用户名: 密码: 验证码:
改性凹凸棒土处理低温高色高氨氮水源水研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究依据新《生活饮用水卫生标准》(GB5749-2006)的规范要求,针对常规工艺处理北方寒冷地区低温高色高氨氮水源水效果不佳的问题,将凹凸棒土改性为一种新型载体絮凝吸附剂与分子筛,从反应动力学与物质转化等方面探索反应机理,并运用表面络合-吸附-混凝理论与正交-响应面分析法,研究基于改性凹凸棒土的“载体絮凝-高效沉淀-预涂膜过滤”的脱色脱氨氮水处理工艺集成技术,为保障北方寒冷地区的饮用水安全提供技术方案。
     通过X射线荧光光谱、旋转阳极X射线衍射、傅立叶变换红外光谱、扫描电子显微镜、BET比表面积与孔径分布等测试方法,研究改性凹凸棒土的微观结构、矿物特征与形成机理,分析适于低温脱色脱氨氮的凹凸棒土的最佳改性方式。结果表明:壳聚糖改性凹凸棒土(CPA)脱色效果显著,机理以静电吸附、化学反应为主;提纯凹凸棒土脱色效果次之;热、酸改性凹凸棒土不脱色反而增色。碱改性凹凸棒土(4A分子筛)脱NH_4~+-N效果显著,机理以离子交换为主;热、酸改性凹凸棒土对NH_4~+-N去除率低;有机改性凹凸棒土无法脱NH_4~+4-N。以上分析与结果对正确理解凹凸棒土的纳米效应具有重要的理论意义。
     通过吸附等温线、吸附动力学与热力学等理论,研究低温状态下CPA的吸附脱色性能,以及4A分子筛对共存溶液中NH_4~+-N、腐殖酸(HA)的吸附性能。结果表明:CPA对HA的吸附符合Langmuir–Freundlich吸附等温式,同时受膜扩散和颗粒内扩散控制,其最大吸附量qe,max为121mg/g。4A分子筛对NH_4~+-N、HA的吸附均符合Freundlich吸附等温式,受颗粒内扩散控制,qe,max分别为61mg/g,21mg/g;对NH_4~+-N吸附受离子交换、分子色散力、诱导力与静电吸附影响,当HA存在时,NH_4~+-N的吸附受到抑制;对HA吸附依靠静电吸附、阳离子桥以及HA与4A分子筛表面铝盐的羟基化合物的络合作用,NH_4~+-N存在会促进HA被吸附。CPA和4A分子筛在低温状态下均表现出良好的吸附能力,且具有较强的可再生能力,可循环使用。以上分析为吸附剂的开发应用提供理论依据,具有重要的经济意义。
     分析了低温高色水处理效能与混凝机理,并采用响应面分析法设计确定“回流污泥-PFA-CPA”强化混凝的最优参数组合。结果表明:pH值与污泥回流量是影响色度去除率的显著性因素。HA-颗粒溶液主要与PFA水解产生的络合物发生反应。CPA能有效去除溶解性有机物,并作为“凝核”增大了絮体强度与粒径以及破碎后絮体的恢复能力。回流污泥能促进CPA对HA的吸附,改善低温低浊现象。强化混凝后,出水受色度、温度影响程度降低。以上分析与结果为优化运行与调试提供了技术支持。
     分析了新型高密度沉淀池与4A分子筛预涂膜过滤器的出水水质变化规律,探索不同条件下优化运行控制方式。结果表明:通过控制污泥回流比,使污泥浓度(SS)在498~900mg/L,可有效降低混凝剂投加量。精确控制排泥量与斜板下泥水界面,能防止“翻池”现象,保证悬浮泥渣面低、底部污泥浓度高。水力负荷低于50L/h、原水有机物低于8mg/L时沉淀出水水质无明显变化。4A分子筛在最优涂膜条件下形成动态膜后过滤高密池出水,NH_4~+-N去除率达95%。基膜采用物理清洗,34d更换。该组合工艺处理低温青顶水库水源水效果显著,运行费用低。以上研究为产业化推广提供了切实可行的理论技术支撑。
In the situation of executing the new Hygienic Standard for Drinking Water (GB5749-2006), according to the poor treatment effects for conventional technologies inwater plants, attapulgite from Xu Yi in Jiang Su was modified in this subject to developnew ballasted flocculant-adsorbent and molecular sieve. The reaction mechanisms wereexplored from kinetics and substance transformations through characterizations oftesting instruments, the surface complexation-adsorption-flocculation theory andorthogonal-response surface methodology were applied, the integration technology of“ballasted flocculation-high efficient sedimentation-precoating membrane filter” basedon modified attapulgite was studied for colour and NH_4~+-N removal. The subjectprovided feasible plans and technical support about drinking water safety.
     Analyzed the microstructure, characteristics and formation mechanisms ofmodified attapulgite by X-Ray Spectra (XRF), X-Ray Diffraction (XRD), FourierTransform Infrared Spectroscopic (FT-IR), Scanning Electron Microscope(SEM), BETSurface Area and Pore Size Distribution. Studied on attapulgite modification methodsfor colour and NH_4~+-N removal in source water at low temperature.The results showthat decoloration efficiency of Chitosan/Purified Attapulgite(CPA) is the mostsignificant, the mechanism is mainly electrostatic adsorption and chemical reaction. Thedecoloration efficiency of purified attapulgite takes second place, instead, thermal andacidified attapulgite cause colour increase; NH_4~+-N removal effect of alkalifiedattapulgite (4A molecular sieve) is the most significant,the mechanism is mainly ionexchange. NH_4~+-N removal rate is low for thermal and acidified attapulgite, CPA can’tremove NH_4~+-N. Above results have great scientific significance for correctlyunderstanding nanometer effects of attapulgite.
