用户名: 密码: 验证码:
壳聚糖稳定纳米铁的制备与修复地表水中六价铬污染的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地表水是人类的重要资源,在人们的生产和生活中具有不可替代的作用。但是,随着工业和经济的快速发展,一些工厂企业不合理排放含铬废水,导致大量铬尤其是Cr(Ⅵ)进入地表水中,引起严重的污染。Cr(Ⅵ)以其较大的毒害作用引发了一系列负面效应,影响了周围动物,植物以及人类的健康。因此,解决地表水中Cr(Ⅵ)的污染问题成为了环境工作者关注的焦点。
     近几年的研究表明,零价铁材料尤其是纳米级零价铁材料由于具有高的反应活性,可修复多种环境污染物等特点,成为目前环境污染修复技术中一个非常活跃的研究领域。但是在实际应用中纳米铁材料仍然存在一些问题需要解决,如纳米铁合成条件不易控制,极易团聚,空气稳定性差。这些因素都对纳米铁材料的制备和使用提出了严峻的挑战。
     针对以上问题,本论文在天津市应用基础及前沿技术研究计划(天津市自然科学基金)的资助下,对纳米铁制备的液相还原法进行改进,制备出壳聚糖稳定的纳米铁材料并用于地表水Cr(Ⅵ)污染的修复。论文研究了壳聚糖稳定纳米铁的稳定性,在静态条件和动态条件下考察了壳聚糖稳定纳米铁对地表水中Cr(Ⅵ)的去除能力,探讨了壳聚糖稳定纳米铁去除Cr(Ⅵ)的动力学和机理。论文的主要研究内容分为以下四部分:
     1.通过优化制备条件得到了壳聚糖稳定纳米铁制备的最佳方法为:将分子量为100000的壳聚糖溶解于0.05 mol/L HNO_3溶液中,得到质量百分含量为0.5%的壳聚糖硝酸溶液。使用前通过0.22μm的微孔滤膜过滤去除不溶部分,然后向装有3 ml上述壳聚糖溶液的三口烧瓶中加入10 ml含有0.2978 gFeSO_4·7H_2O的水溶液,加入去离子水使体系的总体积为15 mL,用真空线向溶液中通入高纯氮气除去体系中的氧(通气时间为30min),并在整个合成的过程中持续向体系中通入氮气保持无氧环境,然后再搅拌10分钟使之充分混合均匀。同时将10 mL新配制的含0.2889 g KBH_4的水溶液从恒压漏斗中逐滴加入三口烧瓶中,滴速控制约为2滴/秒,在20℃下反应90分钟,生成黑色的纳米铁颗粒。反应结束后,用磁选法分离出纳米铁粒子,再用脱氧去离子水洗涤三次,每次用水150ml,得到壳聚糖稳定纳米铁复合粒子。
     2.壳聚糖稳定纳米铁的表征分析结果显示,壳聚糖稳定纳米铁粒径的分布范围为20-150 nm,平均粒径为82.4 nm,且具有一定的抗氧化性能。与普通纳米铁相比,壳聚糖稳定纳米铁呈现了很好的分散状态。
     3.采用批实验和柱实验研究了壳聚糖稳定纳米铁对地表水中Cr(Ⅵ)的去除能力。壳聚糖稳定纳米铁对水中Cr(Ⅵ)的去除能力高于200目铁粉和普通纳米铁,每克壳聚糖稳定纳米铁可以去除铬148.08 mg。地表水中的Ca~(2+)、Mg~(2+)、CO_3~(2-)、HCO_3~-、有机物和溶解氧等因素都对Cr(Ⅵ)的去除产生影响,但是壳聚糖稳定纳米铁仍然显示出纳米材料所特有的优势。
     4.壳聚糖稳定纳米铁对Cr(Ⅵ)的去除是基于吸附和还原的双重作用。去除Cr(Ⅵ)反应的表观一级反应动力学常数随Cr(Ⅵ)初始浓度的升高而降低。增加Cr(Ⅵ)的初始浓度促进了表面钝化层的形成降低零价铁的腐蚀速率,从而降低了Cr(Ⅵ)的还原速率。壳聚糖稳定纳米铁对Cr(Ⅵ)的吸附量与Cr(Ⅵ)的初始浓度成正比。反应的表观活化能为33 kJ mol~(-1),证明壳聚糖稳定纳米铁去除Cr(Ⅵ)的反应是由化学反应所控制的,而非物理过程控制的。壳聚糖分子鳌合了产物中的Fe(Ⅲ),使得样品表面Fe(Ⅲ)的含量增加,这也阻碍了纳米铁表面氢氧化物钝化层的形成,促进Cr(Ⅵ)的还原和去除。
Surface water is the most important water source for human beings.However, with the development of industry and economy,Cr(Ⅵ) is widely detected in surface water.Cr(Ⅵ) anions,including chromate(CrO_4~(2-)) and dichromate(Cr_2O_7~(2-)),are highly soluble in aquatic systems and are severe contaminants to environment.Much concern has been paid on the technology for Cr(Ⅵ) contamination remediation.
     Recently,due to large specific surface area and more active sites the use of zero valent iron(Fe~0),especially Fe~0 nanoparticles,as reactive media for in situ subsurface environment remediation has been extensively investigated.Applications to in situ remediation require the Fe~0 nanoparticles to be stable in water.However,due to van der Waals forces and magnetic interactions,these Fe~0 nanoparticles tend to agglomerate and grow rapidly to micrometer or millimeter scale particles,thereby diminishing their mobility and chemical reactivity.On the other hand,Fe~0 nanoparticles show high activity with large specific surface area,but are easily oxidized by air or ignite spontaneously when exposed to air.Therefore,intensive efforts have been made to coat and protect Fe~0 nanoparticles from agglomeration and air oxidation.
