用户名: 密码: 验证码:
云贵高原及邻区次生氧化锰矿晚新生代大规模成矿作用及其构造和古气候意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
云贵高原及邻区分布有大量的次生氧化锰矿床,这些矿床是我国优质锰矿石的重要来源之一。对次生氧化锰矿床矿物学、地球化学、4OAr/39Ar同位素年代学的研究是理解区域化学风化、矿床次生富集过程及富集机理的重要内容和关键所在。次生氧化锰矿不仅是极好的古气候和古环境信息载体,而且其形成之后的保存程度又与区域构造活动性及地貌演化过程紧密相关。因此,对云贵高原次生氧化锰矿床进行系统的矿物学、地球化学和年代学研究不仅有助于了解次生锰矿床的成矿过程和成矿机理,而且可以查明矿床的剥蚀程度、为深部矿产资源评价提供依据,同时还可以提供区域地壳活动、地貌形成和演化和新生代古气候特征等方面的重要信息,具有重要的理论和实际意义。
     本论文选取云贵高原及邻区具有代表性的8个氧化锰矿床为研究对象,包括巴夜、老厂鹤庆、遵义、东湘桥、下雷、二塘和荔浦锰矿。在详细野外观察及系统采样的基础上,利用X射线荧光光谱(XRF)和电感耦合等离子体质谱(ICP-MS)对锰矿石的主量和微量元素进行准确分析,进而应用光学显微镜、扫描电子显微镜(SEM)、X-射线粉晶衍射(XRD)、电子显微探针(EMP)、激光剥蚀ICP-MS及矿物热重分析(TGA)等手段对氧化锰矿物的晶体结构、矿物形貌、结晶程度、矿物化学成分等进行综合研究,最后选取其中6个矿床开展系统和全面的40Ar/39Ar年代学研究,获得了一大批高精度的年龄数据。
     以上研究表明,云贵高原及邻区氧化锰矿床的矿物组成主要为:隐钾锰矿、锰钡矿、锰铅矿、软锰矿、恩苏塔矿、斜方锰矿、锂锰矿、黑锌锰矿、钙锰矿等。其中软锰矿在风化过程中相当稳定,存在于所有氧化锰矿床中;其次是隐钾锰矿、锰钡矿、锂锰矿、恩苏塔矿。XRD分析可对光学性质很接近的隐钾锰矿、斜方锰矿、恩苏塔矿和锂锰矿进行有效鉴定,因为这些矿物有其特征的衍射峰值:隐钾锰矿6.95A、4.9A;斜方锰矿4.08A、2.53A;恩苏塔矿3.95A、2.34A;锂锰矿9.56A、4.74A。TGA与XRD分析表明云南巴夜锰矿床中隐钾锰矿衍射峰强、含水低,加热至450~750℃时缓慢地脱羟基;相反,老厂和遵义锰矿的隐钾锰矿衍射峰弱、含水较高,在600℃时迅速地脱羟基。这种脱羟基温度的差异反映了不同矿床氧化锰矿物结晶程度的差异,同时为后续年代学研究提供了充分的理论基础和依据。对氧化锰矿物的形貌观察表明:具1×1或1×2隧道结构的氧化锰矿物以柱状或粒状晶形为主,如软锰矿、斜方锰矿、恩苏塔矿;具2×2隧道结构的氧化锰矿物主要为长柱状和针状晶形,如隐钾锰矿和锰钡矿;具2×3或3×3隧道结构的氧化锰矿物主要为针状和纤维状晶形,如钙锰矿;具有层状结构的锰矿物呈片状晶形,如锂锰矿、黑锌锰矿。氧化锰矿物的形貌不仅受控于矿物晶体结构,而且还受生长空间的影响。
     对矿石组成和结构构造的研究表明,氧化锰矿的形成过程实际上就是Mn与A1、Fe、Ca等元素在风化过程中发生强烈分离的过程。当铁氧化物和锰氧化物共存时,有害元素P主要赋存在铁氧化物中,因此,制定合理的矿物分选流程将铁氧化物从锰矿石和铁锰矿石中分离可以显著降低P的含量,提高锰矿石的质量。氧化锰矿石的稀土元素(REE)分析表明,鹤庆氧化锰的矿石REE含量(25.76~45.5ppm)、球粒陨石标准化配分模式与矿区的菱锰矿和硅质岩一致,而与玄武岩和泥岩存在显著差别,表明鹤庆氧化锰矿是由菱锰矿及硅质岩矿胚层风化形成。老厂锰矿石的REE含量(270.22~1942.9ppm)和球粒陨石标准化配分模式与老厂地区石炭系火山岩相似,REE含量随结核减小而增加,并与Mn的含量呈负相关,与Fe、Si、P等元素呈正相关,与Ce异常呈正相关。另外,矿石中含Ag、Pb、Zn等元素强烈富集,含量分别可达1790g/t、0.4%和7.56%,表明老厂氧化锰矿的形成很可能与老厂铅锌银矿关系密切;Mn和其他金属元素来自老厂铅锌银矿床及含锰碳酸岩蚀变岩的化学风化。
     除Mn以外,Mo、Co、Ni、V、As、Zn、Cd、Pb、Cu、Ba等在氧化锰矿石中也不同程度地富集,并经常达到综合回收利用水平。由于这些元素易于进入氧化锰矿物的晶格中或被氧化锰矿物吸附,因此,可作为氧化锰矿找矿的重要地球化学标志。广西荔浦矿床中Ni的含量最高,平均达0.13%;湖南东湘桥锰矿床的Co含量最高,平均0.024%。Co主要赋存在锂锰矿、锰钡矿-隐钾锰矿固溶体和隐钾锰矿中;Ni在隐钾锰矿和锂锰矿中的含量分别可达3%和2%。SEM、EMP和XRD分析均未发现Co和Ni的独立矿物,说明这些元素自氧化锰矿物中以吸附或类质同像的形式存在。这些富Co、Ni的氧化锰矿床均与二叠系孤峰组热水沉积成因的含锰硅质岩有关,反映了矿胚层对氧化锰矿伴生有益元素的控制。Cu、Pb在云南老厂锰矿床的平均含量很高,分别为0.07%和0.16%;Zn在老厂和鹤庆锰矿床的平均中含量为1.38%和0.61%;Cu在广西二塘和湖南东湘桥锰矿的平均含量可达0.1%。单矿物电子探针分析结果表明Cu主要分布在锂锰矿、恩苏塔矿、锰铅矿或锰钡矿-隐钾锰矿的固溶体矿物中;Pb则赋存在锰铅矿或锰铅矿-锰钡矿的固溶体中;Zn主要存在于黑锌锰矿中,少部分在锰钡矿-隐钾锰矿的固溶体、恩苏塔矿中。值得注意的是,Ag在老厂锰矿的含量极高(336~1790g/t),其中以5cm左右的锰结核中含Ag最高。当结核直径小于5cm时,Ag与Mn具有正相关性;当结核大于5cm时,Ag与Mn具负相关性,因而可根据锰结核的粒级分布粗略评估银的经济价值。同样,锰矿石中无独立银矿物的存在,Ag常呈分散状分布于锰铅矿中,其赋存状态为类质同象或吸附。
     利用激光阶段加热技术对云贵高原和邻区6个氧化锰矿共136个单矿物颗粒进行了40Ar/39Ar定年,获得一大批高精度的年代学数据,初步揭示了云贵高原及邻区氧化锰矿的年代学格架。激光阶段加热40Ar/39Ar同位素分析共获得五种特征的表观年龄谱,分别是平坦状年龄谱、反冲型年龄谱、阶梯状年龄谱、跳跃式年龄谱和马鞍形年龄谱。平坦状年龄谱表明样品结晶较好、样品中无过剩氩、无老矿物的污染、样品在照射过程中也没有发生39Ar的反冲丢失。反冲型年龄谱说明样品在中子反应堆中接收快中子照射时发生过部分39Ar的反冲,但反冲强度不大,多数情况下仍然给出了较好的年龄结果。阶梯状年龄谱说明样品中有大量形成于不同时期的氧化锰环带或存在不同期次的矿物,这些环带和不同世代的矿物具有不同的热稳定性,因而在激光阶段加热时于不同的温度区间释气并形成阶梯状年龄谱。跳跃式年龄谱同样是样品中存在多个环带或多世代矿物的反映,但这些环带或矿物的热稳定性可能是动荡变化的。马鞍形年龄谱反映样品中存在少量的原生老矿物的污染。在所分析的136个矿颗粒中,约85%的样品给出了很好的坪年龄或似坪年龄,其中云南巴夜锰矿的年龄为6.5~0.03.03Ma,老厂锰矿的年龄为9.5~4.3Ma,贵州遵义锰矿的年龄为13.1~0.1Ma,广西二塘锰矿的年龄为11.0~4.1Ma,下雷锰矿的年龄为11.9~0.1Ma,湖南东湘桥锰矿的年龄为9.1~4.2Ma。本文研究结果并结合前人获得的华南氧化锰矿年龄数据表明,云贵高原和邻区氧化锰矿的次生富集至少始于早中新世(-23Ma),大规模富集成矿时间集中在中中新世(13~15Ma),晚中新世(5-8Ma),上新世(3.5、2.4-2.8Ma)和更新世(1.2Ma、0.8Ma、0.5Ma)。氧化锰矿的成矿时代分布反映云贵高原和华南地区温暖潮湿的古气候至少在早中新世就已出现并一直持续到更新世,这种气候条件促进了区域大面积的红土型风化和氧化锰矿大规规模表生富集成矿。早中新世的氧化锰矿次生富集与东亚夏季风的起源时间基本吻合,而中中新世、晚中新世、上新世界、更新世各时间段的大规模表生成矿作用则反映了东亚夏季风的强化,这与华南大量陆相盆地中的沉积物、南海及印度洋的深海沉积物、以及黄土堆积等的研究结果一致。华南地区晚新生代大规模区域化学风化与成矿年代学研究的初步结果显示大陆区域化学风化可能并不具有全球性,而主要受区域古气候和构造等因素的控制。
     云南次生氧化锰矿的年龄最老为晚中新世(9-5Ma),且晚中新世氧化锰矿均遭到强烈剥蚀,但在地势较低地方还有部分残留;原地的次生氧化锰矿年龄一般为晚上新世以后(3.4,2.8~2.4,1.2~0.8,0.5Ma),表明云南高原在晚中新世至早上新世经历了强烈的隆升,晚上新世后则为周期性的隆升。黔北高原遵义氧化锰矿年代学研究表明矿床次生富集开始于13Ma,表明黔北高原在晚中新世以来相对稳定。本文研究发现云贵高原氧化锰矿的年龄与其高程存在显著的正相关性,据此计算出云南巴夜地区晚上新世以来的剥蚀率为~30m/Ma,明显大于黔北高原的剥蚀速率<3.2m/Ma,反映了滇西南地区3Ma以来隆升剧烈,而黔北高原从晚中新世以来构造隆升剥蚀较弱。云贵高原及其邻区氧化锰矿年龄表现为从东至西依次减小:广东新榕锰矿为23.5~2.06Ma,广西南部钦州-防城锰矿带为17.5~4.7Ma,桂西南下雷锰矿11.3~0.3Ma,广西北部二塘锰矿9.8~4.1Ma,;湖南东湘桥锰矿10.23~4.19Ma,贵州遵义锰矿13.1~0.1Ma,云南巴夜锰矿6.8~0.08Ma,云南老厂锰矿床9.5~4.3Ma。氧化锰矿的这种年龄分布特征反映早中新世以来云贵高原和华南地区地壳稳定性和隆升剥蚀程度的差异:与青藏高原邻近的云南地区和桂西南地区经历了较强的隆升,因此早期化学风化和表生成矿的记录未能有效保存下来。氧化锰矿年龄分布的空间变化还为这类矿床的区域矿产潜力评价提供了重要信息。
     云贵高原及邻区氧化锰矿床的矿物学、地球化学、年代学研究表明次生氧化锰矿物的富集主要为三种机制:(1)对含锰碳酸盐和锰硅酸盐的直接交代形成氧化锰矿;(2)锰离子直接从风化溶液中沉淀充填于裂隙或空洞中;(3)先前形成氧化锰矿物再经溶解、沉淀富集。氧化锰矿床的形成主要受含锰岩系、气候条件、地质构造、地形地貌及次生富集持续时间等因素的控制:云贵高原及邻区广泛分布的含锰矿胚层及中新世以来温暖潮湿的古气候条件是矿床大规模成矿的基础;次生氧化锰矿年代学研究表明氧化锰矿的生长速率十分缓慢,一般均小于100mm/Ma,因此中新世以来长期的、大规模化学风化有利于形成具有工业价值的氧化锰矿;次生氧化锰矿床年龄分布呈现出由西至东逐渐年轻,反映了构造稳定性对矿床保存的控制;云贵高原氧化锰矿床一般分布于低缓的山坡,这种地形地貌有利于氧化锰矿的保存。
Supergene Mn-oxide deposits are widely distributed in Yunnan-Guizhou Plateau, and have been a major source of high grade Mn-oxide ore. Mineralogy, geochemistry, and40Ar/39Ar geochronology of supergene Mn-oxide deposits are crucial in understanding the secondary mineralization, chemical weathering processes, and the enrichment of associated elements (Ag, Co, Ni, Zn etc.). Precise age constraints of the supergene Mn-oxide deposits not only provide insights into the timing, rates, and processes of supergene Mn mienralization, but also shed lisghts on the paceloclimatic and tectonic conditions and geomorphological evolution that control the formation, distribution, and preservation of the Mn-oxide ores.
     In this study, I chose8representative Mn-oxide deposits (Baye, Laochang, Heqing, Zunyi, Dongxiangqiao, Xialei, Ertang, Lipu) from Yunnan, Guizhou, Guangxi, and Hunan Provinces to carry out detailed mineralogical, geochemical, and geochronological investigations. These studies rely on the identification and selection of suitable samples in the field; the characterization of mineral paragenesis by optical microscopy; the determination of fine-scale mineral chemistry and paragenesis though scan electron microscopy (SEM) and electron microprobe analysis (EMPA); the determination of the physico-chemical properties (mineral structure, crystallinity, and thermal stability) of the Mn-oxide minerals through X-ray diffraction (XRD) and thermo-gravimetric analysis (TGA); the characterization of the major and trace geochemistry of Mn-oxides ores by X ray fluorescence and Inductively coupled plasma mass spectrometry (ICP-MS); and precise40Ar/39Ar dating of K-bearing Mn-oxide minerals using a noble gas mass-spectrometer (Mass Analyser Products215-50:Map215-50).
