organic fertilizer by farmlands contributed to soil nutrient accumulation and the proportions of soil apparent accumulation of N and P fromorganic fertilizer in the applied dosage enhanced with increased application dosages, affectedby the types of organic fertilizer and application patterns. Specifically, under wheat-maizerotation, the proportions of soil apparent N and P accumulation in application rate were39.06%and63.59%, respectively, after adding cow manure, and were26.37%and60.49%treated by duck manure. Under garlic-maize rotation, they were33.52%and60.70%mixedwith composted chicken manure. Additionally, top application had higher proportions of soilapparent N and P accumulation in application rate than furrow application, indicating thecontribution of furrow application of organic fertilizers to the nutrient accumulation in soils.
     3. The digestion and sequestration of organic fertilizer by farmlands could also result innutrient loss, and the proportions of soil apparent loss of N and P from organic fertilizer in theapplied dosage increased with the increment in application dosages, influenced by the types oforganic fertilizer and application patterns. In details, under wheat-maize rotation, theproportions of soil apparent N and P loss in application rate were15.35%and13.84%,respectively, after adding cow manure, and were19.29%and18.07%treated by duck manure.Under garlic-maize rotation, they were16.32%and14.96%mixed with composted chickenmanure. Furrow application of cow dung had lower apparent loss of N and P than topapplication, indicating its improvement in nutrient loss.
     4. Total N (TN) concentration in surface runoff liquid and eroded sediment was affectedby the amount of fertiliser applied significantly, promoted with increased fertilisation dosage.More specifically, rainfall led to big increment in the TN of both surface runoff liquid anderoded sediment after topdressing of organic fertiliser in the short term, but exerted slightinfluence on TN in leachate. Also, total P (TP) had a similar change in surface runoff liquid,eroded sediment and leachate. Compared with topdressing, banding treatment had lower TNand TP in surface runoff liquid and eroded sediment, higher TN in leachate, similar TP afterapplying same amount of fertiliser under same rainfall condition. Additionally, treatment forcow manure had lower TN and TP in surface runoff liquid, leachate and eroded sediment thanthat for duck manure, but their differences were not significant.
     5. There were three pathways of TN loss, including surface runoff liquid (50.83%) whichwas dominated, leachate (35.37%) and erosion (13.8%). Sediment erosion was the major wayof TP loss, occupying49.90%, followed by surface runoff and leachate which were33.35%and16.75%, respectively.
     6. Among different fertilisation patterns, mixed application could lower N loss in anyforms under different rainfall intensities after adding same amount of fertiliser. And the decreases became greater with increased rainfall intensity. Specifically, TN, nitrate N,ammonium N, particulate N and water soluble organic N all reduced by120mm/h. Underhighest rainfall intensity, there were31.66%、24.94%、22.43%、24.49%、24.17%decrease,respectively. Conversely, the N loss of different forms in surface runoff all increased with theincrement in fertiliser levels under different rainfall intensities. The increases could reach to47.21%、61.93%、35.17%、56.93%、33.01%under highest rainfall intensity. There were notsignificant differences in amount of N of various forms among different rainfall intensities.Mixed application had smaller total variation of different N forms in the proportion of TNloss compared with topdressing under low fertiliser level, while had larger variation underhigher fertiliser level. The variation could reach-3.13%and2.58%, respectively. Thereinto,the variation of ammonium N in the proportion of TN all increased to a maximum of4.29%under different rainfall intensities. Under same fertiliser patterns, the variation of different Nforms in the proportion of TN loss varied with increased fertiliser level in which the variationof nitrate N in the proportion of TN all increased to a maximum of10.00%.
     7.Under same fertiliser level, mixed application could lower TP, water soluble inorganicP, water soluble organic P, water soluble TP and particulate P by35.79%、27.01%、33.95%、27.96%、39.08%, respectively, compared with topdressing. But they could be promoted by106.6%、47.87%、57.15%、48.82%、150.55%when the fertiliser level was doubled. Generally,mixed application had lager variation of different P forms in the proportion of TP thantopdressing under low fertiliser level, as much as25.91%larger in average. Under samefertilisation pattern, the variations of different P forms in the proportion of TP decreased, to56.87%in average, as fertiliser levels increased with the exception of particulate P whichincreased to21.06%in average.
     8. There were large correlation between water quality index and underlying surfaceelements. Different land use types exerted various influence on watershed non-point sourcepollution. More specifically, rural residential land had biggest influence, followed byfarmland, and forest land, Lake Surface had minor influence. The exportation of N and P fromclosed watershed in Nansihu region majorly resulted from plantation and domestic use, andtheir amount were1494.26kg and55.63kg, respectively. The runoff quality generated byrainfall reached mid-eutrophication level or eutrophication level.
引文
1.卞有生,金冬霞.规模化畜禽养殖场污染防治技术研究.中国工程科学,2004,6(3):53-57.
    2.曹林奎,朱江,陈国军,陆贻通.黄浦江上游蔬菜田氮素流失规律测坑研究.2005,27(1):34-38.