     Based on the related parameters of adsorption isotherms, adsorption kinetics andthermodynamics, the adsorption properties at low temperature were studied, includingHA adsorption on CPA, NH_4~+-N and HA adsorption on4A molecular sieve forNH_4~+Cl-HA coexisting solutes. The results indicate that HA adsorption process on CPAis controlled by film and pore diffusion. The adsorption equilibrium is well described byLangmuir-Freundlich equation, the maximum adsorption capacities (qe,max) is120.7731mg/g. NH_4~+-N and HA adsorption on4A molecular sieve are in accord with Freundlichequation, is mainly concerned with intra-particle diffusion. qe,maxwas61mg/g and21mg/g, respectively. NH_4~+-N adsorption on4A molecular sieve depends on ionexchange, molecular dispersion force, induction force and electrostatic adsorption. HA in solution could inhibit NH_4~+-N adsorption on4A molecular sieve. HA adsorption on4A molecular sieve depends on electrostatic adsorption, cationic bridge, complexationbetween HA and hydroxyl compounds produced from aluminum salts on the surface of4A molecular sieve. NH_4~+-N in solution could promote HA adsorption on4A molecularsieve. CPA and4A molecular sieve are more appropriate for treating source water at lowtemperature in North. In addition, CPA and4A molecular sieve own strong regenerationcapacity and can be recycled. Above results provide theoretical basis for developmentand application of the adsorbents, and have great economic significance.
     Studied treatment efficiency and coagulation mechanisms of high-colour source water at low temperature, used central composite design of responsesurface methodology to determine the optimal combination of enhanced coagulationwith “returning sludge-PFA-CPA”. The results show that, the significant factorsaffecting colour removal are pH and returning sludge yield. HA-particles mainly makecomplexing reactions with hydrolysates of PFA. CPA can effectively remove dissolvedorganic matter. CPA as condensation nuclei increase flocs’ strength and particle size,and improve the recovery ability of broken flocs. Returning sludge can improveobviously low-turbidity state and bring HA adsorption on CPA into play. After enhancedcoagulation, the effects of water colour and temperature on each index removal are notobvious. Above results provide technical supports for optimal operation and debugging.
     Explored the optimal operation method on “new Densadeg-precoating membranefilter of4A molecular sieve” technology, investigated the effluent quality from each cell.The results show that, control sludge return ratio to ensure the suspended solid (SS)values in mixing tank are in the range of498~900mg/L, high-concentration SS values inmixing tank may greatly reduce coagulant dosages. Controlled accurately emissionamount of sludge and sludge-water interface under inclined plate in Densadeg, so as toensure sludge-water interface low and bottom sludge concentration high. The newDensadeg efflument has no obvious change for hydraulic loads lower than50L/h andorganic matters lower than8mg/L in source water. The precoating membrane filter of4A molecular sieve formed in the optimum conditons was used to filtrate the effluentfrom Densadeg, NH_4~+-N removel rate reaches the highest to95%. Basement membraneadopts physical cleaning and is changed every34days. The “new Densadeg-precoatingmembrane filter of4A molecular sieve” technology have significantly effects ontreating source water from Qing Ding reservoir at low temperature. Above resultsprovide feasible theories and technical supports for industrialization promotion.
引文
[1]高色水处理技术平台.寒冷地区受面原污染高色地表水处理技术导则(2012-5-2).http://kimkung.7ta.cn/article/3497758/822994/.
    [2] Lucie G. Doing battle with the green monster of tai hu lake [J].Science,2007,317(5842):1166.
    [3] Yang M,Yu J W,Li Z H,et al. Taihu lake not to blame for Wuxi's woes [J].Science,2008,319(5860):158.
    [4]张东,乐林生,朱文娜.聚硅硫酸铝处理黄浦江原水中试研究[J].净水技术,2007,26(3):36-38.
    [5] Fu Y,Yu S L,Han C W. Morphology and coagulation performance duringpreparation of poly-silicic-ferric (PSF)coagulant [J]. Chemical EngineeringJournal,2009,149(1-3):1-10.
    [6] Cheng W P,Chi F H,Li C C. A study on the removal of organic substances fromlow-turbidity and low-alkalinity water with metal polysilicate coagulants [J].Colloids and Surface A:Physico-chemical and Engineering Aspects,2008,312(2-3):238-244.
    [7] Lan W,Qiu H,Zhang J,et al. Characteristic of a novel composite inorganicpolymer coagulant-PFAC prepared by hydrochloric pickle liquor [J]. Journal ofHazardous Materials,2009,162(1):174-179.
    [8] Zhu G C,Zheng H L,Zhang Z,et al. Characterization and coagulation–flocculation behavior of polymeric aluminum ferric sulfat(ePAFS)[J].2011,178:50-59.
    [9] Zhu G C,Zheng H L,Chen W Y,et al. Preparation of a composite coagulant:Polymeric aluminum ferric sulfate (PAFS)for wastewater treatment [J].Desalination,2012,285:315-323.
    [10]李风亭,王铮,王森,等.低温低浊水专用混凝剂——多元聚合氯化铝铁[A].2004全国水处理技术研讨会暨第24届年会论文集[C],2004:157-163.
    [11] Bhatnagar A,Sillanp M. Applications of chitin-and chitosan-derivatives forthe detoxification of water and wastewater—A short review[J]. Advances inColloid and Interface Science,2009,152(1-2):26-38.
    [12] Deans J R,Heinsohn G E,Link B A. Removalof organic contaminants fromaqueous media [P]. US:5393435A,1995-02-28.
    [13] Zeng D F,Wu J J,Kennedy J F. Application of a chitosan flocculant to watertreatment [J]. Carbohydrate Polymers,2008,71(1):135-139.
    [14] Fabris R,Chow CW,Drikas M. Evaluation of chitosan as a natural coagulant fordrinking water treatment[J]. Water Science and Technology,2010,61(8):2119-2128.
    [15] Zemmouri H,Drouiche M,Sayeh A,et al. Coagulation Flocculation Test ofKeddara's Water Dam Using Chitosan and Sulfate Aluminium [J]. ProcediaEngineering,2012,33:254-260.
    [16] Guibal E,Van V M,Dempsey B A,et al. A review of the use of chitosan for theremoval of particulate and dissolved contaminants [J]. Separation Science andTechnology,2006,41:2487-514.
    [17] Bratby J. Coagulation and flocculation in water and wastewater treatment [M].London:IWA Publishing,2006:186-214.
    [18] Divakaran R,Sivasankara Pillai V N. Mechanism of kaolinite and titaniumdioxide flocculation using chitosan-assistance by fulvic acids [J]. Water Research,2004,38(8):2135-2143.
    [19] Gupta A,Yunus M,Sankararamakrishnan N. Zerovalent iron encapsulatedchitosan nanospheres-A novel adsorbent for the removal of total inorganicArsenic from aqueous systems[J]. Chemosphere,2012,86(2):150-155.
