用户名: 密码: 验证码:
人工潜流湿地净化富营养化水体试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人工湿地是自然湿地的人工强化,能通过对湿地各构成要素(填料、植物和微生物等)的优化管理提高污染物去除性能。人工垂直潜流湿地占地面积小、卫生状况好,近年来被广泛用于去除污染水体中的有机污染物和氮磷等营养盐污染物,在景观水体修复中表现出较大潜力。人工垂直潜流湿地有机物去除率较高,但无机氮、磷去除率相对较低。本论文系统研究人工湿地构成要素(填料和植物)对污染物去除的影响,选择去污性能优异的填料和植物构建人工垂直潜流湿地处理津河富营养化水体,探索和讨论间歇曝气和生物填料提高潜流湿地污染物去除效率的可行性。主要研究内容和研究结果如下:
     1.通过对孔隙率、干容重、粒径级配、水力渗透系数等物理性质的测定比较初步筛选湿地填料。结果表明质轻多孔、颗粒分布均匀、水力渗透系数较小的页岩较宜作为人工湿地去污主填料,质地密实,持水性较差的粗砾石适合作为支撑滤料分布和收集污水。
     2.结合填料物理性质测定在室内开展柱状填料去污比较实验,选择去污性能优异的湿地填料及其组合。研究结果表明页岩、麦饭石、铁矿石和粗砾石的津河水体净化性能差异显著,单一填料页岩COD、TN、TP去除效果最好。组合填料中页岩与粗砾石组合COD、TN和TP去除效果突出,粗砾石与铁矿石组合最差。
     3.填料类型、粒径、进水浓度和水力停留时间(HRT)等影响潜流湿地磷去除效率。四种填料最大磷吸附量顺序为页岩>铁矿石>麦饭石>粗砾石,填料最大磷吸附量随着粒径的增大逐渐减小。HRT从2.2d增加到3.1d后,填料磷去除效果受进水浓度的影响减小,却更加依赖填料的磷吸附性能。
     4.根据湿地植物的生长状况、水体净化效果和组织氮磷累积性能筛选潜流湿地去污目标植物。研究结果表明7种水生植物芦苇、石菖蒲、千屈菜、美人蕉、黄花鸢尾、香蒲和水葱在津河富营养化水体中生长良好,氮磷净化效果优异。湿地植物地上和地下组织(根、茎和叶)生物量及氮、磷含量分析结果表明香蒲根系发达,地上组织氮、磷累积量高,适宜用作人工湿地去污植物。
     5.结合曝气生物滤池的优点在潜流湿地填料内部引入间歇曝气,研究溶解氧可利用性对湿地去污性能的影响。结果表明间歇曝气能够有效提高津河水体COD、NH_4~+-N、TN、SRP和TP去除效率,但曝气产生的有氧环境不利于硝酸盐氮(NO_3~--N)去除。植物分析结果表明间歇曝气抑制香蒲地上组织生物量的增加,但能够有效提高茎、叶中氮磷含量。
     6.基于生物接触氧化池的优点,采用生物填料(聚丙烯多面空心小球)替代部分页岩研究生物填料对湿地去污性能的影响。结果表明生物填料能够有效提高津河水体COD、NH_4~+-N、TN、SRP和TP去除效率,但对硝酸盐氮(NO_3~--N)去除影响不显著。植物分析发现生物填料抑制香蒲地上组织生物量的增加,但能够有效提高茎、叶中氮磷含量。
     7.采用聚丙烯多面空心小球替换部分页岩构建生物填料人工湿地,研究间歇曝气对生物填料人工湿地去污性能的影响。结果表明间歇曝气能够有效提高生物填料人工湿地COD、NH_4~+-N、TN、SRP和TP去除效率,但不利于硝酸盐氮(NO_3~--N)去除。植物分析结果表明间歇曝气能够使生物填料人工湿地内香蒲地上组织生物量及氮磷含量有不同程度增加。
     8.双因素方差分析(Two way ANOVA)检验结果表明间歇曝气对COD、NH_4~+-N、NO_3~--N、TN、SRP和TP去除有显著影响。生物填料对COD、NH_4~+-N和TN去除影响显著。除NH_4~+-N外,间歇曝气和生物填料组合对其余污染物的去除均无显著影响。假如湿地植物组织仅从水体提取营养,氮磷累积性能分析结果表明香蒲地上组织氮磷吸收贮存性能的改善是间歇曝气和生物填料提高潜流湿地整体氮磷去除效率的重要原因。
Constructed wetlands are engineered systems designed and constructed to utilize the natural processes involving wetlands vegetation, soils and their associated microbial assemblages to assist in treating wastewater. Due to their relatively small space requirements and good sanitary conditions, vertical subsurface flow(VSSF) constructed wetlands have recently become a common choice for the removal of organic matter, nitrogen and phosphorus and showed great potential in restoration of polluted landscape waters. The current efficiency with which VSSF removes most organic substances is satisfactory, but the removal of nitrogen and phosphorus is known to be somewhat problematic. In this dissertation, effect of wetlands components including substrate and plant on nutrient removal was evaluated and optimum candidate substrates and plants were selected to construct VSSF constructed wetlands treating eutrophic Jinhe River water. The role of intermittent artificial aeration and biofilm carrier (polyhedron hollow polypropylene ball (PHPB)) in nutrient removal was also explored. The main contributions to the current research of this topic are described below:
     1. Measurement of dry weight, hydraulic conductivity, particle size distribution, porosity and other selected physical properties was conducted to make the primary selection of candidate substrates. High porosity, uniformity of particle size distribution and low hydraulic conductivity, these good qualities showed shale had the potential to be packed as wetlands main filter media while close grained gravel had low water retention capacity, and should be used to distribute and collect water.