    3.陈斌,青学新,代运全.城市郊区畜牧场的污染与被污染.家畜生态,1997,18(2):31-34.
    4.陈国军,曹林奎,陆贻通,张大弟.稻田氮素流失规律测坑研究.上海交通大学学报(农业科学版),2003,21(4):321-324.
    5.陈洪深.养猪业粪尿处理技术及研究进展.湖北畜牡兽医,1997(l):25-27.
    6.陈利顶,傅伯杰,张淑荣,丘君,杨福林.于桥水库流域地表水中水溶性氮季节变化特征.中国环境科学,2(X)3,23(2):210-214.
    7.陈西平.黄时达.涪陵地区农田径流污染负荷定量化研究.环境科学,1991,12(3):75-79.
    8.陈欣.常志州.袁生,叶小梅,费辉盈,朱红.畜禽粪便中人畜共患病原菌对蔬菜污染的研究.江苏农业科学,2007(5):238-241.
    9.程全国.面源污染物对环境的影响及趋势分析.辽宁城乡环境科技,2000,20(5):4-6.
    10.陈英旭.农业环境保护[M].北京:化学工业出版社,2007
    11.董克虞.畜禽粪便对环境的污染及资源化途径.农业环境保护,1998,17(6):281-283.
    12.EJ.史蒂文森等著,阂九康等译.农业土壤中氮.北京:科学出版社,1989:135-147.
    13.付时丰.沈阳市农业污染现状的初步调查.环境保护科学,2002,28(ll):31-32
    14.傅涛,倪九派,魏朝富,谢德体.不同雨强和坡度条件下紫色土养分流失规律研究.植物营养与肥料学报,2003,9(1):71-74.
    15.高超,朱继业,窦贻俭,张桃林.基于非点源污染控制的景观格局优化方法与原则.生态学报,2(X)4,24(l):109-116.
    16.高超,朱继业,朱建国.不同土地利用方式下的地表径流磷输出及其季节性分布特征.环境科学学报,2005,25(11):1543-1549.
    17.辜来章,郝淑英.农田径流污染特征及模型化研究.中国农村水利水电,19%(09):32-35.
    18.贺缠生,傅伯杰,陈利顶.非点源污染的管理及控制.环境科学,1998,%(19):87-91.
    19.胡雪峰,许世远,陈振楼,高效江.上海市郊中小河流水污染现状及对策.农业环境保护,2002,21(3):204-207,231.
    20.黄满湘,章申,唐以剑,陈喜保.模拟降雨条件下农田径流中氮的流失过程.土壤与环境,2001,10(l):6-10.
    21.黄沈发,陆贻通,沈根祥,唐浩.上海郊区旱作农田氮素流失研究.农村生态环境,2005,21(2):50-53.
    22.黄炎坤,郭良星,王宝周.河南省养殖业可持续发展探讨.河南农业科学,2001(9):29-30.
    23.黄宗楚.上海旱地农田氮磷流失过程及环境效应研究=硕士学位论文].上海:华东师范大学,2005.
    24.冀宏杰,张维理,张怀志.人工湿地对保护水环境的影响.农业资源与环境科学,2008,24(10):512-514.
    25.焦荔.USLE模型及营养物流失方程在西湖非点源污染调查中的应用.环境污染与防治,1991,13(6):5-8.
    26.井艳文.养鸡场粪污资源化利用.北京水利,1998,(5):22-26.
    27.金相灿.中国湖泊富营养化.北京:中国环境科学出版社,1992.
    28.康玲玲,朱小勇,王云璋.不同雨强条件下黄土性土壤养分流失规律研究.土壤学报,1999,36(4):536-543.
    29.雷秋良.上海水网地区平方公里尺度卜农田氮磷流失特征研究=博十学位论文〕.北京;中国农业科学研究院,2007.
    30.李恒鹏,金洋,李燕.模拟降雨条件下农田地表径流与壤中流氮素流失比较.水土保持学报,2008,22(2):6-9,46.
    31.李怀恩.流域非点源污染模型研究进展与发展趋势.水资源保护,19%(4):14-18.
    32.李佩武.降雨径流过程中氮磷输出趋势分析.天津农业科学,1994(l):7-10.
    33.李荣刚,夏源陵,吴安之,钱一声.太湖地区水稻一节水灌溉与氮素淋失.河海大学学报,2001,29(2):21-25.
    34.李世清,李生秀.平干旱地区农田生态系统中的硝态氮的淋失.应用生态学报2000,]](2):240-242.
    35.李卫止,王改萍,张焕朝,曹志洪,艾畅.两种水稻土磷素渗漏流失及其与Olsen磷的关系.南京农业大学学报(自然科学版),2007,31(3):52-56.
    36.李裕元,邵明安.模拟降雨条件卜施肥方法对坡面磷素流失的影响.应用生态学报,2002,13(11):1421-1424.
    37.李志博,王起超,陈静.农业生态系统的氮素循环研究进展,土壤与环境2002,11(4):417-421.