     The Mn-oxide deposits investigated consist mainly of cryptomelane, hollandite, coronadite, pyrolusite, nsutite, ramsdellite, lithiophorite, chalcophanite, and todorokite, witgh pyrolusite and cryptomelane being the most common phases. Cryptomelane, ramsdellite, nsutite and lithiophorite are difficultly recognized under optical microscopy, as then have very similar optical properties. These minerals, however, can be readily recognized by XRD studies because each mineral has distrinct diffraction patterns. TGA analysis of cryptomelane from the Baye deposit shows that this mineral subjects to significant but slow dehydroxylation at between450and750℃, whereas dehydroxylation of cryptomelane from the Zunyi and Laochan deposits ocurred rapidly at ca.600℃. This indicates that cryptomelane in Baye is better crystallized and has lower water contents compared to that of the Zunyi and Laochan deposit. Crystal forms of the Mn-oxide minerals with tunnel structures (1×1,1×2,2×2,2×3,3×3) are acicular and columnar, while the Mn-oxides with layer structures commonly display plate and sheet crystal morphology. The crystal morphologies of Mn-oxide minerals are obviously controlled by the mineral structures and space availability during mineral growth.
     Geochemcal data of Mn-oxides ores reveal that Mn was completely seprated from Al, Fe, and P during lateritic weathering and supergene enrichment of Mn-oxide ores. Al and Fe commonly form the residual minerals at the top of weathering profile. Whenever Fe-oxides and Mn-oxides coexist, P is always preferentially fractionated into Fe-oxides such as goethite and hematite. Mo, Co, Ni, V, As, Zn, Cd, Pb, Cu, Ba, and Sr are also enriched in Mn-oxide ores, and can be used as fingerprinter elemenets in geochemical exploration of Mn-oxide deposits. The Heqing Mn deposit (Yunnan) contains25.76-45.5ppm REE and has chondrite-normalized REE patterns similar to the rhodochrosite and siliceous rocks in the mine and surroundings, but are distinctly different from the Triassic basalts and mud stones. This indicates that Mn-oxides were derived from weathering of rhodochrosite and siliceous rocks. The Laochang Mn-oxide deposit (Yunnan) have REE contents and chondrite-normalized REE patterns compatible with Carboniferous volcanic rocks, and the REE contents show positive relationship with Fe, Si, P, and Ce#, and negative correlations with grain size of Mn-oxide nodules and contents of Mn. These observations indicate that the volcanic rocks are the most likely source of Mn-oxide ores. On the other hand, Mn-oxide ores in the Laochang deposit contain Ag, Pb, and Zn up to1790g/t,0.4%, and7.56%, respectively, clearly indicating that these elements and Mn were provided by weathering the Laochang Ag-Pb-Zn deposits in proximity to the Mn-oxide deposits.
     Co and Ni are notably high in the Baye, Er'tang, Dongxiangqiao, and Lipu Mn-oxide deposits, with values enough for recovery. Nickel content is up to0.13%at Lipu, whereas the average content of Co is0.024%at the Dongxiangqiao deposit. Cobalt and Ni are mainly enriched in lithiophorite, hollandite-cryptomelane solid solution, and cryptomelane. The contents of Ni are up to3%in cryptomelane and2%in lithiophorite. The Co-and Ni-enriched Mn-oxide ores are commonly associated with cherts of the Permian Gufeng Formation, indicating that protores have direct control on supergene Mn mineralization and enrichement of other trace elements. Copper and Pb are high in the Laochan Mn-oxide deposit, up to0.07%and0.16%, respectively. The concentration of Zn in the Heqing and Laochan deposits are up to1.38%and0.61%, respectively. The Cu contents are up to0.1%in the Ertang and Dongxiangqia deposits. Copper is mainly hosted in lithiophorite, nsutite, coronadite, and hollandite-cryptomelane solid solutions; Pb is enriched in coronadite and hollandite-coronadite solid solution; and Zn is present in chalcophanite, hollandite-cryptomelane solid solutions, and nsutite. It is noteworthy that Ag is unusually enriched in the Laochan Mn deposit, ranging from336to1790g/t. There is a positive relationship between Ag and Mn in Mn-oxide nodules are <5cm in diameter; but these elementsare negatively correlated in nodules>5cm in diameter.X-ray mapping shows that distribution of Ag is consistent with coronadite, indicating that it occrs mainly as substitution for the Pb lattice site is adsorbed on mineral surfaces. The supergene Mn oxide deposits of the Yunnan-Guizhou Plateau were formed by three principal mechanisms:(1) replacement of hypogene Mn-silicates and Mn-carbonates by Mn-oxides,(2) precipitation of tetravalent manganese directly from weathering solution to form cavity-and fracture-fillings, and (3) dissolution and re-precipitation or previous Mn-oxides by reducing, organic batter-enriched solutions. The formation of Mn-oxide deposits are controlled by Mn-protore, paleoclimate, tectonism, geomorphonology, and duration of mineralization.
     40Ar/39Ar laser incremental heating analysis of136K-Mn oxide grains collected from8deposits provides the first numerical constraints on the timing and history of supergene Mn enrichment. These samples yield five types of age spectra:(1) well-defined flat plateau,(2) left-deviated spectra,(3) staircase spectra,(4) rugged spectra, and (5) saddle-shaped spectra. The well-defined flat spectra suggest that the grains analyzed are well crystallized, cotain no excess argon and old contamination, and lack39Ar loss by recoil. The left-deviated spectra are an indicative of39Ar recoil due to irradiation. However, whenever the recois occurred, it seems that only the outer parts of the crystals were affected and plateau or pseudo-plateau may still be obtained. The staircase spectra are best interpreted as presence of multiple growth bands in the grains, with individual bands having distinct thermal stability and thus releasuing their gases at different temperatures. Variable thermal stabilities of multiple banded Mn oxides or generations in the grains may explain the rugged spectra. If old, hypogene minerals are contained in the grain, a saddle-shaped spectrum may occur.