    [20] Bleiman N,Mishael Y G. Selenium removal from drinking water by adsorption tochitosan-clay composites and oxides: Batch and columns tests [J]. Journal ofHazardous Materials,2010,183(1–3):590-595.
    [21] Jagtap S,Yenkie M K N,Labhsetwar N,et al. Defluoridation of drinking waterusing chitosan based mesoporous alumina [J]. Microporous and MesoporousMaterials,2011,142(2–3):454-463.
    [22] Muzzarelli R A A. Potential of chitin/chitosan-bearing materials for uraniumrecovery:An interdisciplinary review [J]. Carbohydrate Polymers,2011,84(1):54–63.
    [23] Zhang H J,Zhu G Y,Jia X Y,et al. Removal of microcystin-LR from drinkingwater using a bamboo-based charcoal adsorbent modified with chitosan[J].Journalof Environmental Sciences,2011,23(12):1983-1988.
    [24] Wiarachai O,Thongchul N,Kiatkamjornwong S,et al. Surface-quaternizedchitosan particles as an alternative and effective organic antibacterial material [J].Colloids and Surfaces B:Biointerfaces,2012,92:121-129.
    [25]董怡华,李亮,胡筱敏,等.壳聚糖改性阳离子絮凝剂的制备及其应用研究[J].环境保护科学,2006,32(5):20-22.
    [26]胡勇有,李泗清,郭艳平,等.壳聚糖接枝三元共聚阳离子絮凝剂对高岭土悬浊液的絮凝特性[J].环境科学,2008,29(4):954-959.
    [27]田国鹏,张雯,魏刚,等.壳聚糖/铁絮凝剂的制备及其絮凝性能[J].北京化工大学学报,2008,35(4):47-51.
    [28]张文轩,尚亚波,袁博,等.壳聚糖改性絮凝剂絮凝性能的研究[J].高分子通报,2010,(4):49-54.
    [29]王锦涛,姚春才,谢思思.微波辐射下壳聚糖-丙烯酰胺接枝物的合成及其絮凝性能研究[J].生物质化学工程,2010,44(4):17-20.
    [30]王香爱.壳聚糖季铵盐复合絮凝剂对高岭土悬浮液的絮凝处理[J].化工科技,2011,19(2):6-9.
    [31]巴金华,苍会升,王圆圆. Fe2(SO4)3—壳聚糖絮凝剂的制备及絮凝性能的研究[J].有色矿冶,2009,25(1):41-43.
    [32]蒋明,娄金生,熊正为.壳聚糖复合絮凝去除水源水中有机物与铝离子的实验研究[J].南华大学学报(自然科学版),2007,21(3):104-107.
    [33]王丽坤,王启山,孙晓明,等.壳聚糖助凝对三氯化铁絮体形态和强度的影响[J].中国环境科学,2009,29(7):718-721.
    [34]张秀芝,张雨山,王静,等.壳聚糖在海水混凝处理过程中的助凝作用研究[J].化学工业与工程,2010,27(1):38-42.
    [35]夏德强,吕维华,苏晓云,等.新型絮凝剂APAC与壳聚糖复配处理浊度水的实验研究[J].非金属矿,2011,34(6):59-61+65.
    [36]刘秉涛,姜安玺,李瑞涛.给水絮凝处理中壳聚糖的助凝作用和机理研究[J].哈尔滨工业大学学报,2008,40(12):1570-1573.
    [37]石宝友,汤鸿霄.聚合铝与有机高分子复合絮凝剂的絮凝性能及其吸附特性[J].环境科学,2000,(1):18-22.
    [38] Zhao L,Luo F,Wasikiewicz J M,et al. Adsorption of humic acid from aqueoussolution onto irradiation-crosslinked carboxymethyl chitosan [J]. BioresourceTechnology,2008,99(1):1911-1917.
    [39] Wan Ngah W S,Hanafiah M A K M,Yong S S. Adsorption of humic acid fromaqueous solutions on crosslinked chitosan-epichlorohydrin beads:Kinetics andisotherm studies [J]. Colloids and Surfaces B:Biointerfaces,2008,65(1):18–24.
    [40] Wan Ngah W S,Fatinathan S,Yosop N A. Isotherm and kinetic studies on theadsorption of humic acid onto chitosan-H2SO4beads [J]. Desalination,2011,272(3):293–300.
    [41]王家宏,郑寿荣,刘凤玲,等.磁性壳聚糖去除水中腐殖酸的研究[J].无机化学学报,2010,26(10):1761-1767.
    [42] Maghsoodloo Sh,Noroozi B,Haghi A K,et al. Sorial. Consequence of chitosantreating on the adsorption of humic acid by granular activated carbon [J]. Journalof Hazardous Materials,2011,191(1-3):380-387.
    [43] Wang W,Ma F,Yue X L,et al. Purification and characterization of compoundbioflocculant [C]. The2nd International Conference on Bioinformatics andBiomedical Engineering. Shanghai:IEEE,2008.
    [44]孟路,杨基先,马放,等.复合型生物絮凝剂处理低温低浊水影响因素[J].哈尔滨工业大学学报,2009,24(11):42-45.
    [45] Bo X W,Gao B Y,Peng N N,et al. Coagulation performance and floc propertiesof compound bioflocculant-aluminum sulfate dual-coagulant in treating kaolin-humic acid solution [J]. Chemical Engineering Journal,2011,173(2):400-406.
    [46] Li Z,Zhong S,Lei H Y,et al. Production of a novel bioflocculant by BacillusLicheni form is X14and its application to low temperature drinking watertreatment [J]. Bioresource Technology,2009,100(14):3650-3656.
    [47]周华,陈卫,孙敏,等.长江水源水厂低温低浊期排泥水直接回用试验研究[J].水处理技术,2010,36(9):93-96.
    [48]徐勇鹏,何利,崔福义,王志军.回用净水厂生产废水强化低温低浊水的混凝效能[J].中国给水排水,2011,27(7):55-58.
    [49]谭学军.高梯度磁分离饮用水深度处理器的应用研究[A].哈尔滨:哈尔滨工业大学[D],2001:1-20.