    38.连纲,王德建.太湖地区麦季氮素淋失特征.土壤通报,2004,35(2):163-165.
    39.梁新强,田光明,李华,陈英旭,朱松.天然降雨条件下水稻田氮磷径流流失特征研究.水十保持学报,2005,19(l):59一63.
    40.凌云霄.影响水稻土磷素扩散的某些因素.土壤学报,1981,18(2):194-198.
    41.刘宏斌,李志宏,张云贵,张维理,林葆.北京平原农区地下水硝态氮污染状况及其影响因素研究.十壤学报,2006,43(3):405-413.
    42.刘经荣,张德远,周卫,沈润平,吴建富.不同肥料结构对稻田水流中养分平衡的影响.江西农业人学学报,1994,16(4):328-332.
    43.陆敏.水一早轮作农田系统氮素循环与水环境效应.华东示范大学,博士论文,2007
    44.罗春燕.我国东南水网平原地区不同土地利用方式氮磷流失特征.博士学位论文.北京:中国农业科学院,2008.
    45.罗良国,闻大中,沈善敏.北方稻田生态系统养分平衡研究.应用生态学报,1999,10(3):301-304.华中农业大学2009届博士学位论文
    46.吕家珑,Fortlme S,BrookesPC.土壤磷淋溶状况及其olsen磷“突变点”研究.农业环境科学学报,2003,22(2):142-146.
    47.吕家珑,李祖荫.石灰性土壤中固磷基质的研讨.土壤通报,1991,22(5):204-206.
    48.吕家珑,刘文革,王旭东,李组荫.长期施肥对土壤无机磷形态组成的影响.陕西农业大学学报,1995,23(3):51-54.
    49.吕家珑,张一平,张君常,苏仕平.土壤磷运移研究.土壤学报,1999,36(l):75-82.
    50.吕耀.苏南太湖地区水稻土中硝态氮淋溶的定位研究.土壤通报,1999,30(3):113-114.
    51.马馄,陈欣,王兆赛.模拟暴雨下红壤坡面产流产沙及养分流失特征研究.宁夏大学学报(农业科学版),2004,(01):l-4.
    52.马现,王兆粤,陈欣,尤力.不同雨强条件下红壤坡地养分流失特征研究.水土保持学报,2002,16(3):16-19.
    53.李裕元,邵明安.模拟降雨条件下施肥方法对坡面磷素流失的影响.应用生态学报,2002(11):1421-1424.
    54.马立珊,汪祖强,张水铭,马杏法,张桂英.苏南太湖水系农业面源污染及其控制对策研究.环境科学学报,1997,17(l):39-47.
    55.马立珊.苏南太湖水系农业非点源氮污染及其控制对策研究.应用生态报,1992,3(4):346-354.
    56.马强,刘付玖,周华林.畜禽粪尿污染与营养调控措施当议.河南农业科学,2003(4):40-42.
    57.邱卫国,唐浩,王超.水稻田面水氮素动态径流流失特性及控制技术研究.农业环境科学学报,2004,23(4):740-744.
    58.单保庆,尹澄清,于静.降雨一径流过程土壤表层磷迁移过程的模拟研究.环境科学学报,2001,21(l):7-12.
    59.单艳红,杨林章,颜廷梅,王建国.水田土壤溶液磷氮的动态变化及潜在的环境影响.生态学报,2005,25(l):115-121.
    60.孙传范,曹卫星,戴廷波.土壤作物系统中氮肥利用率的研究进展[J].土壤,2001,33(2):64-69.
    61.王道涵,梁成华.农业磷素流失途径及控制方法研究进展.土壤与环境,加02,11(2):183-188.
    62.王德建,林静慧,夏立忠.太湖地区稻麦轮作农田氮素淋洗特点.中国生态农业学报,2001,9(l):16-18.
    63.王继增,万洪富,吴志峰,卓慕宁.小流域非点源污染负荷流失特征监测研究.水土保持通报,2(X)3,16(l):16-19.
    64.韦鹤平环境系统工程.上海:同济大学出版社,1993:183
    65.王家玉.王胜佳,陈义.稻田土壤中氦素淋失的研究.土壤学报,1996,33(l):28-35.
    66.王少丽,许迪,Prasher S O,Ali Madani.施用有机氮肥条件下地下排水中硝态氮流失的模拟研究.水利学报,2006,37(l):89-96.
    67.王少平,高效江,胡雪峰,俞立中,许世远.上海西郊麦期氮素淋溶定位研究.环境污染与防治,2002,24(2):68-70.
    68.王涛.滇池流域施用有机肥农田氮磷流失模拟研究[硕十学位论文].北京:中国农业科学院,2007.
    69.武淑霞.我国农村畜禽养殖业氮磷排放变化特征及其对农业面源污染的影响.中国农业科学院,2005.
    70.乌卜伦,李佩武.降雨一产流过程与氮磷流失特征研究.环境科学学报,1996,16(l):111-116.