     More than85%of the136grains yield well-developed plateau or pseudo plateau ages. The Baye and Laochang Mn-oxide deposit in Yunnan were dated at6.5~0.03Ma and9.5~4.3Ma, respectively, whereas the Zunyi Mn-oxide deposit in Guizhou yield ages ranging from13.1to0.1Ma. The Ertang and Xialei deposits in Guangxi recorded weathering and supergene mineralization events in the11.0to4.1Ma and11.9to0.1Ma intervals, respectively. Simialr ages are also obtained in the Dongxiangqiao deposit, southern Hunan Provinc, which are9.1~4.2Ma. The dating results form this study, when combined with previous data in South China, reveal that weathering and Mn-oxide precipitation commenced at least in early Miocene (~23Ma), and experienced several periods of intensification at mid-Miocene (13~15Ma), late Miocene (5-8Ma), Pliocene (3.5,2.4-2.8Ma), and Pleistocene (1.2,0.8,0.5Ma). This indicates that warm and humid climatic conditions conducive to supergene mineralization prevailed during the Neogene. The geochronological results of Mn-oxide are consistent with the evolution of Summer Asia Monsoon, which commenced in the early Miocene and were strengthened at mid-Miocene, late Miocene, late Pliocene, and Pleistocene. The climatic conditions inferred from weathering geochronology is consistent with the records of sedimentary and fossil floral and fauna associations from inland, deep ocean sediments from South China sea and Indian Ocean, and North China loess.
     The oldest supergene Mn-oxides (ca.5-9Ma) in the Yunnan plateau have been eroded, transported, and redeposited on flat slopes and low relie landscape, while in situ Mn-oxides yield the ages between ca.3Ma to present. This demonstrates that the Yunnan plateau experienced significant uplift during the late Miocene to early Pliocene. The ages of Mn-oxides at different erosion surfaces decrease with the elevation, indicating repeated uplift of the Yunnan plateau during the Pleistocene. In northern Guizhou, the uppermost level of weathering profile yielded40Ar/39Ar ages in the range of11-13Ma, demonstrating relatively stable tectonism in northern Guizhou compared to the Yunnan plateau. This is also consistent with the erosion rates calculated from the Mn-oxide ages vs. elevation, which show the erosion rate at Baye (30m/Ma) is much higher than the value obtained from Zunyi (3.2m/Ma). In combination with40Ar/39Ar ages of Mn oxide deposits in south China, the present data show that Mn-oxide deposits become progressively younger from east to west:23.5to2.06Ma for the Xingrong deposit in western Guangdong province,17.5to4.7Ma for the Qianzhou-Fangcheng Mn belt in southern Guangxi,11.3to0.3Ma for the Xialei deposit in SW Guangxi Province,9.8to4.1Ma for the Ertang deposit in northern Guangxi,10.23to4.19Ma for the Dongxiangqiao deposit in southern Hunan Province,13.1to0.1Ma for the Zunyi deposit in northern Guizhou Province,9.5to4.3Ma for the Laochan deposit in NW Yunan Province, and6.8to0.08Ma for the Baye deposit in southern Yunnan Province,. The distribution of Mn-oxide ages demonstrate a fundamental control of tectonic stability on the preservation of weathering records and supergene Mn ores.
引文
[1]Alpers C. N. and Brimhall G. H. (1988) Middle Miocene climatic change in the Atacama Desert, northern Chile; evidence from supergene mineralization at La Escondida; with Suppl. Data 88-21. GSA Bulletin 100(10),1640-1656.
    [2]Alpers C. N. and Brimhall G. H. (1989) Paleohydrologic evolution and geochemical dynamics of cumulative supergene metal enrichment at La Escondida, Atacama Desert, northern Chile. Economic Geology 84(2),229-255.
    [3]An Z. S., Huang Y. S., Liu W., Guo Z., Steven C., Li L., Warren P., Ning Y., Cai Y., Zhou W., Lin B., Zhang Q., Cao Y., Qiang X., Chang H., and Wu Z. (2005) Multiple expansions of C4 plant biomass in East Asia since 7 Ma coupled with strengthened monsoon circulation. Geology 33(9),705-708.
    [4]An Z. S., Kutzbach J. E., Prell W. L., and Porter S. C. (2001) Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since late Miocene times. Nature (London) 411(6833),62-66.
    [5]Arancibia G., Matthews S. J., and Perez de Arce C. (2006) K-Ar and 40Ar/39Ar geochronology of supergene processes in the Atacama Desert, Northern Chile:tectonic and climatic relations. Journal of the Geological Society 163(1),107-118.
    [6]Barker P. F. and Thomas E. (2004) Origin, signature and palaeoclimatic influence of the Antarctic Circumpolar Current. Earth-Science Reviews 66(1-2),143-162.
    [7]Baur W. H. (1976) Rutile-type compounds. V. Refinement of MnO2 and MgF2. Acta Crystallographica, Section B (Structural Crystallography and Crystal Chemistry) B32,2200-4.
    [8]Beauvais A., Ruffet G, Heocque O., and Colin F. (2008) Chemical and physical erosion rhythms of the West African Cenozoic morphogenesis:The 39Ar-40Ar dating of supergene K-Mn oxides. Journal of Geophysical Research 113(F4), F04007.
    [9]Bernal J. P., Eggleton R. A., and McCulloch M. T. (2006) U-series analysis of weathering minerals by LA-MC-ICP-MS; a new tool for regolith geochronology. CRC LEME Open File Report,27-41, 86-94.
    [10]Bird M. I. and Chivas A. R. (1988) Oxygen isotope dating of the Australian regolith. Nature (London) 331(6156),513-516.
    [11]Bird M. I. and Chivas A. R. (1989) Stable-isotope geochronology of the Australian regolith. Geochimica et Cosmochimica Acta 53(12),3239-3256.
    [12]Bousserrhine N., Gasser U. G., Jeanroy E., and Berthelin J. (1999) Bacterial and chemical reductive dissolution of Mn-, Co-, Cr-, and Al-substituted goethites. Geomicrobiology Journal 16(3),245-258.
    [13]Bouzari F. and Clark A. H. (2002) Anatomy, Evolution, and Metallogenic Significance of the Supergene Orebody of the Cerro Colorado Porphyry Copper Deposit, I Region, Northern Chile. Economic Geology 97(8),1701-1740.
    [14]Brady P. V. and Carroll S. A. (1994) Direct effects of CO2 and temperature on silicate weathering; possible implications for climate control. Geochimica et Cosmochimica Acta 58(7),1853-1856.
    [15]Braucher R., Bourles D. L., Brown E. T., Colin F., Muller J. P., Braun J. J., Delaune M., Edou Minko A., Lescouet C., Raisbeck G. M., and Yiou F. (2000) Application of in situ-produced cosmogenic 10Be and 26Al to the study of lateritic soil development in tropical forest:Theory and examples from Cameroon and Gabon,95-111.
    [16]Bricker O. (1965) Some stability relations in the system Mn-O (sub 2)-H (sub 2) O at 25 degrees and one atmosphere total pressure. American Mineralogist 50(9),1296-1354.
    [17]Brown E. T., Bourles D. L., Raisbeck G. M., Yiou F., Colin F., Sanfo Z., and Descarceaux S. (1994) Applications of 10Be and 26Al in examination of the development of tropical soils and landforms. U. S. Geological Survey Circular,41.
    [18]Burns R. G and Burns V. M. (1979) Manganese oxides. Mineralogical Society of America Short Course Notes 6,1-46.
    [19]Bystroem A. and Marie Bystroem A. (1950) The crystal structure of hollandite, the related manganese oxide minerals, and alpha MnO2. Acta Crystallographica 3, Part 2,146-154.
    [20]Cai J., Liu J., Willis W. S., and Suib S. L. (2001) Framework doping of iron in tunnel structure cryptomelane. Chemistry of Materials 13(7),2413-22.
    [21]Carmo I. d. O. and Vasconcelos P. (2004) Geochronological evidence for pervasive Miocene weathering, Minas Gerais, Brazil. Earth Surface Processes and Landforms 29(11),1303-1320.
    [22]Carmo I. d. O. and Vasconcelos P. M. (2006) 40Ar/39Ar geochronology constraints on late Miocene weathering rates in Minas Gerais, Brazil. Earth and Planetary Science Letters 241(1-2),80-94.
    [23]Cerling T. E., Harris J. M., MacFadden B. J., Leakey M. G., Quade J., Eisenmann V., and Ehleringer J. R. (1997) Global vegetation change through the Miocene/Pliocene boundary. Nature (London) 389(6647),153-158.
    [24]Chan M. A., Parry W. T., Petersen E. U., and Hall C. M. (2001) 40Ar/39Ar age and chemistry of manganese mineralization in the Moab and Lisbon fault systems, southeastern Utah. Geology 29(4),331-a-334.
    [25]Chang Z. G., Xiao J., Qing L. L., and Yao H. T. (2010) Abrupt shifts in the Indian monsoon during the Pliocene marked by high-resolution terrestrial records from the Yuanmou Basin in southwest China. Journal of Asian Earth Sciences 37(2),166-175.
    [26]Cherdyntsev V. V., Orlov D. P., Isabaev E. A., and Ivanov V. I. (1961) Uranium isotopes under natural conditions Izotopy urana v prirodnykh usloviyakh. Geokhimiya(10),840-848.
    [27]Chukhrov F. V. (1966) Feasibility of aboslute-age determination for potassium-carrying manganese minerals. International geology review 8,278-280.
    [28]Clark M. K. (2003) Late Cenozoic uplift of southeastern Tibet. PHD Thesis, Massachusetts Institute of Technology,Cambridge, MA, United States.
    [29]Clark M. K., House M. A., Royden L. H., Whipple K. X., Burchfiel B. C., Zhang X., and Tang W. (2005) Late Cenozoic uplift of southeastern Tibet. Geology 33(6),525-528.
    [30]Clift P., Lee J. I., Clark M. K., and Blusztajn J. (2002) Erosional response of south China to arc rifting and monsoonal strengthening; a record from the South China Sea. Marine Geology 184(3-4),207-226.