    [50]倪鸿,周勉.低温低浊及高浊高藻黄河水超磁分离净化技术[J].中国建设信息(水工业市场),2011,03:76-80.
    [51] Desjardins C,Koudjonou B,Desjardins R. Laboratory study of ballastedflocculation[J]. Water Research,2002,36(3):744-754.
    [52] Philip S. Treatment of liquids with ballasted flocculation[P].US:6689277B2,2004-02-10.
    [53] Binot P,Gaid A,Roche P. Method of treating water with an inorganic powderreagent [P].US:7678278B2,2010-03-16.
    [54] Sauvignet P. Method for water treatment by flocculation/settling using ballastedfloc degritting of the sludge[P].US:8062529B2,2011-11-22.
    [55] Sauvignet P,Beaudet J F,Ursel V. Method of treating water by ballastedflocculation/settling, which includes a continuous measurement of the ballast, andcorresponding installation[P].US:8092688B2,2012-01-10.
    [56] Perri J S,Hertel W M. Ballasted flocculation process and system incorporatinganelectrocoagulation reactor for treating water or wastewater [P]. US:2006/0108273A1,2006-05-25.
    [57] Sun J W. System for removing BOD and suspended solids through an activatedsludge process and a ballasted flocculation process[P].US:7563366B2,2009-07-21.
    [58] Sauvignet P,Abdelkader. Water treatment method by ballasted flocculation,settling, and prior adsorbent contact[P].US:7648637B1,2010-01-19.
    [59] Garbett R A,Gutshall M L,Hendley B W,et al. Combined biological andballasted flocculation process for treating wastewater [P].US:7323108B1,2008-01-29.
    [60]刘杨,赵建伟,杨兴涛,等.水厂排泥水处理系统优化运行研究[J].供水技术,2007,1(5):56-57.
    [61]方小桃.给水处理厂中高密度沉淀池沉淀区流态模拟及设计优化研究[D].重庆:重庆交通大学,2010:51-68.
    [62]饶明.粉末活性炭与高密度沉淀池联用处理低浊微污染水试验研究[D].北京:北京工业大学,2009,23-52.
    [63]李星,芦澍,孙文鹏,等.高密度沉淀池-超滤组合工艺处理微污染水中试[J].北京工业大学学报,2011,37(9):1387-1392.
    [64]廖强,刘钰,赵欣,等.成都市自来水六厂B厂工艺特点、应急机制及案例分析[J].中国给水排水,2011,27(4):97-100.
    [65]许嘉炯,郑毓佩,沈裘昌,等.新型中置式高密度沉淀池的开发与应用[J].给水排水,2007,33(2):19-24.
    [66]许嘉炯,雷挺,沈裘昌,等.嘉兴南郊水厂微污染河网水集成净水处理工艺选择与设计[J].给水排水,2008,34(9):9-14.
    [67]荣国栋,成爱友,蔡传利,等.胜利油田供水公司民丰水厂改造工程[J].中国给水排水,2010,26(22):88-91.
    [68]刘晓飞,杜茂安,马军,等.低压膜直接过滤处理低温低浊水性能研究[J].哈尔滨工业大学学报,2003,35(8):982-984+988.
    [69]史慧婷,杨艳玲,李星,等.混凝-超滤处理低温低浊受污染水试验研究[J].哈尔滨商业大学学报(自然科学版),2010,26(2):144-148.
    [70]裴亮,姚秉华,付兴隆,等.UF膜与混凝粉末活性炭联用处理冬季黄河水[J].环境科学与技术,2009,32(3):165-168+188.
    [71]左金龙,崔福义,杨威,等.膜生物反应器处理低温低浊水的工艺研究[J].环境科学,2007,28(2):377-381.
    [72] Ersahin M E,Ozgun H,Dereli R K,et al. A review on dynamic membranefiltration: Materials, applications and future perspectives[J]. BioresourceTechnology,2012,122:196-206.
    [73] Marcinkowsky A E,Philips K A,Johnson H O,et a1. Hyperfiltration studies(IV)salt rejection by dynamically formed hydrous oxide membranes [J]. Journalof the American Chemical Society,1966,88:5744-5750.
    [74]李伟光.一种酸改性竹炭及其制备方法和利用其去除饮用水中氨氮的方法[P].中国:102228822,2011-11-02.
    [75] Barrer R M. Zeolites and Clay Minerals [M]. New York:Academic Press,1978.
    [76] Breck D W. Zeolites Molecular Sieves [M]. New York:Wiley,1974.
    [77] Huang H,Xiao X,Yan B,et al. Ammonium removal from aqueous solutions byusing natural Chinese (Chende)zeolite as adsorbent [J]. Journal of HazardousMaterials,2010,175(1-3):247-252.
    [78] Malekian R,Abedi-Koupai J,Eslamian S S,et al. Ion-exchange process forammonium removal and release using naturalIranian zeolite [J]. Applied ClayScience,2011,51(3):323-329.
    [79]任红强.一种对废水中氨氮具有高选择性的改性分子筛及其制备方法[P].中国:101804324A,2010-08-18.
    [80]刘海峰,刘元,赵玉华.13X分子筛联合强化混凝对微污染水中氨氮去除试验研究[J].工业安全与环保,2010,36(11):18-20.
    [81]周健,胡晓静,李凯荣,等.4A分子筛处理高浓度氨氮废水[J].环境化学,2010,29(5):943-947.
    [82]陶红,高廷耀,俞靓,等.微孔分子筛的合成及其去除水中氨氮的实验研究[J].环境污染治理技术与设备,2004,5(3):48-50.
    [83] Arslan A,Veli S. Zeolite13X for adsorption of ammonium ions from aqueoussolutions and hen slaughterhouse wastewaters [J]. Journal of the Taiwan Instituteof Chemical Engineers,2012,43(3):393-398.
    [84]张健,万东锦,朱云云,康瑾,等.两种ZSM-5沸石分子筛吸附水中氨氮的研究[J].环境科学与技术,2011,34(8):104-108.
    [85]方瑾.新型分子筛制备及其处理高氨氮废水的性能研究[D].浙江:浙江工商大学,2011,44-51.
    [86]王霞.利用粉煤灰合成分子筛及脱除高浓度氨氮的研究[D].太原:太原理工大学,2007,56-63.