    71.肖强,张维理,王秋兵,武淑霞.太湖流域麦田十壤氮素流失过程的模拟研究.植物营养与肥料学报,2005,11(6):731-736.
    72.肖强.太湖平原地区模拟降雨条件下麦田径流氮磷流失研究[硕十学位论文].沈阳:沈阳农业大,学,2004.
    73.谢蓉.上海市畜牧业污染控制与黄浦江上游水源保护.农村生态环境,1999,15(l):4141-44.
    74.谢学检,陈品中,宋玉芝.磷肥施用量对稻麦轮作土壤中麦季磷素及氮素径流损失的影响.农业环境科学学报,2007,26(6):2156-2161.
    75.徐谦.我国化肥和农药非点源污染状况综述.农村生态环境,1996,12(2):39-43.
    76.杨金玲,张甘霖,张华.丘陵地区流域土地利用对氮素径流输出的影响,环境科学,2003,24(1):21-23
    77.杨丽霞,杨桂山,苑韶峰.施磷对太湖流域典型蔬菜地磷素流失的影响.中国环境科学2007,27(4):518-523.
    78.于兴修,杨桂山,梁涛.西曹溪流域土地利用对氮素径流流失过程的影响.农业环境保护,2002,21(5):424并27.
    79.张福珠,熊先哲,戴同顺.应用.SN究土壤一植物系统中氦素淋失动态.环境科学,1984,5(l):21-24.
    80.张国梁,章中.农田氮素淋失研究进展.土壤,1998,6:291-297.
    81.张红爱.太湖地区典型水稻土磷素的径流流失及其机理[硕十学位论文],南京:南京农业人学,2003.
    82.张焕朝,张红爱,曹志洪.太湖地区水稻土磷素径流流失及其Olsen-P的“突变点”.南京林业大学学报(白然科学版),2004,28(5):6-10.
    83.张继宗.太湖平原地区稻麦轮作方式下农田径流氮素流失研究[硕十学位论文].沈阳:沈阳农业大学,2003.
    84.张继宗.太湖河网地区不同类型农田氮磷流失特征[博十学位论文].北京:中国农业科学院,2006.
    85.张认连.模拟降雨研究水网地区农田氮磷的流失[硕十学位论文].北京:中国农业科学院,2004.
    86.张美良,吴建富,郭成志,刘经荣.应用N15对稻田生态系中氮素淋失和去向的研究.江西农业大学学报,1998,20(2):153-157.华中农业大学2009届博士学位论文
    87.张水铭,马杏法,汪祖强.农田排水中磷素对苏南太湖水系的污染.环境科学,1993,14(6):24-30.
    88.张维理,徐爱国,冀宏杰,KolbeH.中国农业面源污染形式估计及控制对策Ⅱ.欧美国家农业面源污染状况及控制.中国农业科学,2004,37(7),1018-1025.
    89.张维理,田哲旭,张宁.我国北方农用氮肥造成地下水硝酸盐污染的调查.植物营养与肥料学报,1995,l(2):80-87.
    90.张维理,武淑霞,冀宏杰,KolbeH.中国农业面源污染形式估计及控制对策Ⅰ.21世纪初期中国农业面源污染的形式估计.中国农业科学,2004,37(7):1008-1017.
    91.张兴昌,邵明安.坡地土壤氮素与降雨!径流的相互作用机理及模型.地理科学进展,2000,19(2):128-135.
    92.张学军,孙权,陈晓群,程淑华,张艳,王黎明.不同类型菜田和农田土壤磷素状况研究.土壤,2005,37(6):549-654.
    93.张志剑,王光火,王柯,朱荫媚.模拟水田的土壤磷素溶解特征及其流失机制.土壤学报,200l,38(l):139-143.
    94.张志剑,王坷,朱荫媚,郭敏红,周顺根.浙北水稻主产区田间土一水磷素流失潜能.环境科学,2001,22(l):98-101.
    95.张志剑,王光火.嘉兴地区水稻土磷素状况与环境效应评估,科技通报,1999,15(5):377-381.
    96.张福锁,王激清,张卫峰,等.中国主要粮食作物肥料利用率现状与提高途径[J].土壤学报,2008,45(5):915-924.
    97.赵建宁,沈其荣,冉炜.太湖地区侧渗水稻土连续施磷处理下稻田磷的径流损失.农村生态环境,2005,21(3):29-33.
    98.朱铁群.我国水环境农业非点源污染防治研究简述.农村生态环境,2000,16(3):55-57.
    99.朱新开,盛海君,夏小燕,王亚飞.稻麦轮作田氮素径流流失特征初步研究.生态与农村环境学报,200)6,22(l):38-41,66.
    100.朱兆良,孙波.中国农业面源污染控制对策研究.污染减排,2008,4(B):4-6.
    101.朱兆良.关于土壤氮素研究中的几个问题.迈向21世纪的土壤科学.南京中国土壤学会编,1999:58-61.
    102.朱兆良.我国氮肥的施用现状!存在问题和对策.见:李庆边,朱兆良,于天仁,编.中国农业持续发展中的肥料问题.南京:江苏科学技术出版社,1998.