     This research work was supported in part by Tianjin Natural Science Foundation of China under grant No.07JCZDJC01800.The objectives of this research are to:(1) to prepare chitosan-Fe~0(chitosan-Fe~0) by modification of solution method.(2) to evaluate the capacity of chitosan-Fe~0 to remove Cr(Ⅵ) from surface water through batch experiment and column experiment.(3) to investigate the kinetics and mechanisms of Cr(Ⅵ) removal from water by chitosan-Fe~0.There are four main parts in this research work:
     1.The condition for preparation of chitosan-Fe~0 was optimized:chitosan was dissolved in 0.05 mol/L HNO_3 to make the final concentration of 0.5%by weight. Finally,chitosan solution was filtered through 0.22μm syringe filters to remove any suspensions.Chitosan-Fe~0 was prepared in situ by reducing Fe(Ⅱ) with KBH_4 in the presence of chitosan as a stabilizer.To ensure all the Fe(Ⅱ) were reduced,excess of KBH_4 over the Fe(Ⅱ) was used.The detailed procedure was as follows:10 mL of solution containing 0.2978 g of FeSO_4·7H_2O was first mixed with 3 mL of 0.5% chitosan solution.The mixture was stirred for 30 min under nitrogen gas.Then,to the mixture,10 ml of freshly prepared aqueous solution containing 0.2889 g of KBH_4 was added dropwise.At this stage,gas was evolved vigorously and black precipitation was formed.Again,the mixture was stirred for another 90 min.The resulted black precipitate was collected and washed by deoxygenated water for three times to get rid of the excess chemicals.
     2.The results of characterization indicated that the distribution of particle size of chitosan-Fe~0 is widespread ranging from 20 to 150 nm with a mean diameter of 82.4 nm and has good stability against oxidation.Compared with EW-Fe~0,the chitosan-Fe~0 can stay stable in water.
     3.The capacity of chitosan-Fe~0 to remove Cr(Ⅵ) from surface water was examined through batch experiment and column experiment.The ability of chitosan-Fe~0 to remove Cr(Ⅵ) was far greater than that of EW-Fe~0 and 200 mesh iron powder with a Cr(Ⅵ) removal capacity at approximately 148.08 mg Cr(Ⅵ) per gram of Fe~0 nanoparticles.Ca~(2+)、Mg~(2+)、CO_3~(2-)、HCO_3~-、organic matters and dissolved oxygen (DO) in the surface water have negative effect on the Cr(Ⅵ) removal capacity of chitosan-Fe~0.However,chitosan-Fe~0 still show the superiority over bulk material.
     4.Due to the adsorption and reduction,chitosan-Fe~0 can remove Cr(Ⅵ) from water rapidly.The rate of reduction of Cr(Ⅵ) to Cr(Ⅲ) can be expressed by a pseudo-first-order reaction kinetics.The rate constants increase with the increase in temperature and iron loading but decrease with the increase in initial Cr(Ⅵ) concentration and pH.It is found that the amount of Cr(Ⅵ) been adsorbed is proportional to the aqueous Cr(Ⅵ) concentration.The apparent activation energy is found to be 33 kJ mol~(-1),which is characteristic of a chemically controlled reaction. Chitosan can hinder the formation of Fe(Ⅲ)-Cr(Ⅲ) precipitate by virtue of its coordinating capability consequently enhances the reduction of Cr(Ⅵ) to Cr(Ⅲ).
引文
[1]Lawrence L S.Ferrozine-a new spectrophotometric reagent for iron.Anal.Chem.,1970,42:779-781
    [2]Fendorf S,Wielinga B W,Hansel C M.Chromium transformations in natural environments:The role of biological and abiological processes in chromium(Ⅵ) reduction.Int.Geol.Rev.,2000,42:691-701
    [3]Nies D H.Microbial heavy-metal resistance.Appl.Microbiol.Biot.,1999,51:730-750
    [4]Gibbs C R.Characterization and application of ferrozine iron reagent as a ferrous iron indicator.Anal.Chem.,1976,48:1197-1200
    [5]Palmer C D,Wittbrodt P R.Processes affecting the remediation of chromium-contaminated sites.Environ.Health Persp.,1991,92:25-40
    [6]Amonette J E,Workman D J,Kennedy D W,et al.Dechloriation of carbon tetrachloride by Fe(Ⅱ) associated with goethite.Environ.Sci.Technol.,2000,34:4606-4613
    [7]刘华良,王晓蓉,周徐海等.铬污染土壤/沉积物的修复技术研究进展.环境污染与防治,2005(5):1-4
    [8]刘卫国,张新申,刘明华.制革工业中铬污染及防治.皮革科学与工程,2001,11(3):1-6
    [9]http://www.samsco.com.cn/info/45740.htm,环球水网,2004年全国各工业行业废水排放及处理情况,2007,07
    [10]相震,吴向培.工业性铬污染对湟水水质的影响.环境与健康杂志,2004,21(3):160-161
    [11]海河流域水资源质量公报(2007年第二期).