    [87]苑鑫.粉煤灰合成分子筛处理高浓度氨氮废水的研究[D].太原:太原理工大学,2008,37-41.
    [88]王天翔.粉煤灰合成分子筛处理高浓度氨氮废水的研究[D].太原:太原理工大学,2009,57-65.
    [89]郭俊温.粉煤灰合成沸石及氨氮吸附性能的研究[D].内蒙古:内蒙古科技大学,2011,58-68.
    [90] Zhang M L,Zhang HY,Xu D,et al. Ammonium removal from aqueous solutionby zeolites synthesized from low-calcium and high-calcium fly ashes [J].Desalination,2011,277(1-3):46-53.
    [91] Yusof A M,Keata L K,Ibrahim Z,et al. Kinetic and equilibrium studies of theremoval of ammonium ions from aqueous solution by rice husk ash-synthesizedzeolite Y and powdered and granulated forms of mordenite [J]. Journal ofHazardous Materials,2010,174(1-3):380-385.
    [92] Lei L C,Li X J,Zhang X W. Ammonium removal from aqueous solutions usingmicrowave-treated natural Chinese zeolite [J]. Separation and PurificationTechnology,2008,58(3):359-366.
    [93] Liang Z,Ni J R. Improving the ammonium ion uptake onto natural zeolite byusing an integrated modification process [J]. Journal of Hazardous Materials2009,166(1):52-60.
    [94] Li M Y,Zhu X Q,Zhu F H,et al. Application of modified zeolite for ammoniumremoval from drinking water [J]. Desalination,2011,271(1-3):295-300.
    [95]张素芳,蒋白懿,李亚峰.膨润土的改性对水中氨氮和磷的去除效果研究[J].辽宁化工,2011,40(11):1115-1120.
    [96]符瞰,夏启斌,李忠,等.麦饭石吸附氨氮应用研究[J].工业安全与环保,2011,37(4):3-5.
    [97]尹敬杰,蒋白懿,刘军,等.膨胀蛭石吸附微污染水源水中氨氮的影响因素研究[J].辽宁化工,2009,38(3):170-172+194.
    [98]唐超.由天然斜发沸石和铝土矿合成4A沸石研究[D].湖南:湖南大学,2008,45-52.
    [99] Zhao Y F,Zhang B,Zhang X,et al. Preparation of highly ordered cubic NaAzeolite from halloysite mineral for adsorption of ammonium ions [J]. Journal ofHazardous Materials,2010,178(1-3):658-664.
    [100] Zheng H,Han L J,Ma H W,et al. Adsorption characteristics of ammoniumionby zeolite13X [J]. Journal of Hazardous Materials,2008,158(2–3):577-584.
    [101] U urlu M,Hamdi Karaogglu M. Adsorption of ammonium from an aqueoussolution by fly ash and sepiolite: Isotherm, kinetic and thermodynamic analysis[J].Microporous and Mesoporous Materials,2011,139(1-3):173-178.
    [102] nal M,Sar kaya Y. Some physicochemical properties of a clay containingsmectite and palygorskite [J]. Applied Clay Science,2009,44(1-2):161-165.
    [103] Bradley W F. The structural scheme of attapulgite [J]. American Mineralogist,1940,25:405-411.
    [104] Yan W G,Liu D,Tan D Y,et al. FTIR spectroscopy study of the structure changesof palygorskite under heating [J]. Spectrochimica Acta Part A: Molecular andBiomolecular Spectroscopy,2012,97:1052-1057.
    [105] Guven N,D'Espinose J F,De La Caillerie J J.The coordination of aluminum ionsin the palygorskite structure [J]. Clay&Clay Minerals,1992,40(4):457-461.
    [106] Shuali U,Nir S,Rytwo G. Chapter15-Adsorption of surfactants,dyes andcationic herbicides on sepiolite and palygorskite:Modifications, Applications andModelling [J]. Developments in Clay Science,2011,3:351-374.
    [107] Wang M S,Liao L B,Zhang X L,et al. Adsorption of low concentration humicacid from water by palygorskite [J]. Applied Clay Science,2011,67-68:164-168.
    [108] Wang J H,Han X J,Ma H G,et al. Adsorptive removal of humic acid fromaqueous solution on polyaniline/attapulgite composite [J]. Chemical EngineeringJournal,2011,173(1):171-177.
    [109]晗桢.矿物复配PAC混凝去除给水中腐殖酸研究[D].青岛:青岛科技大学,2009:41-47.
    [110]杨慧,宁海丽,裴亮.凹凸棒土的氨氮吸附性能研究[J].环境工程学报,2011,5(2):343-346.
    [111]张秀丽,王明珊,廖立兵.凹凸棒石吸附地下水中氨氮的实验研究[J].非金属矿,2011,33(6):64-67.
    [112]陈泽恩,王郑,缪伟,等.凹凸棒复合滤料对氨氮的静态吸附研究[J].广东化工,2009,36(8):19-20+66.
    [113]缪伟,黄新,王郑,等.复合凹凸棒滤料去除氨氮和有机物试验研究[J].森林工程,2009,25(3):66-70.
    [114]王爱勤,郑易安,张俊平.网络型凹凸棒黏土复合吸附剂及其制备方法.中国:101664666A,2010-03-10.
    [115]于鹄鹏,钱运华,陈静,等.金叶玲利用凹凸棒土制备废水氨氮吸附剂的研究[J].应用化工,2009,38(8):1194-1195+1198.
    [116]王雅萍,刘云,董元华,马毅杰.凹凸棒石粘土对氨氮废水吸附性能的研究[J].农业环境科学学报,2008,27(4):1525-1529.
    [117]张俊,赵跃智.复合纳米TiO2/凹凸棒土处理氨氮废水[J].中国非金属矿工业导刊,2007,(6):46-47.
    [118]李彦锋,杨艳.表面改姓凹凸棒阳离子絮凝剂及其制备方法[P].中国:1872722A,2006-12-06.
    [119]叶瑛,张平萍,陈雪刚.以坡缕石为原料制备沸石分子筛及其方法[P].中国:101066766A,2007-11-07.
    [120]蒋金龙,金叶玲,固旭,等.凹凸棒石粘土合成4A沸石、P型沸石和方钠石的方法[P]中国:101618880A,2010-01-06.
    [121]王青宁,俞树荣,田静,等.采用凹凸棒石粘土合成A型分子筛的方法[P].中国:101817539A,2010-09-01.