    103.朱兆良.中国土壤氮素.南京:江苏科学技术出版社,1992.37-59.
    104.朱立安,王继增,胡耀国,程炯,魏秀国,张会化.畜禽养殖非点源污染及其生态控制.水土保持通报,2005,25(2):404-443.
    105. Adeola, Nutrient rnanagenent Proeedures to enhance envlronnental conditions: an introduction, J.imSci.1999,77:427-429.
    106. Andrew N, Sharpley. Rainfall frequeney and nitrogen and phosphorus runoff from soil ended withpoultry little. Joumal of Enviromental Quality,1997,26(4):1127-1132.
    107. Andraski T W, Bundy L G. Relationships between phosphorus levels in soil and in runoff from cornproduetion systems. Environ. Qual,2003,32:310-316.
    108. Anstin N R, Prendergast J B, Collins M D.PhosPhorus losses in irrigation runoff from fertilizedpasture.J.Envlron.Qqsl,1996,25:63-68
    109. Asagi, N., Ueno and A. Ebid. Effects of sewage sludge application on rice growth, soil properties andN fate in low fertile soil. Int. J. Soil Sci.,2007,2:171-181.
    110.Adel Ghoneim, H. Ueno, A. Ebid et al. Analysis of nitrogen dynamics and fertilizer use efficiency inrice using the nitrogen-15isotope dilution method following the application of biogas slurry orChemical fertilizer. International Journal of Soil Science,2008,3(1):11-19.
    111. Boers P C M.Nutnent emissions from agneulture in the Netherlands, causes and remedies.WaterSel.Technol,1996,33:183-189.
    112.Barberis E,Ajmone M F,Scalenghe R,Lammers A,Schwermann U,Edwards,Maguire,W11sonR.EuroPean soils overfertilized with phosphorus: Part1. Basie Properties. Fertilizer Researeh,1995,45:199-207.
    113.BehrendtH,GelbreehtJ,HuberP,LeyR,Uebe,FaitM.Geogen bedingte Grundbelastung der Fliebgewa sserSpree und Schwarze Elster und ihrer Einzugsgebiete,In:LandesumweltamtBrandenburg(Ed.),Studienund Tagungsberiehte,1999,23,PP.1-32.ISSN0948-0838.
    114. Behrendt H, HuberP, LeyM, OPitzD, SehmollO, SeholzG, UebeR. Nahrstoffbilanzierung derFlussgebiete Deutsehlands.1999, UBA-Texte75/99,l-288
    115. Beauchemin S R R, Simard D,Cluis.Forms and CoCentration of phosphorus in drainage watersoftwenty-seven tile-drained soils.Environ.Qual,1998,27:721-728.
    116.Boer,P.C.M,Nutriem Emissions from Agriculture in the Netherlands:Callses and kmedles.Wa terSci.Technol.(G.B.),1996,(33)183:22-25
    117. Butler Jennifer S, CoaleFrankJ.PhosPhorus leaching in manure-amended coastal plain soils. Journal ofEnvironmental Quality,2005,34(l):370一381.
    118. Budhendra B, Jon H, Bernie E,et al. Assessing watershed-scale, long-term hydrologic impacts ofland-use change using a GIS-NPS model[J]. Environmental Management,2003,26(6):643-658.
    119. Carpenter S R,CaracoNF,CorrellDL,Howarth R W.Non point pollution of surfaee waterswithphosphorus and nitrogen.Eeologieal APPlieation,1998,8:559-568.
    120. Caruso B S.Integrated assessment of phosphorus in the lake hayes catchlnent,SouthIsland,NewZealand.Journal of sHydrology,2000,229:168-189.
    121.CattJA,Howse K R,FarinaR,BroekieD,ToddBJ,Chambers.PhosPhorus losses from arableLand inEngland.soil Use Manage1998,14:168-174.
    122. Choudhary M,Lal R,Dick W.Long-term tillage effects on runoff and soil erosion underSimulatedrainoff for a central Ohio Soil.Soil&Tillage Research,1997,42:175-184.
    123. ChouT Y, Xie Z D, Chen M H. The application of quantitative assessment of land use changes impacton water conservation for eservoir watershed [J]. Hydrology Days,2003.45-55.
    124.Cox F R,Hendrieks S E.soil test phosphorus and clay content effeets on runoff water quality.J.Environ.Qual,2000,29:1582-1586.
    125.Dag o,Hessen.氮流失对淡水和海洋受体富营养化的重要意义.AMBlo-人类环境杂志.1997,26(5):306-313.
    126.Daniel T C,Sharpley D R,EdwardsR,WedePohl,Lemunyon J L.Minizing surface watereutroPhicationfrom agneulture by PhosPhorus management.5011Water Consery,1994,49:30-35.
    127.Daniel E Line et al. Non-Point source water Environment Research,2001Vol.70, No.4:895-912.