    [12]古昌红,单振秀,丁社光.铬盐生产基地对水体污染的研究.矿业安全与环保,2006,33(4):18-19
    [13]李劲,房存金,宋献光等.工业废水与河流水体的急性毒性研究.中国环境监测,200622(1):81-84
    [14]于洪存,李相力,王凤林等.沈阳市地下水现状及污染防治对策研究.辽宁城乡环境科技,2003,23(6):14-16
    [15]金传良,郑连生.水质技术工作手册.北京:能源出版社,1989:149-229
    [16]周易勇.高浓度铬对凤眼莲的伤害及膜脂过氧化作用的影响.环境科学,1994,14(3):60-61
    [17]徐永胜,邓宝林,韩吟文.以铬为例试论环境自净资源的开发利用.地质与勘探,200339(6):74-77
    [18]Li C,Lan Y Q.Catalysis of Mn(Ⅱ) on the reduction of chromium(Ⅵ) by citrate. Pedosphere,2007,23:405-410
    [19]王新,梁仁禄.土壤-水稻系统中重金属复合污染物交互作用及生态效应的研究.生态学杂志,2000,19(4):38-42
    [20]陆昌淼,马世豪,张忠祥.污水综合排放标准详解.北京:中国标准出版社,1991:55-56
    [21]蔺玉华,耿龙武.铬(Ⅵ)对鲤血清电解质水平的影响及其在鱼体中的蓄积.天津师范大学学报(自然科学版),2005,25(3):21-23
    [22]陈英旭,朱荫湄,袁可能等.土壤中铬的化学行为.浙江农业大学学报,1990,16(2):119-124
    [23]朱月珍.影响土壤中铬迁移转化的几个因素.土壤学报,1985,22(4):390-393
    [24]王小平,赵学蕴,金维续.有机肥对铬污染土壤解毒效果的研究.环境科学,1986,7(3):18-21
    [25]Deng B,Stone A T.Surface-catalyzen chromium(Ⅵ) reduction:reactivity comparison of different organic reductants and different oxide surfaces.Environ.Sci.Technol.,1996(b),30:2484-2494
    [26]秦景香,周敏,杨兴案.铬接触工人402名职业性健康检查结果分析.职业与健康,2003,19(10):1-3
    [27]任瑞美,李中帅,张忠群.职业性铬对工人生育影响的调查.中国公共卫生管理;2003,19(1):82-83
    [28]冯易君,谢家理,向芹等.共存离子对硫酸盐还原菌(SRB)处理含铬废水的影响研究.环境污染与防治,1995,17(4):15-17
    [29]张纯一.铬(Ⅵ)还原菌的分离筛选及应用研究.上海:华东师范大学,2003.
    [30]张建民,宗刚,朱宝瑜等.生物处理电镀铬废水的研究.工业水处理,1999,19(5):21-22
    [31]尹华,叶锦韶,彭辉等.掷孢酵母吸附去除铬的性能研究.环境化学,2003,22(5):469-473
    [32]周孝德,固体颗粒表面吸附实验研究综述.《第二届水电工程青年学术论文集》,中国科学技术出版社,1992
    [33]吴克明,潘留明,黄羽.反应柱充填活性炭法处理轧钢含铬废水的研究.环境污染与防治,2005,27(5):379-381
    [34]马勇,邵红,王恩德等.铝钛柱撑系列改性膨润土处理含铬废水的应用研究.环境科学研究,2004,17(4):48-50
    [35]Eromosele I C,Bayero S S.Adsorption of chromium and zinc ions from aqueous solutions by cellulosic Graft copolymers.Bioresource Technology.2000,71(3):279-281
    [36]黄韵,马晓燕,刘海林等.改性累托石对水溶液中Cr(Ⅵ)的吸附.硅酸盐学报,2005,33(2):197-201
    [37]蓝磊,童张法,李仲民等.改性膨润土对废水中六价铬的吸附过程研究.环境污染与防治,2005,27(5):352-354
    [38]Karthikeyan T,Rajgopal S,Miranda L R.Chromium(Ⅵ) adsorption from aqueous solution by hevea brasilinesis sawdust activated carbon.Journal of Hazardous Materials,2005, 124(1-3):192-199
    [39]刘翠霞,邓昌亮.龙口褐煤对废水中Cr(Ⅵ)的吸附与还原.化工环保,1996,16:337-341
    [40]Bosinco S.Interaction mechanisms between hexavalent chromium and corncob.Environmental Technology,1996,17(1):55-59
    [41]Tan W T.Removal of chromium(Ⅵ) from solution by coconut husk palm pressed fibres.Environmental Technology,1993,14(3):277-281
    [42]Patterson J W.Wastewater treatment technology,Ann Arbor Science Publishers,Inc.1975
    [43]Cruver J E.Reverse osmosis-where it stands today,Water Sewage Works,74-77(October,1973)
    [44]Pansini M.Natural zeolites as cation exchangers for environment protection.Mineral Deposita,1996,31:563-575
    [45]王焰新.去除废水中重金属的低成本吸附剂:生物质和地质材料的环境利用.地质前缘,2001,8(2):56-60
    [46]邵涛,姜春梅.膨润土对不同价态铬的吸附研究.环境科学研究,1999,6(7):112-116
    [47]苏海佳,贺小进,谭天伟.球形壳聚糖树脂对含重金属离子废水的吸附性能研究.北京大学学报,2003,30(2):19-22
    [48]邓小红.铁屑内电解法处理电镀含铬废水的实验研究及应用.环境工程学报,2008,2(10):25-29
    [49]孟祥和,胡国飞.重金属废水处理.北京:化学工业出版社,2001:1-12
    [50]黄继国,张永祥.GT-铁氧体法处理含铬废水实验研究.长春科技大学学报,2000,30(1):65-66
    [51]Simon F G,Segebade C,Hedrich M.Behaviour of uranium in iron-bearing permeable reactive barriers:investigation with ~(237)U as a radio indicator.Science of the Total Environment,2003,307(1-3):231-238
    [52]Korte N E.Zero-valent iron permeable reactive barriers:a review of performance.Environmental Sciences Division,Publication,2000,No 5056
    [53]Gandhi S,Oh B T,Schnoor J L,et al.Degradation of TCE,Cr(Ⅵ),sulfate,and nitrate mixtures by granular iron in flow-through columns under different microbial conditions.Water Res.,2002,36(8):1973-1982
    [54]Farrell J,Wang J P,O'day P,et al.Electrochemical and Spectroscopic Study of Arsenate Removal from Water Using Zero-Valent Iron Media.Environ Sci Technol,2001,35(10):2026-2032
    [55]Singh I B,Singh D R.Effects of pH on Cr-Fe interaction during Cr(Ⅵ) removal by metallic iron.Environ.Technol.,2003,24(8):1041-1047
    [56]Westerhoff P,James J.Nitrate removal in zero-valent iron packed columns.Water Research,2003,37(8):1818-1830
    [57]Westerhoff P,James J.Nitrate removal in zero-valent iron packed columns.Water Research,2003,37(8):1818-1830
    [58]Sayles G D,You G R,Wang M X,et al.DDT,DDD,and DDE Dechlorination by Zero-Valent Iron,Environ Sci Technol,1997,31(12):3448-3454