    [31]Clift P. D., Hodges K. V., Heslop D., Hannigan R., Hoang Van L., and Calves G. (2008) Correlation of Himalayan exhumation rates and Asian monsoon intensity. Nature Geoscience 1(12),875-880.
    [32]Clift P. D., Layne G. D., and Blusztajn J. (2004) Marine sedimentary evidence for monsoon strengthening, Tibetan uplift and drainage evolution in east Asia. Geophysical Monograph 149, 255-282.
    [33]Craig M. A. (2001) Regolith mapping for geochemical exploration in the Yilgarn Craton, Western Australia. Geochemistry:Exploration, Environment, Analysis 1(4),383-390.
    [34]Dammer D., Chivas A. R., and McDougall I. (1996) Isotopic dating of supergene manganese oxides from the Groote Eylandt Deposit, Northern Territory, Australia. Economic Geology 91(2), 386-401.
    [35]Dammer D., McDougall I., and Chivas A. R. (1999) Timing of weathering-induced alteration of manganese deposits in Western Australia; evidence from K/Ar and 40 Ar/39 Ar dating. Economic Geology 94(1),87-108.
    [36]DeConto R. M. and Pollard D. (2003) Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 421(6920),245-9.
    [37]Decree S., Ruffet G., Putter T. D., Baele J.-M., Recourt P., Jamoussi F., and Yans J. (2010) Mn oxides as efficient traps for metal pollutants in a polyphase low-temperature Pliocene environment: A case study in the Tamra iron mine, Nefza mining district, Tunisia. Journal of African Earth Sciences 57(3),249-261.
    [38]Deike R. G., Granina L. Z., Callender E. C., and McGee J. J. (1997) Formation of ferric iron crusts in Quaternary sediments of Lake Baikal, Russia, and implications for paleoclimate. Marine Geology 139(1-4),21-46.
    [39]Dequincey O., Chabaux F., Clauer N., Liewig N., and Muller J.-P. (1999) Dating of weathering profiles by radioactive disequilibria:Contribution of the study of authigenic mineral fractions. Comptes Rendus de l'Academie de Sciences-Serie Ⅱa:Sciences de la Terre et des Planetes 328(10),679-685.
    [40]Dicken A. P. (2005) Radiogenic isotope geology. Cambridge University Press, Cambridge, United Kingdom.
    [41]Ding Z. L., Sun J. M., Liu T. S., Zhu R. X., Yang S. L., and Guo B. (1998) Wind-blown origin of the Pliocene red clay formation in the central Loess Plateau, China. Earth and Planetary Science Letters 161(1-4),135-143.
    [42]Dunai T. J., Lopez G. A. G., and Juez-Larre J. (2005) Oligocene-Miocene age of aridity in the Atacama Desert revealed by exposure dating of erosion-sensitive landforms. Geology 33(4), 321-324.
    [43]Ericksen G. E. (1981) Geology and Origin of the Chilean nitrate deposits.
    [44]Fan D., Liu T., and Ye J. (1992) The process of formation of manganese carbonate deposits hosted in black shale series. Economic Geology 87(5),1419-1429.
    [45]Fleck R. J., Sutter J. F., and Elliott D. H. (1977) Interpretation of discordant 40Ar/39Ar age-spectra of Mesozoic tholeiites from Antarctica. Geochimica et Cosmochimica Acta 41(1),15-32.
    [46]Fleischer M. and Richmond W. E., Jr. (1943) The manganese oxide minerals, a preliminary report. Economic Geology and the Bulletin of the Society of Economic Geologists 38(4),269-286.
    [47]Forster M. A. and Lister G. S. (2004) The interpretation of 40Ar/39Ar apparent age spectra produced by mixing:Application of the method of asymptotes and limits. Journal of Structural Geology 26(2),287-305.
    [48]Frenzel G. (1980) The manganese ore minerals. E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, Federal Republic of Germany.
    [49]Girard J.-P., Razanadranorosoa D., and Freyssinet P. (1997) Laser oxygen isotope analysis of weathering goethite from the lateritic profile of Yaou, French Guiana; paleoweathering and paleoclimatic implications. Applied Geochemistry 12(2),163-174.
    [50]Guo Z. T., Ruddiman W. F., Hao Q. Z., Wu H. B., Qiao Y. S., Zhu R. X., Peng S. Z., Wei J. J., Yuan B. Y., and Liu T. S. (2002) Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature (London) 416(6877),159-163.
    [51]Hautmann S. and Lippolt H. J. (2000) 40Ar/39Ar dating of central European K-Mn oxides; a chronological framework of supergene alteration processes during the Neogene. Chemical Geology 170(1-4),37-80.
    [52]Heim J. A. (2006) Geochronology of weathering and landscape evolution, Hamersley iron province, Australia. Ph.d Thesis, The Universtiy of Queensland.
    [53]Henocque O., Ruffet G., Colin F., and Feraud G. (1998) 40Ar/39Ar dating of West African lateritic cryptomelanes. Geochimica et Cosmochimica Acta 62(16),2739-2756.
    [54]Hewett D. F. and Fleischer M. (1960) Deposits of manganese oxide. Economic Geology 55(1), 1-55.
    [55]Hewett D. F., Fleischer M., and Conklin N. (1963) Deposits of the manganese oxides; supplement. Economic Geology and the Bulletin of the Society of Economic Geologists 58(1),1-51.
    [56]Heyman J., Stroeven A. P., Harbor J. M., and Caffee M. W. Too young or too old:Evaluating cosmogenic exposure dating based on an analysis of compiled boulder exposure ages. Earth and Planetary Science Letters 302(1-2),71-80.
    [57]Hodson M. E., Langan S. J., and Wilson M. J. (1996) A sensitivity analysis of the PROFILE model in relation to the calculation of soil weathering rates. Applied Geochemistry 11(6),835-844.
    [58]Horvath Z., Varga B., and Mindszenty A. (2000) Micromorphological and chemical complexities of a lateritic profile from basalt (Jos Plateau, central Nigeria). Chemical Geology 170(1-4),81-93.
    [59]Hu, Z. C., Gao, S., Liu, Y. S., Hu, S. H., Chen, H. H. and Yuan, H. L. (2008). Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas. Journal of Analytical Atomic Spectrometry 23,1093-1101.
    [60]Idnurm M. and Senior B. R. (1978) Palaeomagnetic ages of Late Cretaceous and Tertiary weathered profiles in the Eromanga Basin, Queensland. Palaeogeography, Palaeoclimatology, Palaeoecology 24(4),263-277.
    [61]Jia G. D., Peng P. A., Zhao Q. H., and Jian Z. M. (2003) Changes in terrestrial ecosystem since 30 Ma in East Asia:Stable isotope evidence from black carbon in the South China Sea. Geology 31(12),1093-1096.
    [62]Jiang H. and Ding Z. (2008) A 20Ma pollen record of East-Asian summer monsoon evolution from Guyuan, Ningxia, China. Palaeogeography, Palaeoclimatology, Palaeoecology 265(1-2),30-38.
    [63]Kirby E., Reiners P. W., Krol M. A., Whipple K. X., Hodges K. V., Farley K. A., Wenqing T., and Zhiliang C. (2002) Late Cenozoic evolution of the eastern margin of the Tibetan Plateau: Inferences from 40Ar/39Ar and (U-Th)/He thermochronology. Tectonics 21(1),1-1.
    [64]Kong P., Na C., Fink D., Huang F., and Ding L. (2007) Cosmogenic 10Be inferred lake-level changes in Sumxi Co Basin, western Tibet. Journal of Asian Earth Sciences 29(5-6),698-703.
    [65]Kuiper Y. D. (2002) The interpretation of inverse isochron diagrams in 40Ar/39Ar geochronology. Earth and Planetary Science Letters 203(1),499-506.
    [66]Lahiri D. (1971) Mineralogy and Genesis of the Manganese Oxide and Silicate Rocks in Kajlidongri and Surrounding Areas, Jhabua District, Madhya Pradesh, India. Economic Geology and the Bulletin of the Society of Economic Geologists 66(8),1176-1185.
    [67]Lamb S. and Davis P. (2003) Cenozoic climate change as a possible cause for the rise of the Andes. Nature (London) 425(6960),792-797.
    [68]Larson L. T. (1964) Geology and mineralogy of certain manganese oxide deposits. Economic Geology 59(1),54-78.
    [69]Larson L. T. (1970) Cobalt- and nickel-bearing manganese oxides from the Fort Payne Formation, Tennessee. Economic Geology 65(8),952-962.
    [70]Laznicka P. (1992) Manganese deposits in the global lithogenetic system; quantitative approach. Ore Geology Reviews 7(4),279-356.
    [71]Lelong F., Tardy Y., Grandin G., Trescases J. J., and Boulange B. (1976) Pedogenesis, chemical weathering and processes of formation of some supergene ore deposits. Elsevier Sci. Publ. Co., Amsterdam.
    [72]Li J.-W. and Vasconcelos P. (2002) Cenozoic continental weathering and its implications for the palaeoclimate; evidence from 40Ar/39Ar geochronology of supergene K-Mn oxides in Mt Tabor, central Queensland, Australia. Earth and Planetary Science Letters 200(1-2),223-239.
    [73]Li J. W., Vasconcelos P., Duzgoren-Aydin N., Yan D.-R., Zhang W., Deng X. D., Zhao X. F., Zeng Z. P., and Hu M. A. (2007a) Neogene weathering and supergene manganese enrichment in subtropical South China:An 40Ar/39Ar approach and paleoclimatic significance. Earth and Planetary Science Letters 256(3-4),389-402.
    [74]Li J. W., Vasconcelos P., Zhang W., Deng X. D., Duzgoren-Aydin N., Yan D. R., Zhang J. Q., and Hu M. A. (2007b) Timing and duration of supergene mineralization at the Xinrong manganese deposit, western Guangdong Province, south China; cryptomelane 40Ar/39Ar dating. Mineralium Deposita 42(4),361-383.
    [75]Lippolt H. J., Brander T., and Mankopf N. R. (1998) An attempt to determine formation ages of goethites and limonites by (U+Th)-4.He dating. Neues Jahrbuch fuer Mineralogie. Monatshefte 1998(11),505-528.