    128.DennisL,Gorwin.Non-PointPollution modeling based on GIS.soil and Water Conservation,
    1998.1:75-88>16华中农业大学2009届博士学位论文.
    129. De Smet J, Hofman, Vanderdeelen J,Van Meirverme M,Baert L.Phosphate enrichment in the Sandyloam soils of West-Flanders,Beigium.Fertilzer Researeh,1995,45:209-215.
    130. Dils R M, Heathwaite A L.The eontroversial role of tile drainage in Phosphorus exportfromagrieultoralland.Water Sei.Teelmol,1999,39:55-61.
    131.Djodjie F,Bergstrom L,Grant C.Phosphorus management in balaneed agrieultural systems.soil Use andManagement,2005,21:94-101.
    132.DObermann A,Cassrnan K G,Sta.CruzPC,Advienio MA.Fertilizer in Puts,nutrient balanee, And soilnutrient-suPPlying powering in tensive,irrigated rice systems.111.PhoSPhorus.NutrientCyclinginAgroeeosystems,46:121-125.
    133. Edwards D R, Daniel T C.Quality impacts of swine manure app1ied to feseue plots.Transactions Ofthe American Soeiety of Agheulnirall993a,36:81-86.
    134. Edwards D R,Daniel T C.Runoff quality impacts of swine manure applied to feseue plots.Transactionsof the Ameriean Soeiety of AgrieultUral l993b,36:81-86.
    135. Envlronrnent Agency,1997.Water Pollution Ineidents in England and Wales1996.HMSO, Londoln.
    136. Foy R H, Withers P J A.The contribution of agheulttiral phosphorus to eutrophication. Proeeedings offertilizer society,No365,1995.Aleher J R,Marks M J.Control of nutrient losses to water fromagheulture in Europe.Proeeedings of Fertiliser Soeiety No405,1997.
    137.Fraser A l,Harrod T R,Haygarth P M.The effee of rainfall intensity on soil erosion and Partieulatephosphorus transfer from arable soils.Water Science and Techoology,1999,39(12):41-5.
    138. Gaynor J D, Findiay W I.soil and phosphorus loss from conservation and eonventional tillage in cornproduetion.Envlron Qual,1995,24:734-741.
    139.Grigg B C,Southwick L M,Fouss J L,Kornecki T S.Climate impact on nitrate10ss in drainage Watersfrom a southern alluvial soil transaetions of the ASAE,2004,47(2):445-451.
    140. Haygarth P M, Jarvis S C.Trallsfer of phosphorus from agneultural soils.Advanees in Agronomy1999(66):195-249.
    141. Haygrath P M, Sharpley A N.Tennmology for Phosphorus transfer.Environ Qual,2000,29:10-15.
    142. Haygarth P M, Condron L M, Heathwaite A L.The Phosphorus transfer continuum: Linking Source toimpact withan interdiseiPlinary and mult-sealed approach.Seienee of the Total Envlronment,2005,344:5-14.
    143.Haygarth P M,Heathwaite A L,Jarvis S C,Harred T R.Hydrological factor sfor phosPhorus Transferfrom agrieutlure soils.Advanees in Agronom,2000,69:153-178.
    144. Heathwaite A L, Giffiths P, Parkinson R J Nitrogen and phosphorus in runoff from grassland withbuffer strips following applieation of fertilizers and manures.soil Use and Management.1998,14:142-148.
    145.Heekrath G Brookes P C,Poulton P R,Goulding K WT.PhosPhorus leaehing from containing Differentphosphorus eoneentrations in the Broadbalk exPeriment.Environ Qual,1995,24:904-910.
    146.Hedley,M J,Stewart J W,Chauhan B S.Changes in inorg anle and organie soil phosphorus Fracetionsindueed by eultivation praetices and by laboratory incubation.soil Seience Soeiety of AmericaJournal,1982,46:970-976.
    147. Hesheth N, Brookes P C.DeveloPment of indicator for risk of PhosPhorus leaching.J.Environ. Qua1.2000,29(l):105-110.
    148. Hubbard R K., Thomas D L., Leonard R A., Butler J L. Surface run-off.and shallow groundwaterquality as affected by centre pivot applied dairy cattle wastes. Transactions ASAE.1987,30(2),430-437.
    149.Graham Merrington,Linton Winder, Robert Parkinson,et al.Agricultural pollution (EnvironmentalProblems and Practical Solutions)[M]. ISBN0-415-27340-4,2002.
    150. Houtin J A, Karam A, Couillard D, and Ceseas M P.Use of a fraetionatlon procedure to assess thePotential for P movement in a soil profile after14years of liquid pig manure fertilization. EeosystEnviron,2000,78:77-84.
    151.Hossaln M F,White S K,Elahi S F,Sultana N,Choudhury.The effieiency of nitrogen fertilizer for rice inBangladeshi farmers.fields.Field Crops Research,2005,93:94-]07
    152.Hubbard R K,Thomas D L,Leonard R A,Butler Surface run-off.and shallow ground water quality asaffeeted by eentre pivotapplied dairy cartle wastes.Transaetions ASAE.1987,30(2),430-37.