    [59]Keum Y S,Li Q X.Reduction of nitroaromatic pesticides with zero-valent iron.Chemosphere,2004,54(3):255-263
    [60]Nam S,Tratnyek P G.Reduction of azo dyes with zero-valent iron.Wat Res,2000,34(6):1837-1845
    [61]Fennelly J P,Roberts A L.Reaction of 1,1,1-Trichloroethane with Zero-Valent Metals and Bimetallic Reductants.Environ Sci Technol,1998,32(13):1980-1988
    [62]Burris D R,Campbell T J,Manoranjan V S.Sorption of Trickloroethylene and Tetrachloroethylene in a Batch Reactive Metallic Iron-Water System.Environ Sci Technol,1995,29(11):2850-2855
    [63]Gillham R W,O'Hannesin S F.Enhanced degradation of halogenated aliphatics by zero-valent iron.Ground water,1994,32(6):958-967
    [64]Arnold A W,Robert A L.Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe particles.Environ.Sci.Technol,2000,34(9):1794-1801
    [65]Xu X H,Wei J J,Wang D H.Studies on dechlorination of chlorophenols with pd/Fe and nanoscale Pd/Fe.China Environmental Science,2004,24:76-80
    [66]Devlin J F,Klausen J,Schwarzenbach R P.Kinetics of nitroaromatic reduction on granular iron in recirculating bath experiments.Environ.Sci.Technol.,1998,32:1941-1947
    [67]徐新华,卫建军,汪大晕.Pd/Fe及纳米Pd/Fe对氯酚的脱氯研究.中国环境科学,2004,24(1):76-80
    [68]童少平,胡丽华,魏红等.Ni/Fe二元金属脱氯降解对氯苯酚的研究.环境科学,2005,26(4):59-62
    [69]魏红,李克斌,童少平.镍/铁二元金属对莠去津脱氯特性的影响.环境科学,2004,25(1):154-157
    [70]全燮,杨凤林,薛大明.钯-铁催化还原法对水中三氯乙烯的快速脱氯研究.大连理工大学学报,1997,37(1):46-50
    [71]全燮,刘会娟,杨凤林.二元金属体系对水中多氯有机物的催化还原脱氯特性.中国环境科学,1998,18(4):333-338
    [72]Huang C P.Nitrate reduction by metallic iron.Water Research,1997,32(8):2257-2264
    [73]Zawaideh L L,Zhang T C.The effects of pH and addition of an organic buffer(HEPES) on nitrate transformation in Fe~0-water systems.Wat.Sci.Tech.,1998,38(7):107-115
    [74]Paul W,Jenifer J.Nitrate removal in zero-valent Iron packed columns.Water Research,2003(37):1818-1830
    [75]周玲,李铁龙,金朝晖等.还原铁粉去除地下水中硝酸盐氮的研究.农业环境科学学报,2006,25(2):68-72
    [76]Lee T,Lim H,Lee Y,et al.Use of waste iron metal for removal of Cr(Ⅵ) from water.Chemosphere,2003,53:479-485
    [77]Blowes D W,Ptacek C J,Jambor J L.In-situ remediation of Cr(Ⅵ)-contaminated groundwater using permeable reactive walls: laboratory studies. Environ. Sci. Technol. 1997, 31(12): 3348-3357
    [78] Eary L E, Rai D. Chromate removal from aqueous wastes by reduction with ferrous ion. Environ. Sci. Technol. 1998,22(8): 972-977
    [79] Hua B, Deng B L. Reductive Immobilization of Uranium(VI) by Amorphous Iron Sulfide. Environ. Sci. Technol. 2008,42(23): 8703-8708
    [80] Wu W M, Carley J, Luo J, et al. In situ bioreduction of uranium(VI) to submicromolar levels and reoxidation by dissolved oxygen. Environ. Sci. Technol., 2007, 41(16): 5716-5723
    [81] Cruywagen J J, Dewet H F. Equilibrium studies of the adsorption of molybdenum (Vl) on the cultivated carbon. Polyhedron, 1988, 7(7): 547-556
    [82] Zhang Y Q, Wang J F, Amrhein C. Removal of selenate from water by zero valent iron. J.Environ.Qual., 2005, 34(2): 487-495
    [83] Mondal K, Jegadeesan G, Lalvani S B. Removal of selenate by Fe and Ni/Fe nanosized particles. Ind Eng.Chem.Res., 2004,43(16): 4922-4934
    [84] Rao P, Mak M S, Liu T, et al. Effects of humic acid on arsenic(V) removal by zero-valent iron from groundwater with special references to corrosion products analyses. Chemosphere, 2009,75(2): 156-162
    [85] Su C, Puls R W. In situ remediation of arsenic in simulated groundwater using zerovalent iron: laboratory column tests on combined effects of phosphate and silicate. Environ. Sci. Technol. 2003,37: 2582-2587
    [86] Melitas N, Chuffe M O, Farrell J. Kinetics of soluble chromium removal from contaminated water by zerovalent iron media: corrosion inhibition and passive oxide effects. Environ. Sci. Technol., 2001, 35: 3948-3953
    [87] Shokes T E, MOller C. Removal of dissolved heavy metals from acid rock drainage using iron metal. Environ. Sci. Technol. 1999, 33: 282-287
    [88] Ito D, Miura K, Ichimura T, et al. Removal of As, Cd, Hg and Pb ions from solution by adsorption with bacterially-produced magnetic iron sulfide particles using high gradient magnetic separation 18th International Conference on Magnet Technology, 2004, 14(2): 1551-1553
    [89] Furukawa Y, Kim J W, Watkins J, et al. Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron. Environ. Sci. Technol. 2002, 36(24): 5469-5475