    [122]蒋金龙,金叶玲,固旭.以凹凸棒石粘土为原料合成X型沸石的方法[P].中国:101337681A,2009-01-07.
    [123]周伟,李登好.凹凸棒黏土直接碱液合成4A分子筛的研究[P].化工矿物与工,2008,(6):18-20.
    [124]赵登山,李登好.利用凹凸棒石黏土制备4A沸石分子筛的研究[J].非金属矿,2008,31(6):7-9.
    [125] Jiang J L,Feng L D,Gu X,等. Synthesis of zeolite A from palygorskite via acidactivation. Applied Clay Science,2012,55:108-113.
    [126]蒋金龙,固旭,冯良东,等.酸活化凹凸棒石粘土合成沸石的方法[P].中国:101774604A,2010-07-14.
    [127]张磊,王青宁,田静,等.凹凸棒石黏土矿除铁增白在合成分子筛上的应用[J].非金属矿,2009,32(2):25-29.
    [128]张平萍,陈雪刚,程继鹏,等.以坡缕石为原料制备方沸石[J].材料科学与工程学报,2010,28(4):501-504.
    [129]姚华.一种用海泡石合成Mg-NaY沸石的方法[P].中国:101391780A,2009-03-25.
    [130] Thurman E M,Malcolm R L. Preparative isolation of aquatic humic substances[J]. Environmental Science and Technology,1981,15:463-466.
    [131]王公领.绢云母的酸处理与钠化修饰及其表征[D].北京:中国地质大学,2009,23-24.
    [132]俞幸幸,俞明飞.铬天青S分光光度法测定水中铝含量的方法改进[J].中国卫生检验杂志,2012,22(6):1457-1458.
    [133]水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002:90.
    [134] Micha owski J,Ha aburda P,Koj o A. Determination of humic acid in naturalwaters by flow injection analysis with chemiluminescence detection [J].Analytica Chimica Acta,2001,438(1–2,3):143-148.
    [135] Kwok-Keung Au,Adrian C. Penisson,ShuoLin Yang,et al. Natural organicmatter at oxide/water interfaces: Complexation and conformation [J]. Geochimicaet Cosmochimica Acta,1999,63(19/20):2903-2917.
    [136] Aziz A,Ouali M S,Elandaloussi E H,et al. Chemically modified olive stone:A low-cost sorbent for heavy metals and basic dyes removal from aqueoussolutions [J]. Journal of Hazardous Materials.2009,163(1):441-447.
    [137] García-Zubiri I X,González-Gaitano G,Isasi J R.Sorption models in cyclodextrinpolymers:Langmuir,Freundlich,and a dual-mode approach [J]. Journal ofColloid and Interface Science,2009,337(1):11-18.
    [138] Wong Y C,Szeto Y S,Cheung W H,et al. Adsorption of acid dyes on chitosan-equilibrium isotherm analyses [J]. Process Biochemistry,2004,39(6):695-704.
    [139]王丹.基于响应曲面模型拟合优度的多响应优化方法[D].天津:天津大学,2011,6-22.
    [140]高东升.凹凸棒石粘土的流变性能及提纯研究[D].合肥:合肥工业大学,2010,26-36.
    [141] Xie Q Q,Chen T H,Zhou H,et al. Mechanism of palygorskite formation in theRed Clay Formation on the Chinese Loess Plateau, northwest China [J].Geoderma,2013,192:39-49.
    [142] Wang L,Zhang J P,Wang A Q. Fast removal of methylene blue from aqueoussolution by adsorption onto chitosan-g-poly(acrylic acid)/attapulgite composite[J]. Desalination,2011,266(1-3):33-39.
    [143] Schmitt M,Fernandes C P,Cunha Neto J B,et al. Characterization of poresystems in seal rocks using Nitrogen Gas Adsorption combined with MercuryInjection Capillary Pressure techniques [J]. Marine and Petroleum Geology.2013,39(1):138-149.
    [144] Myneni S C B,Brown J T,Martinez G A,et al. Imaging of humic substancemacromolecular structures in water and soils [J]. Science,1999,286(5443):1335-1337.
    [145] Baigorri R,Fuentes M,Gonzalez-Gaitano G,et al. Analysis of molecularaggregation in humic substances in solution [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2007,302(1-3):301-306.
    [146] Powell H K,Town R M. Solubility and fractionation of humic acid:effect of pHand ionic medium [J]. Analytica Chimica Acta,1992,267(1):47-54.
    [147] Celik M S,Somasundaran P. Effect of pretreatments on flotation and electrokin-etic properties of coal [J]. Colloids and Surfaces A: Physicochemical an Enginee-ring Aspects,1980,1(1):121-124.
    [148] Gimsing A L,S rensen J C,Strobel B W. Adsorption of glucosinolates to metaloxides,clay minerals and humic acid [J]. Applied Clay Science,2007,35(3-4):212-217.
    [149]魏世勇,谭文峰,刘凡.土壤腐殖质—矿物质交互作用的机制及研究进展[J].中国土壤与肥料,2009,(1):1-6.
    [150] Al-Degs Y S,EI-Barghouthi M I,EI-Sheikh A H,et al. Effect of solution pH,ionic strength,and temperature on adsorption behavior of reactive dreactive dyeson activated carbon [J]. Dyes and Pigments,2008,77(1):16-23.
    [151] Goldberg S. Inconsistency in the triple layer model description of ionic strengthdependent boron adsorption [J]. Journal of Colloid and Interface Science,2005,285(2):509-517.
    [152] Gan F Q,Zhou J M,Wang H Y,et al. Removal of phosphate from aqueoussolution by thermally treated natural palygorskite [J]. Water Research.2009,43(11):2907-2915.
    [153] Chen T H,Liu H B,Li J H,et al. Effect of thermal treatment on adsorption–desorption of ammonia and sulfur dioxide on palygorskite:Change of surfaceacid–alkali properties [J]. Chemical Engineering Journal,2011,166(3):1017-1021.
    [154] González J C,Molina-Sabio M,Rodr guez-Reinoso F. Sepiolite-based adsorbentsas humidity controller [J]. Applied Clay Science,2001,20(3):111-118.