    153.JarvlsSC,Sherwood M,SteenvoordenJH.Nitrogen losses from animal manures:fromgrazed pastures andfrom applied slurry.In:van der Meer,H G e tal.(Eds.),Animal Manure on Grassl and and FodderCroPs.Martinus Nijho.Publishers,TheNetherlands,1987:195-212.
    154. Jordan C, MeGuekin S O, Smith R V Increased Predieted losses of Phosp Horus to surfaee water fromsoil with high Olsen-Peoneentration.soil Use and management,2000,16:27-35.
    155. Kohl D H, Shear G B, Bconunoner.Fertilizer nitrogen: contribution to nitrate in surface water in aCorn Belt watershed.Science.174:1331-1334.
    156. Koopmans G F, Chardon W J, MeDowell R W.PhosPhorus movement and sPeciation in a sandy soilprofile after long-term animal manure applications.J.Environ.Qual.2007,36:305-315.
    157.Kronvang B,Grant R,Larsen S E,Svendsen L M,Kristensen P.Non一Point source nutrient losses to theaquatic environment in Denmark:Impact of agneulture.Mar.Freshwater Re,1995,46:167-177.
    158.Kronvang,B,etal,Diffese Nutrient Lossesin Denmark.Water Sci.Techol.(G.B),1996,(33)8l:51-54
    159.Lehmann L,LanZ,Hyland C,SatoS,Solomon D,Ketterings Q.Ketterings.Long-term dynamcsofphosphorus forms and retention in manure-amended soil.Environ.Sei.Teehnol.2005,39:6672-6680.
    160. Lena B VNutrient preserving in riverine transitional striP.Joumal of Human Environment,1994,3(6):342-347.
    161. Line D E.NonPoint soueres pollution.water Enviorn Res,1998,70(4):895-911.
    162. MeDowell R W, Sharpley A N variation of phosphorus leached from Pennsylvanian soilsamendedwith manures, composts or in organic fertilizer.Agheulture.Eeosystem andEnviroonment,2004,102:17-27.
    163.LineDF Osmand Dl et al. Non-point sources.Water Environment Research,1994,66(4):585-601
    164.Miller D H,Wendt T C,Daniel T C.Phosphorus losses asaffeeted by tillage and manure app lieation.soilSci:Soe.Am.J.1984,48:901-905.
    165. Neilsen G H, Culley J L B, Cameron.Agheulture and water quslity in the Canadian Great LakesBasin:IV.Nitrogen, Joumal of Environment Quality,1982,11:3-7.
    166.Nelson N O,Parsons J E,Mikkelsen R L.Field-scale evaluation of Phosphorus leaehing in acid sandysoils receiving swine waste.J.Environ.Qual.2005,34:2024-2035.
    167. Ning S K, ChangN B, JengKY, et al. Soil erosion and non-point source pollution impacts assessmentwith the aid of multi-temporal remote sensing images [J]. Journal of Environmental Management,2006,79:88-101.
    168. Novothy, olelnh.Water quality: prevention, identifieation,and management of diffuse pollution. NewYork: Van Nostrand Reinhold ColllPend,1994.
    169. Oenema o.Nitrogen and phosphorus losses fromaghculture into surface waters:the effeets on polieiesand measuers in the Netherlands.water Sie.Teeh.,1998,37(2):456-463.
    170.Pote D H,Daniel T C,Niehols D J,Sharpley A N,Moore P A,Edwards D R.Relationship betweenphosphorus levels in three ultisols and phosphorus concentrations in runoff Environ. Qual.,1999,28:170-175.
    171.Page T,Haygarth P M,Beven K.JoynesT,Butler C,Keeler J,Freer.Spatial variability of soil phosphorusin relation to the topographie index and critieal source areas:Sampling for assessing risk to waterquality.J.Envlron.Qual.20()5,34:2263-2277.
    172.Randall L D,Hailin Z,JaekieL S,Jim J W.soil charaeteristies and Phosphorus level effect on phosphorus1oss in runoff.Environ.Qual,2005(34):1640一1650.
    173. Romkens M J M,Nelson D W Phosphorus relationships in runoff from fertilized siols. Eneiron.Qual.1974,3:10-13.
    174. Schlesinger W H,Ward T J,Anderson J.Nutrient losses in nmoff from grassland and shrubland Habitsin Southern New Mexieo:1.Rainfall snnulation experiments.Biogeoehemistr,1999,45:21-34.
    175.Sehuman G E,Spomer R G Piest R F Phosphorus losses from four agheultural watersheds on MissouriValley Loess.soil Science Soeiety of Ameriean Proeeeding,1973,37:424-27.
    176. Sehournans, Groendijk P.Modeling soil phosphorus levels and PhosPhorus leaching from agrieultUralland in the Netherlands.JEnviron.Qual.2(X)0,29:111-116.
    177.Sharpley A N,Daniel T C,Edwards D R.PhosPhorus movement in the landseape.prod.Aghc.,1993,6:492-500.