    [90] Pratt A R, Blowes D W, Ptacek C J. Products of chromate reduction on proposed subsurface remediation material. Environ. Sci. Technol., 1997,31(9): 2492-2498
    [91] Lien H L, Wilkin R T. High-level arsenite removal from groundwater by zero-valent iron. Chemosphere, 2005,59(3): 377-386
    [92] Melitas N, Wang J P, Conklin M, et al. Understanding soluble arsenate removal kinetics by zero valent iron media. Environ. Sci. Technol. 2002, 36(9): 2074-2081
    [93]Su C M,Puls R W.Arsenate and arsenite removal by zero valent iron:effects of phosphate,silicate,carbonate,borate,sulfate,chromate,molybdate and nitrate,relative to chloride.Environ.Sci.Technol.2001,35(22):4562-4568
    [94]Weisener C G,Sale K S,Smyth D J A,et al.Field column study using zerovalent iron for mercury removal from contaminated groundwater.Environ.Sci.Technol.,2005,39(16):6306-6312
    [95]Powell R M,Puls R W.Proton generation by dissolution of intrinsic or augmented aluminosilicate minerals for in situ contaminant remediation by zero-valence-state iron.Environ.Sci.Yechnol.,1997,31(8):2244-2251
    [96]Fiedor J N,Bostick W D,Jarabek R J,et al.Understanding the mechanism of uranium removal from groundwater by zero-valent iron using X-ray photoelectron spectroscopy.Environ.Sci.Technol.,1998,32(10):1466-1473
    [97]Gu B,Liang L,Dickey M J,et al.Reductive precipitation of uranium(Ⅵ) by zero-valent iron.Environ.Sci.Technol.,1998,32(21):3366-3373
    [98]Zhang Y Q,Amrhein C,Frankenberger RJ W T.Effect of arsenate and molybdate on removal of selenate from aqueous solution by zero-valent iron.Environ.Sci.Technol.,2005,350(1-3):1-11
    [99]Wilkin R T,McNeil M S.Laboratory evaluation of zero-valent iron to treat water impacted by acid mine drainage.Chemosphere,2003,53(7):715-725
    [100]Morrison S J,Metzler D R,Dwyer B P.Removal of As,Mn,Mo,Se,U,V and Zn from groundwater by zero-valent iron in a passive treatment cell:reaction progress modeling.Journal of Contaminant Hydrology,2002,56(1-2):99-116
    [101]Cantrell K J,Kaplan D I,Wietsma T W.Zero-valent iron for the in situ remediation of selected metals in groundwater.J.Hazard.Mater.,1995,42(2):201-212
    [102]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001.
    [103]杨鼎宜,孙伟.纳米材料的结构特征与特殊性能.材料导报,2003,17(10):7-11
    [104]Ponder S M,Darab J G,Mallouk T E.Remediation of Cr(Ⅵ) and Pb(Ⅱ) aqueous solutions using supported nanoscale zero-valent iron.Environ.Sci.Technol.,2000,34:2564-2569
    [105]Cao J,Zhang W X..Stabilization of chromium ore processing residue(COPR) with nanoscale iron particles.Hazard.Mater.,2006,132(2-3):213-219
    [106]He F,Zhao D.Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water.Environ.Sci.Technol.,2005,39(9):3314-3320
    [107]Kanel S R,Manning B,Charlet L,et al.Removal of arsenic(Ⅲ) from groundwater by nano scale zero-valent iron.Environ.Sci.Technol.,2005,39:1291-1298
    [108]Kanel S R,Greneche J,Choi H.Arsenic(Ⅴ) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material.Environ.Sci.Technol.,2006,40:2045-2050
    [109]He F,Zhao D,Liu J,et al.Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater.Ind.Eng.Chem.Res.,2007,46:29-34
    [110]Xu Y,Zhao D.Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles.Water Res.,2007,41:2101-2108
    [111]Cheng F,Muftikian R,Fernando Q.Reduction of nitrate to ammonia by zero-valent iron.Chemosphere,1997,35(11):2689-2695
    [112]梁震,王焰新.纳米级零价铁的制备及其用于污水处理的机理研究.环境保护,2002,4:14-16
    [113]刘小虹,颜肖慈,李伟.纳米铁微粒制备的新进展.金属功能材料,2002,9(2):100-104
    [114]秦伯雄,曾悦坚,张炳范.等离子体制纳米铁粉技术.天津大学学报,1996,29(2):2-5
    [115]Cui Z I,Dong L F,Zhang Z K.Oxidation behavior of nano-Fe prepared by hydrogen arc plasma method.Nanostructured Materials,1995,5(7-8):829-833
    [116]GIeiter H.Nanocrystalline materials.Prog.Mat.Sci.,1989,33(4):223-2315
    [117]古军辉.高能球磨纳米铁粉的制备及其稳定性分析:[硕士论文],广州:华南理工大学,2002
    [118]Del B L,Hernando A,Multigner M,et al.Evidence of spin disorder at the surface core interace of oxygen passivated Fe nanoparticles.J.Appl Phys,1998,84:2189-2192
    [119]Malow T R,Koch C C,Miraglia P Q,et al.Compressive mechanical behavior of nanocrystalline Fe investigated with an automated ball indentation technique.Mate Sci Eng,1998,252A(1):36-43