    [155] Yan W C,Liu D,Tan D Y,et al. FTIR spectroscopy study of the structure changesof palygorskite under heating [J]. Spectrochimica Acta Part A: Molecular andBiomolecular Spectroscopy.2012,97:1052–1057.
    [156]陈天虎,徐晓春,岳书仓.苏皖凹凸棒石黏土纳米矿物学及地球化学[M].北京:科学出版社,2004:162-164.
    [157] Boudriche L,Calvet R,Hamdi B,et al. Surface properties evolution of attapulgiteby IGC analysis as a function of thermal treatment [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2012,392(1):1-10.
    [158] Chen H,Zhao J,Zhong A,et al. Removal capacity and adsorption Mechanism ofheat-treated palygorskite clay for methylene blue [J]. Chemical EngineeringJournal,2011,174(1):143-150.
    [159] Pushpaletha P,Lalithambika M. Modified attapulgite:An efficient solid acidcatalyst for acetylation of alcohols using acetic acid [J]. Applied Clay Science,2011,51(4):424-430.
    [160] Nguetnkam J P,Kamga R,Villiéras F. Alteration of cameroonian clays under acidtreatment. Comparison with industrial adsorbents [J]. Applied Clay Science,2011,52(1–2):122-132.
    [161] nal M. Swelling and cation exchange capacity relationship for the samplesobtained from a bentonite by acid activations and heat treatments [J].AppliedClay Science,2007,37(1–2):74-80.
    [162] Peng Y G,Chen D J,Ji J L,et al. Chitosan-modified palygorskite:Preparation,characterization and reactive dye removal [J]. Applied Clay Science,2012:1-6.
    [163] Zhou C H. An overview on strategies towards clay-based designer catalysts forgreen and sustainable catalysis [J]. Applied Clay Science,2011,53(2):87-96.
    [164] Shang L,Wang Y Z,Jiang J G,et al. pH-dependent protein conformationalchanges in albumin:gold nanoparticle bioconjugates:a spectroscopic study [J].Langmuir,2007,23:2714–2721.
    [165] Su D H,Wang C H,Cai S M,et al. Influence of palygorskite on the structure andthermal stability of collagen [J]. Applied Clay Science,2012,62-63:41-46.
    [166] Yan W L,Bai R. Adsorption of lead and humic acid on chitosan hydrogel beads[J]. Water Research.2005,39(4):688-698.
    [167]中国选矿技术网.沸石的矿床工业指标及产品质量要求[EB/OL](.2006-3-15).http://www.mining120.com/html/0603/20060315_2819.asp.
    [168] Paolis F D,Kukkonen J. Binding of organic pollutants to humic and fulvic acids:influence of pH and the structure of humic material [J]. Chemosphere,1997,34(8):1693-1704.
    [169] Huang H M,Xiao X M,Yan B,et al. Ammonium removal from aqueous solutionsby using natural Chinese(Chende)zeolite as adsorbent [J]. Journal of HazardousMaterials,2010,175(1-3):247-252.
    [170] Wang S B,Zhu Z H. Characterisation and environmental application of an Austra-lian natural zeolite for basic dye removal from aqueous solution [J].Journal ofHazardous Materials,2006,136(3):946-952.
    [171] Park S J,Yoon T I. Effects of iron species and inert minerals on coagulation anddirect filtration for humic acid removal [J]. Desalination,2009,239(1-3):146-158.
    [172] Moussavi G,Talebi S,Farrokhi M,et al.The investigation of mechanism, kineticand isotherm of ammonia and humic acid co-adsorption onto natural zeolite [J].Chemical Engineering Journal,2011,171(3):1159-1169.
    [173] Ismail A A,Mohamed R M,Ibrahim I A,et al. Synthesis, optimization andcharacterization of zeolite A and its ion-exchange properties [J]. Colloids andSurfaces A:Physicochemical and Engineering Aspects,2010,366(1-3):80-87.
    [174] Capasso S,Salvestrini S,Coppola E,et al. Sorption of humic acid on zeolitic tuff:a preliminary investigation [J]. Applied Clay Science,2005,28(1-4):159-165.
    [175] Tokuyama H,Hisaeda J,Nii S,et al. Removal of heavy metal ions and humic acidfrom aqueous solutions by co-adsorption onto thermosensitive polymers [J].Separation and Purification Technology,2010,71(1):83-88.
    [176] Lin J W,Zhan Y H. Adsorption of humic acid from aqueous solution ontounmodified and surfactant-modified chitosan/zeolite composites [J]. ChemicalEngineering Journal,2012,200-202:202-213.
    [177] Tang Y L,Liang S,Yu S L,et al. Enhanced adsorption of humic acid on aminefunctionalized magnetic mesoporous composite microspheres [J]. Colloids andSurfaces A:Physicochemical and Engineering Aspects.2012,406:61-67.
    [178] Wang J N,Zhou Y,Li A M,et al.Adsorption of humic acid by bi-functional resinJN-10and the effect of alkali-earth metal ions on the adsorption [J]. Journal ofHazardous Materials,2010,176(1-3):1018-1026.
    [179] Peng X J,Luan Z K,Zhang H M. Montmorillonite Cu(II)/Fe(III) oxides magneticmaterial as adsorbent for removal of humic acid and its thermal regeneration [J].Chemosphere,2006,63(2):300-306.
    [180] Wang S B,Zhu Z H. Humic acid adsorption on fly ash and its derived unburnedcarbon [J]. Journal of Colloid and Interface Science,2007,315(1):41-46.
    [181] Peng X J,Luan Z K,Chen F T,et al. Adsorption of humic acid onto pillaredbentonite [J]. Desalination,2005,174(2):135-143.
    [182] Tao Q,Xu Z J,Wang J H,et al. Adsorption of humic acid to aminopropylfunctionalized SBA-15[J]. Microporous and Mesoporous Materials,2010,131(1-3):177-185.
    [183] Tsai W T,Hsien K J,Hsu H C. Adsorption of organic compounds fromaqueous solution onto the synthesized zeolite [J].Journal of Hazardous Materials,2009,166(2-3):635-641.
    [184] Vadivelan V,Vasanth Kumar K. Equilibrium, kinetics, mechanism, andprocess design for the sorption of methylene blue onto rice husk[J]. Journal of Colloid and Interface Science,2005,286(1):90-100.