     2. Indoor column purification experiments were initiated to make further selection of wetlands substrates. Shale, coarse gravel, hornblende and iron stone showed significant difference in Jinhe River water treatment capacity, and shale performed best in COD, TN and TP removal. Moreover, combination between shale and coarse gravel treated COD, TN and TP well, while coarse gravel and ironstone contributed little to above nutrient variables removal.
     3. Phosphorus removal by VSSF constructed wetlands depended on substrates type and grain size, influent concentration and hydraulic residence time (HRT). The ranking order of the maximum phosphorus adsorption capacity for the substrates was as follows: shale > ironstone > hornblende > coarse gravel. After HRT values were increased from 2.2days to 3.1 days, phosphorus removal performance was more dependent on substrate phosphorus adsorption than on influent concentrations.
     4. Growth conditions, purification performance and biomass nutrient (nitrogen and phosphorus) accumulation capacity of selected candidate wetlands plants were investigated. All of the seven species including Phragmites communis, Typha angustifolia Linn, Acorus tatarinowii Schott, Lythrum salicaria Linn, Iris wilsonii C. H. Wright, Canna generalis and Scirpus validus Vahl grew well in the constructed wetlands, and showed excellent nitrogen and phosphorus removal performance. Aboveground and belowground biomass (root, stem and leaf) production and corresponding nitrogen and phosphorus content analysis suggested that Typha angustifolia Linn had high root biomass production, excellent nutrient uptake capacity and can be used potentially as constructed wetlands plant to remove nitrogen and phosphorus.
     5. Take the advantageous of aerated biofilter, intermittent artificial aeration was introduced to VSSF constructed wetlands to investigate the effect of oxygen availability on nutrient removal. In contrast with the non-aerated wetlands, intermittent artificial aeration greatly enhanced COD, NH_4~+-N, TN, SRP and TP reduction but reduced NO_3~--N removal. The analysis of wetlands plant biomass indicated that intermittent aeration restrains the increase in biomass production, but stimulates assimilation of nitrogen and phosphorus into stems and leaves.
     6. Like bio-contact oxidation process, biofilm carrier (PHPB) was used to replace part of shale and packed as wetlands substrate to examine its impact on nutrient removal. In contrast to wetlands without biofilm carrier, polypropylene pellets improved the COD, NH_4~+-N, TN, SRP and TP removal. Biofilm carrier, however, played no significant role on NO_3~--N removal. The analysis of wetlands plant biomass indicated that bioflim carrier restrains the increase in biomass production, but stimulates uptake of nitrogen and phosphorus into stems and leaves.
     7. Effect of intermittent artificial aeration on nutrient removal by VSSF constructed wetlands using biofilm carrier as part of substrate was evaluated. In contrast with the non-aerated wetlands, intermittent artificial aeration greatly enhanced COD, NH_4~+-N, TN, SRP and TP reduction but reduced NO_3~--N removal. The analysis of wetlands plant biomass indicated that intermittent aeration stimulates the increase in biomass production and enhanced the accumulation of nitrogen and phosphorus into stems and leaves.
     8. Finally, further two-way ANOVA analysis results indicated that intermittent artificial aeration led to significant statistic difference in COD, NH_4~+-N, NO_3~--N, TN, SRP and TP removal. The using of PHPB as part of wetlands substrate was significant for COD, NH_4~+-N and TN removal. Except for NH_4~+-N, no significant interaction effect between intermittent artificial aeration and PHPB on other nutrient variables removal was detected. If plant uptake and store nitrogen and phosphorus only occurred from water column, mass balance calculation showed that the enhancement in nitrogen and phosphorus accumulation by intermittent artificial aeration and PHPB was the major factor responsible for the total observed improvement in nitrogen and phosphorus removal.