    [120]Islamgaliev R K,Chmelik F,Gibadullin I F,et al.The nanocrystalline structure formation in germanium subjected to severe plastic deformation.Nanostruct.Mater.,1994,4(4):387-395
    [121]Ding X Z,Qi Z Z,He Y Z.Effect of hydrolysis water on the preparation of nano-crystalline titania powders via sol-gel process.Journal of Material Science Letters,1995,14(1):21-22
    [122]曾京辉,郑化桂,曾恒兴等.联氨在金属纳米粉制备中的行为研究.中国科技大学学报,1999,29(5):594-599
    [123]曾京辉,郑化桂,曾恒兴.纳米α-Fe金属粉合成.信息纪录材料,1998,4:14-17
    [124]王翠英,陈祖耀,程彬等.金属铁纳米粒子的液相制备、表面修饰及其结构表征.化学物理学报,1999,12(6):670-674
    [125]Gibson C P,Put K L.Synthesis and Characterization of Anisometric Cobalt Nanoclusters.Science.1995.267:1338
    [126]崔正刚.微乳化技术及应用,北京:中国轻工业出版社,1999
    [127]王莹利.微乳反应法超细铁铜催化剂的制备及其活性评价:[硕士学位论文],郑州:郑州大学,2005
    [128]Pileni M P.The role of soft colloidal templates in conrolling the size and shape of inorganic nanocrystals.Nature Materials,2003,2:145-150
    [129]Li F,Vipulananda C,Kishoore K.Microemulsion and solution approaches to nanoparticle iron production for degradation of trichloroethylene.Colloids and surfaces A:Physicochem. Eng.Aspects,2003,223:103-112
    [130]Natter L,Schmelzer M L,Effler M S,et al.Grain-Growth Kinetics of Nanocrystalline Iron Studied In Situ by Synchrotron Real-Time X-ray Diffraction.J Phys Chem,B2000,104(11):2467-2476
    [131]Jean L,Jean D,Jacques R,et al.Synthesis and characterization of a new Fe mixed nanoparticles.Chem Mater,2000,12:946-955
    [132]曹茂盛,邓启刚,鞠刚等.α-Fe纳米粉末制备及其表征.化学通报,2000,(2):42-43
    [133]李发伸,杨文平,薛德胜.纳米Fe微粒的制备及研究.兰州大学学报(自然科学版),1994,30(1):144-146
    [134]田春霞.纳米粉末的制备方法综述.粉末冶金工业,2001,11(5):19-24
    [135]杨勇彬,高家诚,王勇.铁基纳米粉末的研究.钢铁研究,2003,(1):36-41
    [136]王其祥,宋宝珍,李洪钟.H_2+H_2O还原法制备超细金属磁记录粉.无机材料学报,2001,16(5):861-866
    [137]Zhang W X.Nanoscale iron particles for environmental remediation:an overview.J.Nanopart.Res.,2003,5:323-332
    [138]Rudall K M,Adv.Insect.Physical.1963,257-261
    [139]蒋挺大.壳聚糖.第1版.北京:化学工业出版社,2001,17
    [140]蒋挺大.壳聚糖.第1版.北京:化学工业出版社,2001,25
    [141]莫秀梅,王鹏,周贵恩等.甲壳素/甲壳胺的聚集态结构及性能.高等学校化学学报,1998,19(6):989-992
    [142]Majet N V,Kumar R.A review of chitin and chitosan applications.Reactive & Functional Polymers,2000,46:1-27
    [143]夏金兰,王春,刘新星.抗菌剂及其抗菌机理.中南大学学报(自然科学版),2004,35(1):36-39
    [144]吴小勇,曾庆孝,阮征等.壳聚糖的抑菌机理及抑菌特性研究进展.中国食品添加剂,2004,6:57-61
    [145]Tokura S K,Ueno S,Nishi N,et al.Molecular weight dependent antimicrobial activity of chitosan.Macromol.Symp.,1997,120:1-9
    [146]M J 小佩尔扎,R D 里德,E C S 詹编著.武汉大学生物学系微生物教研室译.微生物学.北京:科学出版社,1987:359-360
    [147]Helander I M,Lassila E L,Ahvenainen R,et al.Chitosan disrupts the barrier properties of the outer membrane of gram-negative bacteria.International Journal of Food Microbiology,2001,71:235-244
    [148]No H K,Park N Y,Lee S H,et al,Antibacterial activity of chitosans and chitosan oligomers with different molecular weights.International Journal of Food Microbiology,2002,74:65-72
    [149]Jeon Y J,Park P J,Kim S K.Antimicrobial effect of chitoo-ligosaccharides produced by bioreactor.Carbohydrate Polymers,2001,44:71-77
    [150]胡瑛,杜予民,刘慧.壳聚糖抗菌性与分子量和环境介质相关性研究.分析科学学报, 2003,19(4):305-308
    [151]Bodnar M,Hartmann J F,Borbely J.Preparation and characterization of chitosan-based nanoparticles.Biomacromolecules,2005,6(5):2521-2527
    [152]Chen Y,Mohanraj V J,Parkin J E.Chitosan-dextran sulfate nanoparticles for delivery of an anti-angiogenesis peptide.Lett.Peptide.Sci.,2003,10:621-629
    [153]夏金兰,王春,聂珍媛等.羧甲基壳聚糖银噻苯咪唑的制备及其抑菌性能.中南大学学报:自然科学版,2005,36(1):34-37
    [154]Molday R S.Magnetic iron-dextran microspheres:US,4452773[P].1984
    [155]Sambrook J,Russell D W.Molecular cloning:A laboratory manual.3rd ed.New York:Cold Spring Harbor Laboratory Press,2001
    [156]Levison P R,Badger S E,Hathi P,et al.New approaches to the isolation of DNA by ion-exchange chromatography.Journal of Chromatography A,1998,827(2):337-344
    [157]Zhou L M,Wang Y P,Liu Z R,et al.Carboxymethyl chitosan-Fe_3O_4 nanoparticles:Preparation and adsorption behaviors towards Zn~(2+) ions.Acta Phys.-Chim.Sin.,2006,22(11):1342-1346
    [158]Li G Y,Jiang Y R,Huang K L,et al.Preparation and properties of magnetic Fe_3O_4-chitosan nanoparticles.Journal of Alloys and Compounds,2008,466(1-2):451-456