    [76]Lippolt H. J. and Hautmann S. (1995) 40Ar/39Ar ages of Precambrian manganese ore minerals from Sweden, India and Morocco. Mineralium Deposita 30(3-4),246-256.
    [77]Liu, Y., Hu, Z., Zong, K., Gao, C., Gao, S., Xu, J.& Chen, H. (2010). Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin,55(15),1535-1546.
    [78]Liu, Y. S., Hu, Z. C., Gao, S., Gunther, D., Xu, J., Gao, C. G.& Chen, H. H. (2008). In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology 257,34-43.
    [79]Long Van H., Clift P. D., Schwab A. M., Huuse M., Duc Anh N., and Zhen S. Large-scale erosional response of SE Asia to monsoon evolution reconstructed from sedimentary records of the Song Hong-Yinggehai and Qiongdongnan Basins, South China Sea. Geological Society Special Publications 342,219-244.
    [80]Lopano C. L., Heaney P. J., Post J. E., Hanson J., and Komarneni S. (2007) Time-resolved structural analysis of K- and Ba-exchange reactions with synthetic Na-birnessite using synchrotron X-ray diffraction. American Mineralogist 92(2-3),380-387.
    [81]Manceau A., Llorca S., and Calas G. (1987) Crystal chemistry of cobalt and nickel in lithiophorite and asbolane from New Caledonia. Geochimica et Cosmochimica Acta 51(1),105-113.
    [82]McDougall I. and Harrison T. M. (1988) Geochronology and thermochronology by the 40Ar/39Ar method. Oxford University Press, Oxford, United Kingdom.
    [83]McDougall I. and Harrison T. M. (1999) Geochronology and thermochronology by the 40Ar/39Ar method. Oxford University Press, New York, NY, United States.
    [84]Molnar P., England P., and Martinod J. (1993) Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon. Reviews of Geophysics 31(4),357-396.
    [85]Mote T. I., Becker T. A., Renne P., and Brimhall G. H. (2001) Chronology of Exotic Mineralization at El Salvador, Chile, by 40Ar/39Ar Dating of Copper Wad and Supergene Alunite. Economic Geology 96(2),351-366.
    [86]Nahon D., Parc S., and Anonymous. (1990a) Lateritic concentrations of manganese oxyhydroxides and oxides. Geologische Rundschau 79(2),319-326.
    [87]Nahon D. B. (1986) Evolution of iron crusts in tropical landscapes. Acad. Press, Orlando, FL.
    [88]Nahon D. B., Pare S., and Anonymous. (1990b) Lateritic concentrations of manganese oxyhydroxides and oxides. Geologische Rundschau 79(2),319-326.
    [89]Nelson Y. M., Lion L. W., Shuler M. L., and Ghiorse W. C. (2002) Effect of oxide formation mechanisms on lead adsorption by biogenic manganese (hydr)oxides, iron (hydr)oxides, and their mixtures. Environmental Science and Technology 36(3),421-425.
    [90]Nemchin A. A., Neymark L. A., and Simons S. L. (2006) U/Pb SHRIMP dating of uraniferous opals. Chemical Geology 227(1-2),113-132.
    [91]Nicholson K. (1992) Contrasting mineralogical-geochemical signatures of manganese oxides; guides to metallogenesis. Economic Geology 87(5),1253-1264.
    [92]Nicholson K., Hein J. R., Buehn B., Dasgupta S., and (1997) Manganese mineralization; geochemistry and mineralogy of terrestrial and marine deposits. Geological Society Special Publications 119.
    [93]Nikerk H. S. v., Gutzmer J., Beukes N. J., Phillips D., and Kiviets G. B. (1999) An 40Ar/39Ar age of supergene K-Mn oxyhydroides in a post-Gondwana soil profile on the Highveld of South Afica. South African Journal of Science 95,450-454.
    [94]Odin G.-S. and Bonhomme M. G. (1982) Argon behaviour in clays and glauconies during preheating experiments,333-343.
    [95]Ostwald J. (1984) Two varieties of lithiophorite in some Australian deposits. Mineralogical Magazine 48, Part 3(348),383-388.
    [96]Ostwald J. (1988) Mineralogy of the Groote Eylandt manganese oxides; a review. Ore Geology Reviews 4(1-2),3-45.
    [97]Ostwald J. (1990) The biogeochemical origin of the Groote Eylandt manganese oxide pisoliths and ooliths, northern Australia. Ore Geology Reviews 5(5-6),469-490.
    [98]Ostwald J. (1992) Genesis and paragenesis of the tetravalent manganese oxides of the Australian continent. Economic Geology 87(5),1237-1252.
    [99]Ouimet W., Whipple K., Royden L., Reiners P., Hodges K., and Pringle M. (2010) Regional incision of the eastern margin of the Tibetan Plateau. Lithosphere 2(1),50-63.
    [100]Ouimet W. B. (2007) Dissecting the Eastern Margin of the Tibetan Plateau:A Study of Landslides, Erosion and River Incision in a Transient Landscape. Doctor of Philosophy Thesis, Massachusetts Institute of Technology.
    [101]Ouimet W. B., Whipple K. X., and Granger D. E. (2009) Beyond threshold hillslopes:Channel adjustment to base-level fall in tectonically active mountain ranges. Geology 37(7),579-582.
    [102]Pack A., Gutzmer J., Beukes N. J., van Niekerk H. S., and Hoernes S. (2000) Supergene ferromanganese wad deposits derived from Permian Karoo strata along the Late Cretaceous-mid-Tertiary African land surface, Ryedale, South Africa. Economic Geology and the Bulletin of the Society of Economic Geologists 95(1),203-220.
    [103]Pagani M., Zachos J. C., Freeman K. H., Tipple B., and Bohaty S. (2005) Atmospheric science: Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science 309(5734),600-603.
    [104]Parc S., Nahon D., Tardy Y., and Vieillard P. (1989) Estimated solubility products and fields of stability for cryptomelane, nsutite, birnessite, and lithiophorite based on natural lateritic weathering sequences. American Mineralogist 74(3-4),466-475.
    [105]Pidgeon R. T., Brander T., and Lippolt H. J. (2004) Late Miocene (U+Th)-4He ages of ferruginous nodules from lateritic duricrust, Darling Range, Western Australia. Australian Journal of Earth Sciences 51(6),901-909.
    [106]Polyak V. J., Hill C., and Asmerom Y. (2008) Age and evolution of the Grand Canyon revealed by U-Pb dating of water table-type speleothems. Science 319(5868),1377-1380.
    [107]Post J. E. (1999) Manganese oxide minerals:Crystal structures and economic and environmental significance. Proceedings of the National Academy of Sciences of the United States of America 96(7),3447-3454.
    [108]Post J. E. and Bish D. L. (1989) Rietveld refinement of the coronadite structure. American Mineralogist 74(7-8),913-917.
    [109]Post J. E., Von Dreele R. B., and Buseck P. R. (1982) Symmetry and cation displacements in hollandites:structure refinements of hollandite, cryptomelane and priderite. Acta Crystallographica, Section B (Structural Crystallography and Crystal Chemistry) B38,1056-65.
    [110]Pracejus B. and Bolton B. R. (1992) Geochemistry of supergene manganese oxide deposits, Groote Eylandt, Australia. Economic Geology 87(5),1310-1335.
    [111]Pracejus B., Bolton B. R., and Frakes L. A. (1988) Nature and development of supergene manganese deposits, Groote Eylandt, Northern Territory, Australia. Ore Geology Reviews 4(1-2), 71-98.
    [112]Pracejus B., Bolton B. R., Frakes L. A., and Abbott M. (1990) Rare-earth element geochemistry of supergene manganese deposits from Groote Eylandt, Northern Territory, Australia. Ore Geology Reviews 5(4),293-314.
    [113]Prell W. L. and Kutzbach J. E. (1992) Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution. Nature (London) 360(6405),647-652.
    [114]Quang C. X., Clark A. H., Lee J. K. W., and Guillen B J. (2003) 40Ar-39Ar AGES OF HYPOGENE AND SUPERGENE MINERALIZATION IN THE CERRO VERDE-SANTA ROSA PORPHYRY Cu-Mo CLUSTER, AREQUIPA, PERU. Economic Geology 98(8), 1683-1696.
    [115]Quang C. X., Clark A. H., W. Lee J. K., and Hawkes N. (2005) Response of Supergene Processes to Episodic Cenozoic Uplift, Pediment Erosion, and Ignimbrite Eruption in the Porphyry Copper Province of Southern Peru. Economic Geology 100(1),87-114.
    [116]Rao D. S., Nayak B. K., and Acharya B. C. (2010) Cobalt-rich lithiophorite from the Precambrian Eastern Ghats manganese ore deposit of Nishikhal, south Orissa, India. Mineralogia 41(1-2), 1-11.
    [117]Riebe C. S., Kirchner J. W., and Finkel R. C. (2003) Long-term rates of chemical weathering and physical erosion from cosmogenic nuclides and geochemical mass balance. Geochimica et Cosmochimica Acta 67(22),4411-4427.
    [118]Ruffet G., Innocent C., Michard A., Feraud G., Beauvais A., Nahon D., and Hamelin B. (1996) A geochronological 40Ar/39Ar and 87Rb/87Sr study of K-Mn oxides from the weathering sequence of Azul, Brazil. Geochimica et Cosmochimica Acta 60(12),2219-2232.
    [119]Sanyal P., Sarkar A., Bhattacharya S. K., Kumar R., Ghosh S. K., and Agrawal S. (2010) Intensification of monsoon, microclimate and asynchronous C4 appearance; isotopic evidence from the Indian Siwalik sediments. Palaeogeography Palaeoclimatology Palaeoecology 296(1-2), 165-173.
    [120]Schmidt P. W. and Embleton B. J. J. (1976) Palaeomagnetic results from sediments of the Perth Basin, Western Australia, and their bearing on the timing of regional lateritisation. Palaeogeography, Palaeoclimatology, Palaeoecology 19(4),257-273.
    [121]Schoenbohm L. M., Whipple K. X., Burchfiel B. C., and Chen L. (2004) Geomorphic constraints on surface uplift, exhumation, and plateau growth in the Red River region, Yunnan Province, China. Bulletin of the Geological Society of America 116(7-8),895-909.