引文
[1]赵新华,赵胜跃,张信阳,等.景观河流(津河)水质变化的研究与控制.天津大学学报,2005,Vol.38(9):824-828
    [2]朱坦,李洪远,李强.津河水系的修复对天津市生态环境的影响.城市环境与城市生态,2001,Vol.14(3):16-17
    [3]彭喜花,费学宁,李汉印.天津津河水质分析.江南大学学报(自然科学版),2006,Vol.5(3):345-348
    [4]胡晓槐.走向绿色明天—天津环境保护及城市排水的回顾及思考.天津:中国言实出版社,1999.23-24
    [5]孙韧,张震,朱林,等.影响津河水生生态环境的主要因素及保护对策口.城市环境与城市生态,2003,Vol.16(6):71-72
    [6]刘春光,金相灿,王雯.城市景观客流夏季污染状况及营养水平动态分析—以天津市津河为例.环境污染与防治,2004,Vol.26(4):312-317
    [7]吴丽娜,吕严,赵光宇,等.天津市津河有机物和生物性污染调查研究.环境与健康杂志,2003,Vol.20(5):292-293
    [8]张云霞,李汉印,王秀朵,等.除磷净水剂去除津河水中总磷的试验研究.中国给水排水,2006,Vol.22(23):67-69
    [9]潘永璋,张娜,叶林顺,等.受污染景观水体的生物修复.环境污染治理技术与设备,2005,Vol.6(3):69-71
    [10]吕伟娅,张瀛洲,关丹桔.聚福园景观用水的循环处理与雨水的利用研究.给水排水,2002,Vol.28(5):56-59
    [11]吕伟娅,张瀛洲,关丹桔.利用雨水作为景观用水水源的设计与应用研究.给水排水,2004.Vol.30(10):75-78
    [12]Kivaisi A K.The potential for constructed wetlands for wastewater treatment and reuse in developing countries:a review.Ecol Eng,2001,16(4):545-560
    [13]Carleton J N,Grizzard T J,Godrej A N,et al.Factors affecting the performance of stormwater treatment wetlands.Water Res,2001,35(6):1552-1562
    [14]Wood A.Constructed wetlands in water pollution control:Fundamentals to their understanding.Water Sci Technol,1995,32(3):9-21
    [15]Nairn R W,Mitsch W J.Phosphorus removal in created wetland ponds receiving river overflow.Ecol Eng,2000,14(1-2):107-126
    [16]严立,刘志明,陈建刚,等.潜流式人工湿地净化富营养化景观水体.中国给水排水,2005,Vol.21(2):11-13
    [17]甘树应,杨青.景观水体污染处理工艺研究及工程应用.给水排水,2002,Vol.28(12):56-58
    [18]伦斯 P,泽曼 G,莱廷格 G.分散式污水处理和再利用—概念、系统和实施(王晓昌, 彭党聪,黄廷林,译).北京:化学工业出版社,2004.190-209
    [19]Stauffer J U.水危机-寻找解决淡水污染的方案(张康生,韩建国,译).北京:科学出版社,2000.69-108
    [20]Vymazal J.Removal of nutrients in various types of constructed wetlands.Sci Total Environ,2007,380(1-3):48-65
    [21]汤显强,黄岁樑.人工湿地去污机理及国内外应用现状.水处理技术,2007,Vol.33(2):9-13
    [22]Seidel K.Reinigung von Gerw(a|¨)ssern durch h(o|¨)here Pflanzen(treatment of watercourses via macrophytes).Deut.Naturwiss.(German Natural Sciences),1966,12:297-298
    [23]Scholz M,H(o|¨)hn P,Minall R.Mature experimental constructed wetlands treating urban water receiving high metal loads.Biotechnol Progr,2002,18(6):1257-1264
    [24]Braskerud B C.Factors affecting phosphorus retention in small constructed wetlands treating agricultural non-point source pollution.Ecol Eng,2002,19(1):41-61
    [25]Fraser L H,Carry S M,Steer D.A test of four plant species to reduce total nitrogen and total phosphorus from soil leachate in subsurface wetland microcosms.Bioresource Technol,2004,94(2):185-192
    [26]Li L F,Li Y H,Biswas D K,et al.Potential of constructed wetlands in treating the eutrophic water:Evidence from Taihu Lake of China.Bioresour Technol,99(6):1656-1663
    [27]郑金秀,胡春华,彭祺,等.底泥疏浚研究概况.环境科学与技术,2007,Vol.30(4):111-115
    [28]刘延恺,陆苏.河道曝气法—适合我国国情的环境污水处理工艺.环境污染与防治,1994,Vol.16(1):22-25
    [29]House C H.Combining constructed wetlands and aquatic and soil filter for reclamation and reuse of water,Ecol Eng,1999,12(1):27-38
    [30]Conley L,Dick R,Lion L.An assessment of the root zone method of wastewater treatment.Res J Water Pollut Control F,1991,3(5):239-247
    [31]Keefe S H,Barber L B,Runkel R L,et al.Fate of Volatile Organic Compounds in constructed wastewater treatment wetlands.Environ Sci Technol,2004,38(7):2209-2216
    [32]Tao W D,Hall K J,Duff S J B.Microbial biomass and heterotrophic production of surface flow mesocosm wetlands treating woodwaste leachate:Responses to hydraulic and organic loading and relations with mass reduction,Ecol Eng,2007,31(2):132-139
    [33]Sun G Z,Zhao Y Q,Allen S.Enhanced removal of organic matter and ammonia-nitrogen in a column experiment of tidal flow constructed wetland system.J Biotechnol,2005,115(2):189-197
    [34]Vymazal J.Types of constructed wetlands for wastewater treatment:their potential for nutrient removal.In:Vymazal J,(Ed).Transformations of nutrients in natural and constructed wetlands.Leiden,The Netherlands:Backhuys Publishers,2001.1-93
    [35]肖海文,邓荣森,翟俊,等,溶解氧对人工湿地处理受污染城市河流水体效果的影 响.环境科学,2007,Vol.27(12):2426-2431
    [36]Nivala J,Hoos M B,Cross C,et al.Treatment of landfill leachate using an aerated,horizontal subsurface-flow constructed wetland.Sci Total Environ,2007,380(1-3):19-27
    [37]Ouellet-Plamondon C,Chazarenc F,Comeau Y,et al.Artificial aeration to increase pollutant removal efficiency of constructed wetlands in cold climate.Ecol Eng,2006,27(3):258-264
    [38]Green M,Friedler E,Ruskol Y,et al.Investigation of alternative method for nitrification in constructed wetlands.Water Sci Technol,1997,35(5):63-70
    [39]Tanner C C,D'Eugenio J,McBride G B,et al.Effect of water level fluctuation on nitrogen removal from constructed wetland mesocosms.Ecol Eng,1999,12(1-2):67-92.