    [159]Zhu A P,Yuan L H,Liao T Q.Suspension of Fe_3O_4 nanoparticles stabilized by chitosan and o-carboxymethylchitosan.International Journal of Pharmaceutics,2008,350(1-2):361-368
    [160]Wang X H,Du Y M,Ding S,et al.Preparation and third-order optical nonlinearity of self-assembled chitosan/CdSe-ZnS core-shell quantum dots films.J.Phys.Chem.B,2006,110(4):1566-1570
    [161]Wang X H,Du Y M,Ding S,et al.Large two-photon absorbance of chitosan-ZnS quantum dots nanocomposite film.Physica E,2005,30(1-2):96-100
    [162]Wu L L S,Shi C,Tian L F,et al.A one-pot method to prepare gold nanoparticle chains with chitosan,Journal of Physical Chemistry C,2008,112(2):319-323
    [163]Huang H Z,Yang X R.Chitosan mediated assembly of gold nanoparticles multilayer.Colloids and Surfaces A:Physicochem.Eng.Aspects,2003,226(1-3):77-86
    [164]Huang H Z,Qiang Y,Yang X R.Morphology study of gold-chitosan nanocomposites.Journal of Colloid and Interface Science,2005,282(1):26-31
    [165]Huang H Z,Yuan Q,Yang X R.Preparation and characterization of metal-chitosan nanocomposites.Colloids and Surfaces B:Biointerfaces,2004,39(1-2):31-37
    [166]Ponder S M,Darab J G,Bucher J,et al.Surface Chemistry and Electrochemistry of Supported Zerovalent Iron Nanoparticles in the Remediation of Aqueous Metal Contaminants.Chem Mater,2001,13,(2):479-486
    [167]Schrick B,Hydutsky B W,Blough J L.Delivery Vehicles for Zerovalent Metal Nanoparticles in Soil and Groundwater.Chem.Mater,2004,16,2187-2193
    [168]王桂香.铁系元素纳米合金的合成及性能研究:[硕士学位论文],哈尔滨:哈尔滨工程大学,2001
    [169] Cheng D, Xia H, Chan H S. Facile fabrication of AgCl@polypyrrole-chitosan core-shell nanoparticles and polymeric hollow nanospheres. Langmuir, 2004,20(23): 9909-9912
    [170] Wang B, Chen K, Jiang S, et al. Chitosan-mediated synthesis of gold nanoparticles on patterned poly(dimethylsiloxane) surfaces. Biomacromolecules, 2006, 7(4): 1203-1209
    [171] Wei D W, Qian W P. Facile synthesis of Ag and Au nanoparticles utilizing chitosan as a mediator agent. Colloid Surf. B-Biointerfaces, 2008,62(1): 136-142
    [172] Bhatia S C, Ravi N. A Mossbauer study of the interaction of chitosan and D-glucosamine with iron and its relevance to other metalloenzymes. Biomacromolecules, 2003, 4(3): 723-727
    [173] Shen J, Li Z, Yan Q, et al. Reactions of bivalent metal ions with borohydride in aqueous solution for the preparation of ultrafine amorphous alloy particles. J. Phys. Chem. 1993, 97(5): 8504-8511
    [174] Zhou Y, Itoh H, Uemura T, et al. Synthesis of novel stable nanometer-sized metal (M = Pd, Au, Pt) colloids protected by a 5-conjugated polymer. Langmuir 2002, 18(1): 277-283
    [175] Liu Y, Huang C, Chen Y. Liquid-phase selective hydrogenation of p-chloronitrobenzene on Ni-P-B nanocatalysts. Ind. Eng. Chem. Res. 2006,45(1), 62-69
    [176] Jorgensen J M, Erlacher K, Pedersen J S, et al. Preparation temperature dependence of size and polydispersity of alkylthiol monolayer protected gold clusters. Langmuir 2005,21(23): 10320-10323
    [177] He F, Zhao D Y. Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers Environ. Sci. Technol., 2007, 41(17): 6216-6221
    [178] Maurstad G, Danielsen S, Stokke B T. The influence of charge density of chitosan in the compaction of the polyanions DNA and xanthan. Biomacromolecules, 2007, 8(4): 1124-1130
    [179] Rong M Z, Zhang M Q, Zheng Y X, et al. Improvement of tensile properties of nano-SiO_2/PP composites in relation to percolation mechanism. Polymer, 2001, 42(7): 3301-3304
    [180] Shirtcliffe N, Nickle U, Schneider S. Reprocucible size using borohhydride reduction: for use as nuclei for preparation of larger partieles. J. Colloid interface Sci., 1999, 211(1):122-127
    [181] Creighton J A, Eadon D G. Ultraviolet-visible absorption spectra of the colloidal metallic elements. J. Chem. Soc., Faraday Trans., 1991, 87: 3881-3891
    [182] Kreibig U, Vollmer M. Optical properties of metal clusters; Spring-Verlag:Berlin, 1995,23-25
    [183] Zhao M, Sun L, Crooks R M. Preparation of Cu nanoclusters within dendrimer templates. J.Am.Chem.Soc.1998, 120(19): 4877-4878
    [184] Wan Y, Wu H, Yu A, et al. Biodegradable polylactide/chitosan blend membranes. Biomacromolecules, 2006, 7, 1362-1372
    [185]李桂银.磁性纳米壳聚糖微球的制备及其固定化酵母细胞的研究.中南大学博士学位论文,2008.
    [186]钱慧静.CMC对纳米零价铁去除污染水体中六价铬的影响.浙江大学硕士学位论文,2008.