    [122]Segev A., Halicz L., Steinitz G., and Lang B. (1995) Post-depositional processes on a buried Cambrian sequence in southern Israel, North Arabian Massif; evidence from new K-Ar dating of Mn-nodules. Geological Magazine 132(4),375-385.
    [123]Shevenell A. E., Kennett J. P., and Lea D. W. (2004) Middle Miocene Southern Ocean cooling and Antarctic cryosphere expansion. Science 305(5691),1766-1770.
    [124]Shuster D. L., Vasconcelos P. M., Heim J. A., and Farley K. A. (2005) Weathering geochronology by (U-Th)/He dating of goethite. Geochimica et Cosmochimica Acta 69(3),659-73.
    [125]Sillitoe R. H. and McKee E. H. (1996) Age of supergene oxidation and enrichment in the Chilean porphyry copper province. Economic Geology and the Bulletin of the Society of Economic Geologists 91(1),164.
    [126]Singh B. and Cornelius M. (2006) Geochemistry and mineralogy of the regolith profile over the Aries kimberlite pipe, Western Australia. Geochem.6(4),311-323.
    [127]Small E. E., Anderson R. S., and Hancock G. S. (1999) Estimates of the rate of regolith production using 10Be and 26Al from an alpine hillslope. Geomorphology 27(1-2),131-150.
    [128]Smith P. E., Evensen N. M., and York D. (1993) First successful 40Ar-39Ar dating of glauconies: argon recoil in single grains of cryptocrystalline material. Geology 21(1),41-44.
    [129]Smith R. E., de Caritat P., Eggleton T., Robertson I. D. M., and Taylor G. (2001) Regolith systems processes; a collaborative research initiative in Australia,76.
    [130]Sorem R. K. and Cameron E. N. (1960) Manganese oxides and associated minerals of the Nsuta manganese deposits, Ghana, west Africa. Economic Geology 55(2),278-310.
    [131]Spier C. A., Vasconcelos P. M., and Oliviera S. M. B. (2006) 40Ar/39Ar geochronological constraints on the evolution of lateritic iron deposits in the Quadrilatero Ferrifero, Minas Gerais, Brazil. Chemical Geology 234(1-2),79-104.
    [132]Stone A. T. and Morgan J. J. (1984) Reduction and dissolution of manganese(III) and manganese(IV) oxides by organics.1. Reaction with hydroquinone. Environmental Science and Technology 18(6),450-456.
    [133]Sturt B. A., Dalland A., Mitchell B., and Mitchell J. L. (1979) The age of the sub Mid-Jurassic tropical weathering profile of Andoya, northern Norway, and the implications for the late Palaeozoic palaeography in the North Atlantic region. Geologische Rundschau 68(2),523-542.
    [134]Summerfield M.A. (1991) Global Geomorphology, An introduction to the study of landforms. John Wiley & Sons, Inc., New York.
    [135]Taylor G. and Eggleton R. A. (2001) Regolith geology and geomorphology. John Wiley & amp; Sons, Chichester, United Kingdom.
    [136]Thornber M. R. (1992) The chemical mobility and transport of elements in the weathering environment. Handbook of Exploration Geochemistry 4,79-96.
    [137]Thurber D. L. (1962) Anomalous U234/U238 in nature. Journal of Geophysical Research 67(11), 4518-4520.
    [138]Turner S. and Buseck P. R. (1979) Manganese oxide tunnel structures and their intergrowths. Science 203(4379),456-458.
    [139]Varentsov I. M. (1964) Fromation conditions of Nikopol and other deposits in manganese ore-bearing basin of southern Ukraine K poznaniyu uslovii obrazovaniya Nikopol'skogo i drugikh mestorozhdenii Yuzhno-Ukrainskogo margantsevorudnogo basseina. Litologiya i Poleznye Iskopaemye(1),25-39.
    [140]Varentsov I. M. (1996) Manganese ores of supergene zone; geochemistry of formation. Solid Earth Sciences Library 8.
    [141]Varentsov I. M. and Golovin D. I. (1987) Manganese beds of Groote Eylandt, northern Australia; K/Ar dating of cryptomelane minerals and genetic aspects. Doklady Akademii Nauk SSSR 294(1),203-207.
    [142]Varentsov I. M. and Grasselly G. (1980) Geology and Geochemistry of Manganese. Akad. Kiadr,Budapest.
    [143]Vasconcelos P. M. (1998) Geochronology of Weathering in Mount Isa and Charter Towers Regions, North Queensland. Report of CRC LEME project 147, Brisbane.
    [144]Vasconcelos P. M. (1999) 40Ar/39Ar geochronology of supergene processes in ore deposits. Reviews in Economic Geology 12,73-113.
    [145]Vasconcelos P. M., Becker T. A., Renne P. R., and Brimhall G. H. (1992) Age and Duration of Weathering by 40K-40Ar and 40Ar/39Ar Analysis of Potassium-Manganese Oxides. Science 258(5081),451-455.
    [146]Vasconcelos P. M. and Conroy M. (2003) Geochronology of weathering and landscape evolution, Dugald River valley, NW Queensland, Australia. Geochimica et Cosmochimica Acta 67(16), 2913-2930.
    [147]Vasconcelos P. M., Renne P. R., Becker T. A., and Wenk H.-R. (1995) Mechanisms and kinetics of atmospheric, radiogenic, and nucleogenic argon release from cryptomelane during 40Ar/39Ar analysis. Geochimica et Cosmochimica Acta 59(10),2057-2070.
    [148]Vasconcelos P. M., Renne P. R., Brimhall G. H., and Becker T. A. (1994a) Direct dating of weathering phenomena by 40Ar/39Ar and K-Ar analysis of supergene K-Mn oxides. Geochimica et Cosmochimica Acta 58(6),1635-1665.
    [149]Vasconcelos P. M., Wenk H.-R., Echer C., Vasconcelos P. M., Brimhall G. H., Becker T. A., and Renne P. R. (1994b) In-situ study of the thermal behavior of cryptomelane by high-voltage and analytical electron microscopy 40Ar/39Ar analysis of supergene jarosite and alunite; implications to the paleoweathering history of the Western USA and West Africa. American Mineralogist 79(1-2),80-90.
    [150]Wadsley A. D. (1952) The structure of lithiophorite, (Al,Li)MnO2 (OH)2. Acta Crystallographica 5, Part 5,676-680.
    [151]Wang Y., Zhang X., Jiang C., Wei H., and Wan J. (2007) Tectonic controls on the late Miocene-Holocene volcanic eruptions of the Tengchong volcanic field along the southeastern margin of the Tibetan Plateau. Journal of Asian Earth Sciences 30(2),375-389.
    [152]White R. M. and Richardson T. L. (1987) INVESTIGATION OF EXCAVATABILITY IN THE PIEDMONT,15-36.
    [153]Wilson M. J., Berrow M. L., and McHardy W. J. (1970) Lihtiophorite from the lecht Mines, Tomintoul, Banffshre. Mineralogical Magazine 37(289),618-623.
    [154]Yang X., Tang W., Feng Q., and Ooi K. (2003) Single crystal growth of birnessite- and hollandite-type manganese oxides by a flux method. Crystal Growth & amp; Design 3(3),409-15.
    [155]Yashvili L. P. and Gukasyan R. K. (1973) Use of cryptomelane for K-Ar dating of manganese ores of the Sevkar-Sarigyukh deposit, Armenia. Doklady Akademii Nauk SSSR 212(1),185-188.
    [156]Zachos J., Pagani M., Sloan L., Thomas E., and Billups K. (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292(5517),686-693.
    [157]Zhang Y. G, Ji J. F., Balsam W., Liu L. W., and Chen J. (2009) Mid-Pliocene Asian monsoon intensification and the onset of Northern Hemisphere glaciation. Geology 37(7),599-602.
    [158]Zhu R., Liu Q., Yao H., Guo Z., Deng C., Pan Y, Lu L., Chang Z., and Gao F. (2005) Magnetostratigraphic dating of hominoid-bearing sediments at Zhupeng, Yuanmou Basin, southwestern China. Earth and Planetary Science Letters 236(3-4),559-68.
    [159]Zwicker W. K., Meijer W. O. J. G, and Jaffe H. W. (1962) Nsutite; a widespread manganese oxide mineral. American Mineralogist 47(3-4),246-266.
    [160]安芷生.(1992)黄土和古土壤的理论与应用研究.第四纪研究(2),172-173.
    [161]安芷生,孙东怀,和陈明扬等.(2000)黄土高原红粘土序列与晚第三纪的气候事件.第四纪研究20(05),435-446.
    [162]陈万勇,林玉芬,和于浅黎.(1986)云南禄丰古猿生活时期的古气候初步研究.人类学学报5(1),79-80.
    [163]陈元琰.(1995)云南老厂火山岩型银铅锌铜矿床地质特征及成因.桂林工学院学报15(2),124-130.
    [164]陈多福和陈先沛.(1992)贵州省松桃热水沉积锰矿的地质地球化学特征.沉积学报10(4),35-43.
    [165]陈百友.(2002)云南澜沧老厂银铅锌铜多金属矿床成矿学研究.博士论文,中南大学.
    [166]陈百友,王增润,彭省临,张映旭,和陈伟.(2002a)澜沧老厂银铅锌铜多金属矿床成因探讨.云南地质21(2),134-144.
    [167]陈百友,李连举,张映旭,陈伟,罗显辉,王增润,和彭省临.(2002b)云南澜沧老厂红土型银锰矿床地质特征及成因探讨.大地构造与成矿26(1),86-91.
    [168]陈百友和张映旭.(2000)澜沧老厂红土型银矿床成矿条件及找矿标志.中南工业大学学报31(3),195-198.
    [169]陈湘立.(2005)湖南省东安—珠山地区氧化锰矿成矿规律及找矿方向.硕士论文,中国地质大学(武汉).
    [170]陈臻.(1983)一种特殊产状的锂硬锰矿矿物学报(01),79-81.
    [171]崔之久,高全州,和刘耕年等.(1996a)古岩溶、夷平面与高原隆升.中国科学(D)26(4),378-385.
    [172]崔之久,高全州,和刘耕年等.(1996b)青藏高原夷平面与岩溶年代及其起始高度.科学通报41(15),1402-1406.