    [40]Leonard K M,Key S P,Srikanthan R.A comparison of nitrification performance in gravity-flow and reciprocating constructed wetlands.In:Brebbia C A,Almorza D,Sales D,(eds).Water Pollution.Ⅶ.Modeling,Measuring and Prediction.Southampton,UK:WIT Press,2003.293-301
    [41]Wanda H,Vaccab G,Kuschkb P,et al.Removal of bacteria by filtration in planted and non-planted sand columns.Water Res,2007,41(1):159-167
    [42]Reddy K R,D'Angelo E M.Soil processes regulating water quality in wetlands.In:Mitsch W J,editor.Global Wetlands:Old World and New.Elsevier,Amsterdam,1994.309-324
    [43]唐述虞.铁矿酸性排水进行人工湿地处理.环境工程,1996,Vol.14(4):3-7
    [44]Ji G D,Sun T H,Ni J R.Surface flow constructed wetland for heavy oil-produced water treatment.Bioresource Technol,2007,98(2):436-441
    [45]Brix H.Do macrophytes play a role in constructed treatment wetlands? Water Sci Technol,1997,35(5):11-17
    [46]Lim P E,Wong T F,Lim D V.Oxygen demand,nitrogen and copper removal by free-water-surface and subsurface-flow constructed wetlands under tropical conditions.Environ Int,2001,26(5):425-431
    [47]Ciria M P,Solano M L,Soriano P.Role of macrophyte Typha latifolia in a constructed wetland for wastewater treatment and assessment of its potential as a biomass fuel.Biosyst Eng,2005,92(40):535-544
    [48]Ottova V,Balcarova i J,Vymazal J.Microbial characteristics of constructed wetlands.Water Sci Technol,1997,35(5):117-123
    [49]Vymazal J,Brix H,Cooper P F,et al.Removal mechanisms and types of constructed wetlands.In:Vymazal J,Brix H,Cooper P F,Green M B,Haberet R,(eds).Constructed Wetlands for Wastewater Treatment in Europe.Leiden,The Netherlands:Backhuys Publishers,1998.17-66
    [50]Mander(u|¨),Kuusemets V,L(o|¨)hmus K,et al.Nitrous oxide,dinitrogen and methane emission in a subsurface flow constructed wetland.Water Sci Technol,2003,48(5):135-142
    [51]Vymazal J.Removal of BOD_5 in constructed wetlands with horizontal subsurface flow:czech experience.Water Sci Technol,1999,40(3):133-138
    [52] Prochaska C A, Zouboulis A I, Eskridge K M. Performance of pilot-scale vertical-flow constructed wetlands, as affected by season, substrate, hydraulic load and frequency of application of simulated urban sewage. Ecol Eng, 2007, 31 (1) : 57—66
    [53] Brix H, Arias C A. The use of vertical flow constructed wetlands for on-site treatment of domestic wastewater: New Danish guidelines. Ecol Eng, 2005. 25 (5) : 491 —500
    [54] Gomez Cerezo R? Suarez M L, Vidal-Abarca M R. The performance of a multistage system of constructed wetlands for urban wastewater treatment in a semiarid region of SE Spain. Ecol Eng, 2001, 16 (4) : 501-517
    [55] Ansola G, Gonza'lez J M, Cortijo R, et al. Experimental and full-scale pilot plant constructed wetlands for municipal wastewaters treatment. Ecol Eng, 2003, 21 (1) : 43— 52
    [56] Merlin G, Pajean J L, Lissolo T. Performances of constructed wetlands for municipal wastewater treatment in rural mountainous area. Hydrobiologia, 2002, 469(1-3) : 87 - 98
    [57] Reddy K R, Patrick W H. Nitrogen transformations and loss in flooded soils and sediments. CRC Crit Rev Environ Control, 1984, 13 (4) : 273-309
    [58] Reddy K R, D'Angelo E M. Biogeochemical indicators to evaluate pollution removal efficiency in constructed wetlands. Water Sci Technol, 1997, 35 (5) : 1 - 10
    [59] Tanner C C, Kadlec R H, Gibbs M M, Sukias J P S, et al. Nitrogen processing gradients in subsurface-flow treatment wetlands. Ecol Eng, 2002, 18 (4) : 499—520
    [60] Vymazal J. Algae and element cycling in wetlands. Chelsea, Michigan: Lewis Publishers, 1995.698
    [61] Johnston C A. Sediments and nutrient retention by freshwater wetlands: effects on surface water quality. CRC Crit Rev Environ Control, 1991, 21 (5-6) : 491—565
    [62] Mitsch W J, Gosselink J G. Wetlands. New York: Van Nostrand Reinhold Company, 2000.920
    [63] Garnett T P, Shabala S N, Smethurst P J, et al. Simultaneous measurement of ammonium, nitrate and proton fluxes along the length of eucalyptus roots. Plant Soil, 2001, 236(1) : 55-62