    178.Sh A V Phosphorus cycling in unfertilized abd fertilized agricultural soil Sci.Soc. Am.J,1985,49:905-911.
    179.Sharpley AN,Chapra S C,WedePohl R,Sims J T,Danxel T C,Reddy K R.ManagingagriculturalPhosphorus for proteetlon of surface waters.Issues and options J Environ Qual,1994,23:437-451.
    180. Sharpley A N.Dependenee of runoff Phosphorus on extraetable soil Phosphorus.Environ.Qual.,1995,24:920-926.
    181. Sharpley A N and P.Klelnman.Effeet of rainfall simulator and plot seale on overland fiow andPhosphorus transport.Journal of Environmental Quality,2003,32:2172-2179.
    182.Sherwood M,Fanning A.Nutrient content of surfaee run-off water from land treated withanima1wastes.In:Brogan J C(Ed),Nitrogen L osses and Surface Run-o.from Land spreadingofManures.1981:5-17
    183.Shreve B R,Moore Jr P A,Daniel T C,Edwards D R.Reduction of Phosphorus in runofffromfieldapplied poultry litter using chemical amendlnents.J.Environ.1995,11:555-563
    184. Shuman L M.Phosphorus and nitrate nitrogen in runoff following fertilizer application toturfgrass.Environ.Qual,2002,31:1710-1715.
    1805. Bongh B B,Jones J P.Pho sphorussorption and desorption charaeteristies of soil as affeeted byorgan-cresidues.soil Sci.Soe.Am.,1976,40:389-394.
    186. Sxgua G C Setward J S, Tweedale W A.Wate rquality monitoring and biologieal integnty assessmentin the Indian River Lagoon, Florida: status, trends, andloadings.Enviorn.Mangae,2000.25:199-209.
    187. Sims J T,Simard R R,JoernB C.Phosphorus loss in agnculture drainage:historieal perspective andeurrent research.Environ.Qual.,1998,27:227-293.
    188.Sliva L, Williams D D. Buffer zone versus whole catchment approaches to studying land use impact onriver water quality [J]. Water resources,2001,35(14):3462-3472.
    189.Smith D R,Moore P A,Maxwell C V,Haggard B E,Daniel T C.Redueing phosphorus runoff from swinemanure with dietary phytase and aluminum chloride.J.Environ.2004,33,1048-1054.
    190.Tim U S,Jolly R.Evaluating agriculture non-point source pollution usinginted geographicInformatlonsystems and hydrologie/water quality model.Journal of Environment Quality,1994,23:25-35.
    191.Southwick L M et al..Runoff losses of norfurzon:effect of runoff timing.J.Agric.Food Chem,1993,41:1503-1511
    192. Tanji K K,Nour E D.Nitrogen Solute Transport.In:Kanks R J,Rltehie J T.ed.Moding Plantand soilsystems.Agron.Monograph.31ASA.CSSA.SSSA.Madison.WI,1991,341-364.
    193.Torbert H A,Daniel T C,Lemunyon J L.Relationship of soil test PhosPhorus and sampling depthtorunoff phosphorus in ealeareous and nonealeareous soils.Journal of Environmental Quality,2002,31:1380-1387.
    194. USEPA.Environmental indieators of water quality in the United States.EPA84]-R-96-002. USEPA,1996.Office of water.U.S.Gov.Printing Offiee, Washington, D.C.120.
    195.Vadas P A,kleinnan P J,Sharpley A N,Turner B L.Relating soil phosphorus to dissolvedPhosphorus inrunoff:a single extraction coefficient for water quality modeling.Jonmal ofEnvironmentalQuality,2005,34(2):572-80.
    196.VanderMolen D T,Breeuwsma A,Boers P C M.Agheuhural nutrient losses to surface water in TheNetherlands:impact,strategies,and persPeetives.J Environ Qual.1998,27:4-11.
    197.Vighi M,Chiaudimi G.Eutrophieation in Europe:the role of agheultural activities.In:HodgsonEed.RevEnviron Toxieol03.Amsterdam:Elsevier,1987,213-257
    198.walter M T,Brooks E S,Water M F,Steenhuis C A,SeottJ,Boll.Evaluation of soluble Phosphoms loadingfrom manure-aplied fields under various spreading strategies.Journal of soil and waterconservation,2001,56(4):329-335.
    199. Wendt R C,Alberts E E.Estimating labile and dissolved inorganie phosphate coneentrations inSurfacerunoff.J.Environ.Qual.,1984,13:613-618.
    200. Willlam F, Ritter,Adel Shinmohammadi.Aghricult nonpoint source pollution U.S.CRCpressLLC,2001,l-2.
    201. Zaimes C N,Sehultz R C.Phosphorus in agheultural watersheds:A literattire review.Dep of ForIowaState Univ.Ames,2002.
    202.Zhang W L,Tian Z W,Zhang N Surface water quality of factory-based and vegetable-basedperi.urbanareas in the Yangtze River Delta region.China.Gatena,1995,69:57-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700