    [185] Michelsen D L,Gideon J A,Griffith G P,et al. Removal of soluble mercury fromwaste water by complexing techniques [M]. US:Office of Water Research andTechnology,1973.
    [186] Von O B,Kordel W,Klein W. Sorption of nonpolar and polar compounds tosoils:Processes,measurement and experience with the applicability of themodified OECD-guideline [J]. Chemosphere,1991,22:285.
    [187] Saltal K,Sar A,Ayd n M. Removal of ammonium ion from aqueous solution bynatural Turkish (Y ld zeli) zeolite for environmental quality [J].Journal ofHazardous Materials,2007,141(1):258-263.
    [188] Alkan M,Do an M,Turhan Y,et al. Adsorption kinetics and mechanism ofmaxilon blue5G dye on sepiolite from aqueous solutions [J]. ChemicalEngineering Journal,2008,139(2):213-223.
    [189] Huo H X,Lin H,Dong Y B,et al. Ammonia-nitrogen and phosphatessorption from simulated reclaimed waters by modified clinoptilolite [J]. Journal ofHazardous Materials,2012,229-230:292–297.
    [190] Widiastuti N,Wu H W,Ang H M,et al. Removal of ammonium from greywaterusing natural zeolite [J]. Desalination,2011,277(1-3):15-23.
    [191] Zhao Y F,Zhang B,Zhang X,et al. Preparation of highly ordered cubic NaAzeolite from halloysite mineral for adsorption of ammonium ions [J]. Journal ofHazardous Materials,2010,178(1-3):658-664.
    [192] Zheng Y,Wang A Q. Evaluation of ammonium removal using a chitosan-g-poly(acrylic acid)/rectorite hydrogel composite [J]. Journal of Hazardous Materials,2009,171(1-3):671-677.
    [193] Edzwald J K,Tobiason J E. Enhanced coagulation:US requirements and abroader view [J]. Water Science and Technology,1999,40(9):63-70.
    [194] Akitt J W,Farthing A. Aluminium-27nuclear magnetic resonance studies of thehydrolysis of aluminium(III).Part2. Gel-permeation chromatography [J]. Journalof the Chemical Society, Dalton Transactions,1981,(7):1606-1608.
    [195] Xiao F,Yi P,Pan X R,et al. Comparative study of the effects of experimentalvariables on growth rates of aluminum and iron hydroxide flocs duringcoagulation and their structural characteristics [J].Desalination,2010,250(3)902-907.
    [196] Leivisk T,Sarpola A,Tanskanen J. Removal of lipophilic extractives fromdebarking wastewater by adsorption on kaolin or enhanced coagulation withchitosan and kaolin [J]. Applied Clay Science,2012:61:22-28.
    [197] Bina B,Mehdinejad M H,Nikaeen M,et al. Effectiveness of chitosan as naturalcoagulant aid in treating turbid waters [J]. Iranian journal of environmental healthscience&engineering,2009,6:247-252.
    [198] Bo X W,Gao B Y,Peng N N,et al. Effect of dosing sequence and solution pHon floc properties of the compound bioflocculant-aluminum sulfate dual-coagulant in kaolin-humic acid solution treatment [J]. Bioresource Technology,2012,113:89-96.
    [199] Sun C Z,Yue Q Y,Gao B Y,et al. Effect of pH and shear force on flocscharacteristics for humic acid removal using polyferric aluminum chloride-organicpolymer dual-coagulants [J]. Desalination,2011,281:243-247.
    [200] Harif T,Khai M,Adin A.Electrocoagulation versus chemical coagulation:Coagulation/flocculation mechanisms and resulting floc characteristics [J]. waterresearch,2012,46(10):3177-3188.
    [201] Yu W Z,Hu C Z,Liu H J,et al. Effect of dosage strategy on Al-humic flocsgrowth and re-growth [J]. Colloids and Surfaces A: Physicochemical andEngineering Aspects,2012,404:106-111.
    [202] Yu W Z,Gregory J,Campos L C. Breakage and re-growth of flocs:Effect ofadditional doses of coagulant species [J]. Water Research,2011,45(20):6718-6724.
    [203] Cao B C,Gao B Y,Liu X,et al. The impact of pH on floc structure characteristicof polyferric chloride in a low DOC and high alkalinity surface water treatment[J]. Water Research,45(18):6181-6188.
    [204] Yukselen M A,Gregory J. The reversibility of floc breakage [J]. InternationalJournal of Mineral Processing,2004,73(2–4):251-259.
    [205] Zhou Z W,Yang Y L,Li X,et al. Coagulation efficiency and flocs characteristicsof recycling sludge during treatment of low temperature and micro-polluted water[J]. Journal of Environmental Sciences,2012,24(6):1014-1020.
    [206] Wei J C,Gao B Y,Yue Q Y,et al. Comparison of coagulation behavior and flocstructure characteristic of different polyferric-cationic polymer dual-coagulants inhumic acid solution [J]. water research,2009,43(3):724-732.
    [207] Chen W,Westerhoff P,Leenbeer J A,et a1. Fluorescence excitation-emissionmatrix regional integration to quantify spectra for dissolved organic matter [J].Environmental Science and Technology,2003,37:5701-5710.
    [208] Blake N J,Cumming I W,Streat M. Prediction of steady state crossflow filtrationusing a force balance model [J]. Journal of Membrane Sience,1992,68(3):205-216.
    [209]卓琳云,李俊,陈季华,等.高岭土动态膜的制备[J].膜科学与技术,2006,26(3):37-40.
    [210] Rautenbach R,Schock G.Ultrafiltration of Macromolecular solution and cross-flow microfiltration of colloidal suspesions:A contribution to permeate fluxcalculations [J]. Joumal of membrane science,1988,36:23l-242.
    [211]邢传红,Tardieu Eric,钱易.无机膜-生物反应器处理生活污水的实验研究[J].环境科学,1997,l8(3):1-4.
    [212] Li X Z,Hess H,H flinger W. Influence of operating parameters on precoat layersbuilt up under crossflow condition [J]. Separation and Purification Technology,2003,31(3):269-280.
    [213] Mohd Noor M J M,Ahmadun F R,Mohamed T A,et al. Performance of flexiblemembrane using kaolin dynamic membrane in treating domestic wastewater [J].Desalination,2002,147(1-3):63-268.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700