    [64] Kadlec R H, Tanner C C, Hally V M, et al. Nitrogen spiraling in subsurface-flow constructed wetlands: implications for treatment response. Ecol Eng, 2005, 25 (4) : 365— 381
    [65] Rogers K H, Breen A J, Chick A J. Nitrogen removal in experimental wetland treatment systems: evidence for the role of aquatic plants. Res J Water Pollut Control F, 1991, 63 (7) : 934-941
    [66] Breen P E. A mass balance method for assessing the potential of artificial wetlands for wastewater treatment. Water Res, 1990, 24 (6) : 689—697
    [67] Koottatep T, Polprasert C. Role of plant uptake on nitrogen removal in constructed wetlands located in the tropics. Water Sci Technol, 1997, 36(12) : 1—8
    [68] Mayo A W, Mutamba J. Effect of HRT on nitrogen removal in a coupled HRP and unplanted subsurface flow gravel bed constructed wetland. Phys Chem Earth, 2004, 29 (15-18) : 1253-1257
    [69] Maehlum T, Stalnacke. Removal efficiency of three cold-climate constructed wetlands treating domestic wastewater: effects of temperature, seasons, loading rates and input concentrations. Water Sci Technol, 1999, 40 (3) : 273—281
    [70] Laber J, Perfler R, Heberl R. Two strategies for advanced nitrogen elimination in vertical flow constructed wetlands. Water Sci Technol, 1997, 35 (5) : 71—77
    [71] Bezbaruah A N, Zhang T C. Performance of a constructed wetland with a sulfur/limestone denitrification section for wastewater nitrogen removal. Environ Sci Technol, 2003, 37( 8): 1690-1697
    [72] Stewart J W B, Tiessen H. Dynamics of soil organic phosphorus. Biogeochemistry, 1987, 4(1): 41-60
    [73] Hoppe H G, Kim S J, Gocke K. Microbial decomposition in aquatic environments: Combined processes of extracellular activity and substance uptake. Appl Environ Microb, 1988, 54 (3) : 784-790
    [74] Chrost R J. Environmental control of the synthesis and activity of aquatic microbial ectoenzymes. In: Chrost R J, editor. Microbial Enzymes in Aquatic Environments. New York: Springer-Verlag, 1991.29-59
    [75] Pant H K, Reddy K R, Lemon E. Phosphorus retention capacity of root bed media of sub-surface flow constructed wetlands. Ecol Eng, 2001, 17 (4) : 345—355
    [76] Xu D F, Xu J M, Wu J J, et al. Studies on the phosphorus sorption capacity of substrates used in constructed wetland systems. Chemosphere, 2006, 63 (2) : 344—352
    [77] Seo D C, Cho J S, Lee H J, et al. Phosphorus retention capacity of filter media for estimating the longevity of constructed wetland. Water Res, 2005, 39(11) : 2445—2457
    [78] Drizo A, Frost C A, Grace J, et al. Physico-chemical screening of phosphate-removal substrates for use in constructed wetland systems. Water Res, 1999, 33 (17) : 3595 — 3602
    [79] Drizo A, Frost C A, Grace J, et al. Phosphate and ammonium removal by constructed wetlands with horizontal subsurface flow, using shale as a substrate. Water Res, 2000, 34 (9) : 2483-2490
    [80] Rhue R D, Harris W G. Phosphorus sorption/desorption reactions in soils and sediments. In: Reddy K R, O'Connor G A, Schelske C L, (eds) . Phosphorus biogeochemistry in subtropical ecosystems. Boca Raton, Florida: CRC Press, 1999.187—206
    [81] Dunne E J, Reddy K R. Phosphorus biogeochemistry of wetlands in agricultural watersheds. In: Dunne E J, Reddy R, Carton O T, (eds) . Nutrient management in agricultural watersheds: a wetland solution. Wageningen, The Netherlands: Wageningen Academic Publishers, 2005.105-119
    [82] Mann R A. Phosphorus adsorption and desorption characteristics of constructed wetland gravel and steelworks by-products. Austr J Soil Res, 1997, 35 (2) : 375—384
    [83] Behrends L, Houke L, Bailey E, et al. Reciprocating constructed wetlands for treating industrial, municipal and agricultural wastewater. Water Sci Technol. 2001, 44(11-12) : 399-405
    [84] Garcia J, Aguirre P, Mujeriego R, et al. Initial contaminant removal performance factors in horizontal flow reed beds used for treating urban wastewater. Water Res, 2004, 38(7): 1669-1678
    [85] Tanner C C. Plants for constructed wetland treatment systems: A comparison of the growth and nutrient uptake. Ecol Eng, 1996, 7(1): 59—83