    [173]崔之久,冯金良,刘耕年,和李德文.(2001)夷平面研究的再评述.科学通报(21),1761-1768.
    [174]戴静,孙柏年,解三平,吴靖宇,和李娜.(2009)云南腾冲上新统Carginus miofangiana的发现及古气候意义.地球科学进展24(9),1024-1032.
    [175]邓德贵和吴诒.(1992)广西南宁盆地早第三纪沉积相特征.广西地质5(02),23-31.
    [176]董为,刘建辉,和潘悦容.(2003)云南元谋晚中新世真角鹿化石一新种及其古环境探讨.科学通报48(3),271-276.
    [177]杜秋定.(2009)滇东南法郎组含锰地层沉积相及其锰矿成因研究.硕士Thesis,成都理工大学.
    [178]杜秋定,伊海生,惠博,武向峰,陈三运,和陈广义.(2010)滇东南中三叠统法郎组锰矿床成因的新认识.地质论评56(5),673-682.
    [179]段云龙和万大富.(2002)滇西南地区巴夜式锰矿成因分析中国第四届矿山地质学术会议:206-209.
    [180]樊保光.(1963)对广西某地锰矿成因的初步认识.地质论评21(1),27-32.
    [181]范德廉.(1994)锰矿床地质地球化学研究.气象出版社,北京.
    [182]冯金良,崔之久,和李德文等.(2003)云贵高原红土型风化壳定年对象—锰结核的基础研究.海洋地质与第四纪地质23(3),46-55.
    [183]高翔,鲁安怀,秦善,郑德圣,郑喜坤,和郑辙.(2001)天然锰钾矿晶体化学特征及其环境属性.岩石矿物学杂志20(4),477-484.
    [184]古亮楷.(1986)广东锰矿成因类型及主要地质特征.地质与勘探(1),15-18.81(12),1692-1697.
    [185]郭福祥.(1984)滇西兰坪思茅地区晚白垩世至早第三纪的成盐带和成盐期地质科学(02),161-169.
    [186]郝瑞霞和关广岳.(1995)下雷-湖润锰矿带氧化锰矿床的矿物组合及氧化机理.中国锰业13,3-7.
    [187]郝军.(1960)遵义锰矿的地质特征及勘探方法.地质与勘探(4),4-7.
    [188]何浩生和何科昭.(1992)南境内怒江形成时代的研究.云南地质11(4),348-355.
    [189]侯宗林,薛友智,和黄金水等.(1997)扬子地台周边锰矿,北京.
    [190]侯德封.(1953)目前中国的锰矿问题地质学报(3).
    [191]黄圭成,杨世义,汪雄武,陈龙清,和凌井生.(2001)广东新榕锰矿伴生银的赋存状态初步研究.岩石矿物学杂志20(1),69-74.
    [192]黄金水,汪壁忠,和马风俊.(1986)闽西南-粤东锰矿床成因序列、构式和找矿方向.地质找矿论丛1(4),1-14.
    [193]黄镇国.(1996)中国南方红色风化壳.海洋出版社,北京.
    [194]季建清和钟大赉.(2000)滇西南新生代走滑断裂运动学,年代学,及对青藏高原东南部块体运动的意义.地质科学35(3),336-349.
    [195]江新荣.(1990)贵州不同海拔高度地形台面及其地貌组合特征.贵州师范大学学报:自然科学版(2),12-15.
    [196]蒋复初和吴锡浩.(1998)青藏高原东南部地貌边界带晚新生代构造运动.成都理工学院学报:2,162-168.
    [197]蒋汉朝.(2001)我国部分地区E1-3—E2-1孢粉属种演变的古气候意义.微体古生物学报18(4),412-418.
    [198]郎银生,李建威,邓晓东,张伟,颜代蓉,和陈蕾.(2007)广西钦州防城地区次生氧化锰矿床矿物学和地球化学研究及矿床成因意义.矿床地质26(5),527-540.
    [199]雷永良,季建清,龚道好,钟大赉,王雪松,张进,和王先荚.(2006)滇西北独龙江岩体晚中 新世以来的热史和剥蚀历史的磷灰石裂变径迹记录.岩石学报22(4),938-948.
    [200]李云通.(1984)中国的第三系.地质出版社,北京.
    [201]李文漪和吴细芳.(1978)云南中部晚第三纪和早第四纪的孢粉组合及其在古地理学上的意义地理学报33(2),142-164.
    [202]李光涛,陈国星,苏刚,和杨攀新.(2008)滇西地区怒江河流阶地、夷平面变形反映的第四纪构造运动.地震28(3),125-132.
    [203]李明声.(1986)广西表生锰矿床的地质特征、形成机制及时代探讨.地质与勘探22(12),14.
    [204]李建威,颜代蓉,Vasconcelos P. M., Duzgoren-Aydin N. S.,胡明安,和陈术宏.(2004)表生隐钾锰矿物40Ar/39Ar年代学及其古气候意义.地学前缘11(2),589-598.
    [205]李建威,颜代蓉,邓晓东,陈蕾,和Vasconcelos P.(2008)华南氧化锰矿晚新生代大规模成矿.矿物岩石地球化学通报27(3),226-231.
    [206]李浩敏.(1965)湖南衡阳盆地茶山(土幻)早第三纪植物化石古生物学报(3).
    [207]李雪,钟运凯,和朱凯军.(2001)湘南地区表生氧化锰矿地球化学行为及成矿机理研究.湖南地质20(1),9-14.
    [208]李惠和孙风舟.(1996)优质锰矿的地球化学异常模式.地质找矿论丛11(1),50-58.
    [209]李新辉,黄圭成,和汪雄武.(1998)广东新榕锰矿伴生银、铅的矿化富集特征.华南地质与矿产(2),39-45.
    [210]李德文和崔之久.(2004)岩溶夷平面演化与青藏高原隆升.第四纪研究24(1),58-66.
    [211]林丽,贝丰,宋振亚,高玲,和吴征.(2000)云南景谷盆地及陇川盆地新生代生物群特征及环境地质意义.成都理工学院学报27(1),15-18.
    [212]林金钰.(1993)闽西南风化淋积型氧化锰矿床的一种重要成矿模式.地质与勘探29(7),10-13.
    [213]林贵生和李贇.(2006)遵义锰矿地质特征及找矿潜力分析中国锰业24(3),26-29.
    [214]刘东生和丁钟礼.(1991)中国黄土研究新进展:(三)古气候与全球变化.第四纪研究1990(1),1-9.
    [215]刘东生,郑绵平,和郭正堂.(1998)亚洲季风系统的起源和发展及其与两极冰盖和区域构造运动的时代偶合性.第四纪研究(3),194-203.
    [216]刘平,廖友常,殷科华,叶德书,朱华,韩忠华,和杨光龙.(2008)与火山活动有关的热水沉积锰矿—以贵州二叠纪锰矿为例.中国地质35(5),992-1006.
    [217]刘金荣和黄国彬.(2001)广西区域热带岩溶地貌不同类型的演化浅议.中国岩溶20(4),247-252.
    [218]刘湘勤.(1992)湖南省氧化锰矿资源分布及其质量特征.中国锰业10(5),10-14.
    [219]刘红军.(1987)滇西鹤庆锰矿沉积-成岩环境分析及成矿模式探讨.地质与勘探23(7),1-6.
    [220]刘腾飞.(1997)我国锰矿资源开发利用现状及勘查对策.中国锰业12(4),50-56.
    [221]龙国中和王积廉.(1994a)衡阳盆地盐类矿床地质特征与矿床成因.湖南地质(01),22-24.
    [222]鲁安怀,,卢晓英,任子平,韩丽荣,方勤方,和韩勇.(2000)天然铁锰氧化物及氢氧化物环境矿物学研究.地学前缘7(2),473-483
    [223]路建有.(1987)广东锰矿的矿物学特征.中国锰业(03),8-11.
    [224]陆钧,陈木宏,和王汝建等.(2003)南海南部ODP1143站晚中新世沉积硅藻记录.热带海洋 学报22(5),1-7.
    [225]罗开平,刘光祥,和王津义.(2009)黔中隆起金沙地区中新生代隆升剥蚀的裂变径迹分析.海相油气地质14(1),61-64.
    [226]吕枚.(1958)湘潭锰矿矿床的地质特征及勘探工作.地质与勘探19,10-14.
    [227]毛圣杰.(1992)试论云南锰矿床类型、成矿条件及找矿方向.西南矿产地质(1),14-22.
    [228]毛先成,曾文波,和周尚国等.(2009)桂西-滇东南地区数字地形特征与次生富集锰矿空间分布关系研究.地质与勘探3,292-298.
    [229]明庆忠.(2007)三江并流区地貌与环境效应.科学出版社,北京.
    [230]欧阳成甫和徐楚明.(1991)云南澜沧老厂地洼型银铅矿床的地球化学特征及成因.大地构造与成矿15(4),317-326.
    [231]欧阳成甫和徐楚明.(1993)云南澜沧老厂银铅矿区隐伏花岗岩体预测及其意义.大地构造与成矿17(2),119-126.
    [232]彭张翔.(1986)鹤庆锰矿地质特征及成因探讨.地质与勘探22(8),1-4.
    [233]彭张翔.(1989a)浅析鹤庆锰矿的成矿条件.西南矿产地质3(2),6-10.
    [234]彭张翔.(1989b)鹤庆锰矿地质特征及成矿规律的探讨.中国锰业(5),4-9.
    [235]祁国琴,董为,郑良,赵凌霞,高峰,岳乐平,和张云翔.(2006)云南元谋盆地古猿的系统位置、时代及生存环境.科学通报51(7),833-843.
    [236]茹廷锵.(1986)风化锰矿床成因类型的划分及其找矿评价的探讨广西地质(1),25-36.
    [237]茹廷锵,韦灵敦,和树皋.(1992)广西锰矿地质.地质出版社,北京.
    [238]萨玛玛(章锦统等译).(1991)矿田与大陆风化.中国地质大学出版社,武汉.
    [239]沈吉,安芷生,王苏民,强小科,肖海丰,和肖霞云.(2008)鹤庆深钻岩芯揭示的构造-沉积旋回及其西南季风区2.78Ma以来的气候环境演化.中国科学(D)38(3),355-362.