    [187]Gheju M,Iovi A.Kinetics of hexavalent chromium reduction by scrap iron.Journal of Hazardous Materials B,2006,135():66-73
    [188]Patterson R R,Fendorf S,Fendorf M.Reduction of hexavalent chromium by amorphous iron sulfide.Environ.Sci.Technol.,1997,31(7):2039-2044
    [189]Wilkin R T,Su C,Ford R G,et al.Chromium-removal processes during groundwater remediation by a zerovalent iron permeable reactive barrier.Environ.Sci.Technol.,2005,39(12):4599-4605
    [190]Hoch L B,Mack E J,Hydutsky B W,et al.Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium Environ.Sci.Technol.,2008,42(7):2600-2605
    [191]Kanel S R,Choi H.The transport characteristics of polymer stabilized nano scale zero-valent iron in porous media.Water Sci.Technol.,2007,55(1-2):157-162
    [192]Deng B,Burrs D R,Campbell T J.Reduction of vinyl chloride in metallic iron-water systems.Environ.Sci.Technol.,1999,33:2651-2656
    [193]Chen S S,Hsu H D,Li C W.A new method to produce nanoscale iron for nitrate removal.Nanoparticle Res.,2004,6(6):639-647
    [194]Sun Y P,Zhang W X.Dispersion of Zero-Valent Iron Nanoparticles.In Abstracts of Papers IEC-090,229th ACS National Meeting,March 1317,2005;American Chemical Society:San Diego,CA,2005
    [195]周密.腐殖酸对零价铁去除污染水体中六价铬的影响,[D].浙江大学,2007
    [196]Chen,K.L.,Mylon,S.E.,Elimelech,M.Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent eleetrolytes.Environ.Sci.Technol.,2006,40:1516-1523
    [197]Lo I M,Lam C S,Lai K C.Hardness and carbonate effects on the reactivity of zero-valent iron for Cr(Ⅵ) removal.Water research,2006,40:595-605
    [198]Agrawal A,Ferguson W J,Gardner B O,et al.Effects of carbonate species on the kinetics of dechlorination of 1,1,1-trichloroethane by zero-valent iron.Environ.Sci.Technol.,2002,36(20):4326-4333
    [199]Vogan J L,Focht R M,Clark D K,et al.Performance evaluation of a permeable reactive barrier for remediation of dissolved chlorinated solvents in groundwater.Journal of Hazardous Materials,1999,68:97-108
    [200]Keith C K,Lo L,Irene M C.Removal of chromium(Ⅵ) by acid-washed zero-valent iron under various groundwater geochemistry conditions.Environ.Sci.Technol.,2008,42(4):1238-1244
    [201]Jeen S W,Gillham R W,Blowes D W.Effects of carbonate precipitates on long-term performance of granular iron for reductive dechlorination of TCE. Environ. Sci. Technol., 2006, 40(20): 6432-6437
    [202] Lien H L, Zhang W X. Nanoscale iron particles for complete reduction of chlorinated ethenes. Colliods and Surface A: Physiochemical and Engineering Aspects, 2001, 191: 97-105
    [203] Johnson T L, Scherer M M, Tratnyek P G. Kinetics of halogenated organic compound degradation by iron metal. Environ Sci Technol, 1996, 30(8): 2634-2640
    [204] Alowitz M J, Scherer M M. Kinetics of nitrate, nitrite, and Cr(VI) reduction by iron metal. Environ. Sci. Technol., 2002, 36: 299-306
    [205] Liu T, Tsang D C, Lo I M. Chromium(VI) reduction kinetics by zero-valent iron in moderately hard water with humic acid: iron dissolution and humic acid adsorption. Environ. Sci. Technol., 2008,42: 2092-2098
    [206] Li X Q, Cao J, Zhang W X. Stoichiometry of Cr(VI) immobilization using nanoscale zerovalent iron (nZVI): a study with high-resolution X-ray photoelectron spectroscopy (HR-XPS). Ind. Eng. Chem. Res., 2008,47: 2131-2139
    [207] Varma A J, Deshpande S V, Kennedy J F. Metal complexation by chitosan and its derivatives: a review. Carbohydr. Polym., 2004, 55: 77-93
    [208] Su C M, Puls R W. Kinetics of trichloroethene reduction by zero valent ironandtin: Pretreatment effect, apparent activation energy, and intermediate products. Environ. Sci. Technol., 1999,33:163-168
    [209] Sass B M, Rai D. Solubility of amorphous chromium(III)-iron(III) hydroxide solid solutions. Inorg. Chem., 1987, 26: 2228-2232
    [210] Stumm W, Sulzberger B, Sinniger J. The coordination chemistry of the oxide-electrolyte interface-the dependence of surface reactivity (dissolution, redox reactions) on surface-structure, Croat. Chem. Acta., 1990, 63: 277-312
    [211] Matheson L J, Tratnyek P G. Reductive dehalogenation of chlorinatedmethanes by iron metal, Environ. Sci. Technol., 1994, 28: 2045-2053
    
    [212] Laidler K J. Chemical Kinetics, McGraw-Hill: New York, 1965, p 205
    [213] Spiro M. Reactions at the liquid-solid interface. In Comprehensive Chemical Kinetics, Vol. 28, Compton, RG., Ed., Elsevier: Amsterdam, 1989, pp 69-166
    [214] Pilling M J, Seakins P W. Reaction Kinetics, Oxford University Press: New York, 1995, p 151
    
    [215] Bockris J O, Reddy A K N. Modern Electrochemistry, Plenum Press: New York, 1970
    [216] Uhlig H H, Revie R W. Corrosion and Corrosion Control, 3rd ed., John Wiley: New York, 1985
    [217] Astrup T, Stipp S L, Christensen T H. Immobilization of chromate from coal fly ash leachate using an attenuating barrier containing zero-valent iron. Environ. Sci. Technol., 2000,34:4163-4168
    [218] Powell R M, Puls R W, Hightower S K, et al. Coupled iron corrosion and chromate reduction: mechanisms for subsurface remediation. Environ. Sci. Technol, 1995, 29: 1913-1922
    [219] Erdem B, Hunsicker R A, Simmons G W, et al. XPS and FTIR surface characterization of TiO_2 particles used in polymer encapsulation. Langmuir, 2001, 17(9): 2664-2669
    [220] Manning B A, Riser J R, Kwon H, et al. Spectroscopic investigation of Cr(III)- and Cr(VI)-treated nanoscale zerovalent iron. Environ. Sci. Technol., 2007,41: 586-592
    [221] Li X Q, Zhang W X. Iron nanoparticles: the core-shell structure and unique properties for Ni(II) sequestration. Langmuir., 2006, 22: 4638-4642
    [222] Li X, Zhang W. Sequestration of metal cations with zerovalent iron nanoparticless: A study with high resolution X-ray photoelectron spectroscopy (HR-XPS). J. Phys. Chem. C, 2007, 111(19): 6939-6946
    [223] Roh Y, Lee S Y, Elless, M P. Characterization of corrosion products in the permeable reactive barriers. Environ. Geol., 2000,40(1-2): 184-194

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700