    [86] Hettiarachchi G M, G. M. Pierzynski G M. to situ stabilization of soil lead using phosphorus and manganese oxide: influence of plant growth. J Environ Qual, 2002, 31(2): 564-572
    [87] Brooks A S, Rozenwald M N, Geohring L D, et al. Phosphorus removal by wollastonite: A constructed wetland substrate. Ecol Eng, 2000, 15 (1-2) : 121 — 132
    [88] Sakadevan K, Bavor H J. Phosphate adsorption characteristics of soils, slags and zeolite to be used as substrates in constructed wetland systems. Water Res, 1998, 32 (2) : 393— 399
    [89] Froelich P N. Kinetic control of dissolved phosphate in natural rivers and estuaries: A primer on the phosphate buffer mechanism. Limnol Oceanogr, 1988, 33 (4) : 649—668
    [90] Zhu T, Jenssen P D, Maehlum T, et al. Phosphorus sorption and chemical characteristics of lightweight aggregates (LWA)-potential filter media in treatment wetlands. Water Sci Technol, 1997, 35 (5) : 103-108
    [91] Reddy K R, Kadlec R H, Flaig E, et al. Phosphorus retention in streams and wetlands: a review. Crit Rev Environ Sci Tecnol, 1999, 29 (1) : 83—146
    [92] Drizo A, Comeau Y, Forget C, et al. Phosphorus Saturation Potential: A Parameter for Estimating the Longevity of Constructed Wetland Systems. Environ Sci Technol, 2002, 36 (21) : 4642-4648
    [93] Reddy K R, DeBusk W F. Nutrient storage capabilities of aquatic and wetland plants. In: Reddy K R, DeBusk W F, editors. Aquatic plants for water treatment and resource recovery. Orlando, Florida: Magnolia Publishing, 1987. 337—357
    [94] Wieβer A, Kuschk P, Stotmeister U. Oxygen release by roots of Typha latifolia and Juncus effusus in laboratory hydroponic systems. Acta Biotechnologica, 2002, 22 (1-2) : 209— 216
    [95] Hadada H R, Mainea M A, Bonetto C A. Macrophyte growth in a pilot-scale constructed wetland for industrial wastewater treatment. Chemosphere, 2006, 63 (10) : 1744—1753
    [96] McJannet C L, Keddy P A, Pick F R. Nitrogen and phosphorus tissue concentrations in 41 wetland plants: a comparison across habitats and functional groups. Funct Ecol, 1995, 9 (2) : 231-238
    [97] Pan J, Sun H, Nduwimana A, et al. Hydroponic plate/ fabric/ grass system for treatment of aquacultural wastewater. Aquacult Eng, 2007, 37 (3) : 266—273
    [98] Headley T R. Removal of nutrients and plant pathogens from plant nursery runoff using horizontal subsurface flow constructed wetlands: [Ph.D. Thesis]. Lismore, NSW, Australia: Southern Cross University,2004
    [99]Tanner C C,Sukias J P S,Upsdell M P.Substratum phosphorus accumulation during maturation gravel-bed constructed wetlands.Water Sci Technol,1999,40(3):147-154
    [100]白晓慧,王宝贞,余敏,等.人工湿地污水处理技术及其发展应用.哈尔滨建筑大学学报,1999,Vol.32(6):88-92
    [101]许春华,周琪,宋乐平.人工湿地在农业面源污染控制方面的应用.重庆环境科学,2001,Vol.23(3):70-72
    [102]徐丽花,周琪.人工湿地控制暴雨径流污染研究进展.上海环境科学,2001,Vol.20(8):401-402
    [103]朱彬.利用水生植物净化富营养化水体的研究进展.上海环境科学,2002,Vol.21(9):564-567
    [104]籍国东,孙铁珩,常士俊.人工湿地处理稠油采出水的实验研究.环境科学学报,2001,Vol.21(5):619-621
    [105]代明利,欧阳威,刘培斌,等.垂流式人工湿地处理官厅水库入库水研究.中国给水排水,2003,Vol.19(3):4-7
    [106]蒋跃平,葛莹,岳春雷,等.人工湿地植物对观赏水中氮磷去除的贡献.生态学报,2004,Vol.24(8):1720-1725
    [107]胡焕斌,周民华,王桂珍,等.人工湿地处理矿山炸药污水.环境科学与技术,1997,Vol.78(3):17-19
    [108]招文瑞,杨兵,朱新民,等.人工湿地处理凡口铅锌矿金属废水的稳定性分析.生态科学,2001,Vol.20(4):16-20
    [109]朱夕珍,崔理华,刘雯,等.垂直流美人蕉模拟人工湿地对化粪池出水的净化效果.农业环境科学报,2004,Vol.23(4):761-765
    [110]李占华.人工湿地处理系统在长城以北地区的设计应用.中国环保产业,2004,Vol.11:26-27
    [111]刘学燕,代明利,刘培斌,等.人工湿地在我国北方地区冬季应用的研究.农业环境科学学报,2004,Vol.23(6):1077-1081
    [112]何连生,朱迎波,席北斗,等.循环强化垂直流人工湿地处理猪场污水.中国给水排水,2004,Vol.20(12):5-8
    [113]汪俊三,覃环.高水力负荷人工湿地处理富营养化湖水.中国给水排水,2005,Vol.21(1):1-4
    [114]周晓夏,贾忠华,康思军,等.潜流人工湿地对农田排水的净化效果.西北水力发电,2005,Vol.21(10):60-63
    [115]郭本华,宋志文,韩潇源,等.碎石、沸石和页岩陶粒构建人工湿地的除磷效果。工业用水与废水,2005,Vol.36(2):46-48
    [116]刘家宝,莫凤鸾,雷志洪,等.垂直流人工湿地系统保护饮用水源的实例.给水排水,2005,Vol.31(4):10-13
    [117]张显龙,周力.人工湿地处理城市污水在北方的应用.环境工程,2005,Vol.23(4):23-26
    [118]邓辅唐,徐颂军,徐祥浩,等.滇池治理人工湿地植物的筛选与应用研究.中山大学学报,2005,Vol.44(1):299-304
    [119]汤显强,李金中、李学菊,等.间歇曝气对生物填料人工湿地氮磷去除性能的影响.农业环境科学学报,2008,Vol.27(1):318-322
    [120]刘斌,章北平、程伟,等.人工湿地生态湖滨净化带植物的遴选.城市环境与城市生态,2006,Vol.19(2):17-19
    [121]贺锋,吴振斌,成水平,等.复合垂直流人工湿地对氮的净化效果.中国给水排水,2004,Vol.20(10):18-21