    [240]施小斌,丘学林,刘海龄,储著银,和夏斌.(2006)滇西临沧花岗岩基新生代剥蚀冷却的裂变径迹证据.地球物理学报49(1),135-142.
    [241]施倪承.(1977)我国南方锰钴矿石(钴土矿)的主要组成矿物-富钴锂硬锰矿的研究.地质与勘探(7),33-40.
    [242]施倪承,赖来仁,刘鸾玲,和郭永芬.(1984)中国锰矿物研究地质科学(2),216-222.
    [243]斯行健和李洪谟.(1964)湖南第三纪晚期植物系.古生物学报2(2),189-208.
    [244]孙东霞,季建清,张志诚,龚俊峰,陈建军,庆建春,和钟大赉.(2009)雅鲁藏布江中下游流域地貌差异演化的岩屑磷灰石裂变径迹证据.科学通报(23),3738-3747.
    [245]孙承兴,王世杰,刘秀明,和季宏兵.(2000)风化壳剖面的定年研究.矿物岩石地球化学通报19(1),54-59.
    [246]孙家富.(1991)中南地区锰矿现状及其发展对策.中南冶金地质(2),1-6.
    [247]孙家富.(1995)我国富锰矿资源现状及其成矿条件分析.中国锰业13(6),7-11.
    [248]孙湘君和汪品先.(2005)从中国古植被记录看东亚季风的年龄.同济大学学报:自然科学版33(9),1137-1143.
    [249]唐松,邵磊,和赵泉鸿.(2004)南海渐新世以来粘土矿物的演变特征及意义.沉积学报22(2),337-342.
    [250]汤英俊,尤玉柱,刘后一,和潘悦容.(1974)云南元谋班果盆地上新世哺乳动物化石及其在地层划分上的意义古脊椎动物与古人类12(1),60-68.
    [251]童国榜,张俊牌,羊向东,罗宝信,王毓钊,和陈佩英.(1994)云贵高原晚新生代孢粉植物群与环境变迁.海洋地质与第四纪地质14(3),91-104.
    [252]同号文.(1996)衡阳盆地始新世含鱼地层的成因分析.地层学杂志20(1),23-28.
    [253]汪品先和林景星.(1974)我国中部某盆地早第三纪半咸水有孔虫化石群的发现及其意义地质学报(2).
    [254]汪品先,赵泉鸿,和翦知缗.(2003)南海三千万年的深海记录.科学通报48(21),2206-2215.
    [255]王世杰,刘秀明,和张峰.(2005)贵州碳酸盐岩红色风化壳次生石英的裂变径迹测年研究.地球化学34(1),33-40.
    [256]王永基.(2002)中国北纬23。带氧化锰矿.湖北矿产16(1),14-19.
    [257]王国芝,初凤友,和王成善.(2004)中新世以来滇西高原内红河流域区的古高程反演.成都理工大学学报(自然科学版)31(2),118-124.
    [258]王郁和杨景元.(2002)雷达遥感在澜沧江中下游地区锰矿调查评价中的应用.地质找矿论丛17(4),271-276.
    [259]王瑞雪,史茂,和苏杰.(2007)云南澜沧老厂矿区影像线-环结构矿床定位模式研究.矿床地质26(5),541-549.
    [260]王伟铭和舒军武.(2004)云南曲靖盆地晚新生代孢粉植物群.古植物学报43(2),254-261.
    [261]吴文森.(2001)福建省淋滤富集锰矿成因规律研究.中国锰业19(1),2-3.
    [262]吴文森.(2008)福建省锰矿成矿地质特征研究.中国锰业26(3),11-15.
    [263]吴作基和余金凤.(1981)广东南雄盆地浓山组上段孢粉组合.古生物学报(5).
    [264]夏斌,韦振权,张玉泉,徐力峰,李建峰,和王彦斌.(2007)西藏西部冈仁波齐花岗闪长岩锆石SHRIMP U-Pb定年及其地质意义.地质通报26(8),1014-1017.
    [265]向宏发,张秉良,张晚霞,虢顺民,和万景林.(2009)剑川盆地第三纪以来地壳变形的地质分析与FT测年.地质学报83(2),230-238.
    [266]肖霞云,沈吉,王苏民,肖海丰,和童国榜.(2007)鹤庆深钻孢粉记录揭示的2.78Ma以来的植被演替与气候变迁.中国科学(D)37(6),778-788.
    [267]徐国风.(1978)鉴别软锰矿和硬锰矿的一种新方法.地质与勘探(3),42-43.
    [268]徐景先.(2002)云南中西部地区晚第三纪抱粉植物群及其古植被和古气候研究.Ph.d Thesis,中国科学院植物研究所.
    [269]徐景先,王宇飞,杜乃秋,和张翠芬.(2000)云南吕合地区晚第三纪孢粉植物群植物学报42(5),526-532.
    [270]许仲路.(1978)滇西北第四纪地壳运动.成都理工大学学报(自然科学版)01(52-69).
    [271]许效松和王砚耕.(1991)上扬子地块早震旦世大塘坡锰矿成因和沉积学.沉积学报9(1),63-72.
    [272]颜代蓉.(2005)广西下雷氧化锰矿成矿时代与矿床成因.硕士论文,中国地质大学(武汉).
    [273]杨开辉和侯增谦.(1992)“三江”地区火山成因块状硫化物矿床的基本特征与主要类型.矿床地质11(1),35-44.
    [274]姚培慧.(1995)中国锰矿志.冶金工业出版社,北京.
    [275]姚敬劬.(1994)关于几种常见锰矿物的名称问题中国锰业(01),13-15.
    [276]姚敬劬,王六明,和苏长国.(1995)扬子地台南缘及其邻区锰矿研究冶金工业出版社北 京.
    [277]姚敬劬和朱华英.(1998)湘中湘南古构造成锰盆地及锰矿找矿.冶金工业出版社,北京.
    [278]叶庆同等.(1992)三江地区区域地球化学背景和金银铅锌成矿作用.地质出版社,北京.
    [279]叶连俊.(1955)中国锰矿的沉积条件.科学通报(11).
    [280]叶连俊,范德廉,和杨培基.(1994)中国锰矿床.地质出版社,北京.
    [281]扆铁梅.(2002)云南晚第三纪化石木研究及其古气候意义.博士论文,中国科学院植物研究所.
    [282]扆铁梅,李承森,姜笑梅,和王宇飞.(2002)云南上新世杜鹃属和松属化石木研究及其古气候意义古地理学报4(4),90-98.
    [283]于苏俊.(2004)云南鹤庆式锰矿成因研究中国矿业大学学报33(1),109-114.
    [284]喻学惠,肖晓牛,杨贵来,莫宣学,曾普胜,和王晋璐.(2008)滇西“三江”南段几个花岗岩的锆石SHIRMP U-Pb定年及其地质意义.岩石学报24(2),377-383.
    [285]袁鹤然,乜贞,刘俊英,和王梅.(2007)广西百色盆地古近系沉积特征及其古气候意义.地质学报
    [286]张一勇.(1995)中国早第三纪孢粉植物群纲要.古生物学报34(2),212-227.
    [287]张玉泉和谢应雯.(1997)哀牢山—金沙江富碱侵入岩年代学和Nd,Sr同位素特征.中国科学(D)27(4),289-293.
    [288]张仲石和郭正堂.(2005)根据地质记录恢复渐新世和中新世不同时期环境空间特征及其意义.第四纪研究25(4),523-530.
    [289]张秉良,刘瑞珣,向宏发,万景林,和黄雄南.(2009)红河断裂带中南段断层岩FT测年及其地质意义.地震地质31(1),44-46.
    [290]张准.(2006)云南澜沧老厂银铅矿床成矿规律研究.硕士论文,昆明理工大学.
    [291]张绪教和何科昭.(1996)滇西地区新第三纪孢粉组合特征及环境变迁.现代地质10(2),187-201.
    [292]赵东军,鲁安怀,王丽娟,郑喜坤,刘瑞,和郭延军.(2005)广西下雷锰矿床中锰钾矿的矿物学特征1).北京大学学报(自然科学版)41(6),859-868.
    [293]赵良成.(2002)云南中新世和山西上新世果实和种子的研究.博士论文,中国科学院研究生院(植物研究所).
    [294]赵家骧和刘佑馨.(1956)中国外生锰矿地质的初步探讨.地质学报36(4),535-544.
    [295]赵维城.(1998)论云南地貌体系.云南地理环境研究10(A12),47-55.
    [296]郑仁贤.(1987)论闽西兰桥氧化锰矿床的地质特征及其找矿意义.地质找矿论丛2(1),20-29.
    [297]钟大赉和季建清.(2001)中国西部新生代岩石圈汇聚和东部岩石圈离散的耦合关系与古环境格局演变的探讨.第四纪研究21(4),303-312.
    [298]邹国础.(1965)云贵高原土壤地理分布规律,土壤学报13(3),253-261.
    [299]朱凯军,黄金水,和姚国龙.(1997)湘南-粤北铁锰多金属矿床的表生风化作用.地质找矿论丛12(3),68-75.
    [300]朱凯军和黄金水等.(1996)中国南方表生风化型锰矿床类型及富集机理.四川科学技术出版社,成都.
    [301]祝寿泉.(1990)龙头碳酸锰矿床成因探讨.地质与勘探26(5),12-17.
    [302]祝寿权.(1992)木圭烟灰状锰矿的成因浅析.地质与勘探2,19-21.
    [303]广西壮族自治区地质矿产局编.(1985)广西壮族自治区区域地质志.地质出版社,北京.
    [304]中国科学院北京植物研究所、南京地质古生物研究所.(1978)中国植物化石·第三册,中国新生代植物.科学出版社,北京.
    [305]中国科学院地理研究所编.(1959)中国地貌区划:初稿.科学出版社,北京.
    [306]云南省地质矿产局编.(1990)云南省区域地质志.地质出版社,北京.
    [307]湖南省区域地质矿产局编.(1988)云南省区域地质志.地质出版社,北京.
    [308]湖南省地质局区测队.(1975)湖南省零陵幅G-49-16区域地质调查报告:1:20万.湖南省地质局区测队,湘潭.
    [309]贵州省地质矿产局编.(1987)贵州省区域地质志.地质山版社,北京.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700