    [122]Brodie G A,Hammer D A,TomIjanovich,D A.Treatment of acid drainage with constructed wetland at Tennessee valley authority 950 coal mine.In:Hammer D A,(Ed).Constructed Wetlands for Wastewater Treatment.Chelsea:Lewis,1989.211-219
    [123]Rivera R,Warren A,Curds C R,et al.The application of the root zone method for the treatment and reuse of high-strength abattoir waste in Mexico.Water Sci Technol,1997,35(5):271-278
    [124]Gschl(O|¨)βl T,Steinmann C,Schleypen P,et al.Constructed wetlands for effluent polishing of lagoons.Water Res,1998,32(9):2639-2645
    [125]Worrall P,Peberdy K J,Millet M C.Constructed wetlands and nature conservation.Water Sci Technol,1997,35(5):205-213
    [126]Baker L A.Design considerations and applications for wetland treatment of high-nitrate waters.Water Sci Technol,1998,38(1):389-395
    [127]Green M B,Griffin P,Seadridge J K,et al.Removal of Bacteria in Subsurface Flow Wetlands.Water Sci Technol,1997,35(5):109-116
    [128]Decamp O,Warren A.Investigation of Escherichia coil removal in various design of subsurface flow wetlands used for waste water treatment.Ecol Eng,2000,14(3):293-299
    [129]King A C,Mitchell C A,Howes T.Hydraulic tracer studies in a plot scale subsurface flow constructed wetland.Water Sci Technol,1997,35(5):189-196
    [130]Breen P F,Chick A J.Rootzone dynamics in constructed wetlands receiving wastewater:A vertical and horizontal flow systems.Water Sci Technol,1995,32(3):281-290
    [131]Pastor R,Benqlilou C,Paz D,et al.Design optimisation of constructed wetlands for wastewater treatment.Resources,Conservation & Recycling,2003,37(3):193-204
    [132]Kadlec R H,Knight R L.Treatment wetlands.New York:Lewis Publishers,1996,893
    [133]Mitchell C,Mcnevin D.Alternative analysis of BOD removal in subsurface flow constructed wetlands employing Monod kinetics.Water Res,2001,35(5):1295-1303
    [134]Lee B H,Scholz M.Application of self-organizing map(SOM) to assess the heavy metal removal performance in experimental constructed wetlands.Water Res,2006,40(18):3367-3374
    [135]Hafner S D,Jewell W J.Predicting nitrogen and phosphorus removal in wetlands due to detritus accumulation:A simple mechanistic model.Ecol Eng,2006,27(1):13-21
    [136]陈长太,阮晓红,王雪.人工湿地植物的选择原则.中国给水排水,2003,Vol.19(3): 65
    [137]王圣瑞,年跃刚,候文华,等.人工湿地植物的选择.湖泊科学,2004,Vol.16(1):91-96
    [138]袁东海,任全进,高士祥,等.几种湿地植物净化生活污水COD、总氮效果比较.应用生态学报,2004,Vol.15(12):2337-2341
    [139]Lee B H,Scholz M.What is the role of Phragmites australis in experimental constructed wetlands filters treating urban runoff?.Ecol Eng,2007,29(1):87-95
    [140]Shaver G R,Melillo J M.Nutrient budgets of marsh plants:efficiency concepts and relation to availability.Ecology,1984,65(5):1491-1510
    [141]赵建刚,杨琼,陈章和,等.几种湿地植物根系生物量研究.中国环境科学,2003,23(3):290-294
    [142]杨敦.潜流式人工湿地在暴雨径流污染控制中的应用.农业环境保护,2002,21(4):334-336
    [143]Brix H,Arias C A,D'Bubba M.Media selection for sustainable phosphorous removal in subsurface flow constructed wetlands.Water Sci Technol,2001,44(11-12):47-54
    [144]Cooke J G.Phosphorus removal process in a wetland after a decade of receiving a sewage effluent.J Environ Qual,1992,21(4):733-739
    [145]Maehlum T,Jenssen P D,Warner W S.1995.Cold-climate constructed wetlands.Water Sci Technol,1995,32(3):95-101
    [146]Allen W C,Hook P B,Biederman J A,et al.Temperature and wetland plant species effects on wastewater treatment and root zone oxidation.J Environ Qual,2002,31(3):1010-1016
    [147]Wittgren H B,Maehlum T.Wastewater treatment wetlands in cold climates.Water Sci.Technol,1997,35(5):45-53
    [148]Gottschall N,Boutin C,Crolla A.The role of plants in the removal of nutrients at a constructed wetland treating agricultural(dairy) wastewater,Ontario,Canada.Ecol Eng,2007,29(2):154-163
    [149]Kadlec R H.The inadequacy of first-order treatment wetland models.Ecol Eng,2000,15(1-2):105-119
    [150]Ragusa S R,McNevin D,Qasem S,et al.Indicators of biofilm development and activity in constructed wetlands microcosms.Water Res,2004,38(12):2865-2873
    [151]Drizo A.Phosphate and ammonium removal from waste water,using constructed wetland systems:[Ph.D.thesis].Edinburgh,UK:The University of Edinburgh,1998.
    [152]中国国家环境保护总局.水和废水监测分析.第四版.北京:中国环境科学出版社,2002.89-283
    [153]Giraldo E,Zarate E.Development of a conceptual model for vertical flow wetland metabolism.Water Sci Technol,2000,44(11-12):273-280
    [154]汤显强,李金中,李学菊,等.人工湿地室内小试不同填料去污性能比较.水处理技术,2007,Vol.33(5):45-49
    [155]Cooper P F.A review of the design and performance of a vertical-flow and hybrid reed bed treatment systems. Water Sci Technol, 1999, 40 (3) : 1-9
    [156] Kayser K, Kunst S. Processes in vertical-flow reed beds-nitrification, oxygen transfer and soil clogging. Water Sci Technol, 2005, 51 (9) : 177—184
    [157] Gumbricht T. Nutrient removal processes in fresh water submerged macrophyte systems. Ecol Eng, 1993, 2(1): 1-30
    [158] Platzer C, Mauch K. Soil clogging in vertical flow beds. Mechanisms, parameters, consequences and solutions. Water Sci Technol, 1997, 35 (5) : 175—181
    [159] Sanford W E, Steenhuis T S, Parlange J Y, et al. Hydraulic conductivity of gravel and sand as substrates in rock-reed filters. Ecol Eng, 1995, 4 (4) : 321—336
    [160] Molle P, Lienard A, Grasmick A, et al. Effect of reeds and feeding operations on hydraulic behaviour of vertical flow constructed wetlands under hydraulic overloads. Water Res, 2006, 40 (3) : 606-612
    
    [161] Lantzke I R, Mitchell D S, Heritage AD, et al. A model of factors controlling ortho-phosphate removal in planted vertical flow wetlands. Ecol Eng, 1999, 12 (1-2) : 93— 105
    [162] Gray S, Kinross J, Read P, et al. The nutrient capacity of maerl as a substrate in constructed wetland systems for waste treatment. Water Res, 2000, 34 (8) : 2183—2190
    [163] Del Bubba M, Arias C A, Brix H. Phosphorus adsorption maximum of sands for use as media in subsurface flow constructed reed beds as measured by the Langmuir isotherm. Water Res, 2003, 37 (14) : 3390-3400
    [164] Arias C A, Brix H. Phosphorus removal in constructed wetlands: can suitable alternative media be identified? Water Sci Technol, 2005, 51 (9) : 267-273
    [165] Arias C A, Del Bubba M, Brix H. Phosphorus removal by sands for use as media in subsurface flow constructed reed beds. Water Res, 2001, 35 (5) : 1159—1168
    [166] Greenway M, Woolley A. Constructed wetlands in Queensland: performance efficiency and nutrient bioaccumulation. Ecol Eng, 1999, 12 (1-2) : 39—55
    [167] Sriwiriyarat T, Randall C W. Performance of IFAS wastewater treatment processes for Biological phosphorus removal. Water Res, 2005, 39 (16) : 3873—3884
    [168] Newbold D J, Elwood J W, O'Neil R V, et al. Phosphorus dynamics in a woodland stream ecosystem: a study of nutrient spiraling. Ecology, 1983, 64 (5) : 1249—1263
    [169] Diaz O A, Reddy K. R, Moore P A. Solubility of inorganic P in stream water as influenced by pH and Ca concentration. Water Res, 1994, 28 (8) : 1755—1763
    [170] Tanner C C, Sukias J P S, Upsdell M P. Relationships between loading rates and pollutant removal during maturation of gravel-bed constructed wetlands. J Environ Qual, 1998, 27 (2) : 448-458
    [171] Drizo A, Frost C A, Smith C A, et al. Phosphate and ammonium removal by constructed wetlands with Horizontal subsurface flow, using shale as a substrate. Water Sci Technol, 1997, 35 (5) : 95-102
    [172] Johansson L. The use of LECA (light expanded clay aggregates) for the removal of phosphorus from wastewater. Water Sci Technol, 1997, 35 (5) : 87—93
    [173]Ann Y,Reddy K R,Delfino J J.Influence of chemical amendments on phosphorus immobilization in soils from a constructed wetland.Ecol Eng,1999,14(1-2):157-167
    [174]Barrow N J.Modelling the effects of pH on phosphate adsorption by soils.Euro J Soil Sci,1984,35(2):283-297
    [175]Kuo S,McNeal B L.Effect of pH and phosphate on cadium adsorption by a hydrous ferric oxide.Soil Sci Soc Amer J,1984,48(5):1040-1044
    [176]Sposito G.The surface chemistry of soils.Oxford,England:Clarenden Press,1984.234
    [177]Raden J C,Pratt P E.Phosphorus removal from wastewater applied to land.Hilgardia,1980,48(3):1-36
    [178]Nur Onar A,Balkaya N,Akyuz T.Phosphorus removal by adsorption.Environ Technol,1996,17(2):207-213
    [179]Frossard E,Brossard M,Hedley M J,et al.Reactions controlling the cycling of P in soils.In:Tiessen H,(Ed).Phosphorus in the Global Environment.Chichester,UK:Wiley,1995.107-131
    [180]Steer D,Fraser L H,Boddy J,et al.Efficiency of small constructed wetlands for subsurface treatment of single family domestic effluent.Ecol Eng,2002,18(4):429-440
    [181]Nerella S,Weaver R,Lesikar B J,et al.Improvement of domestic wastewater quality by subsurface flow constructed wetlands.Bioresource Technol,2000,75(1):19-25
    [182]Gersberg R M,Elkins B V,Lyons S R,et al.Role of aquatic plants in wastewater treatment by artificial wetlands.Water Res,1986,20(3):363-368
    [183]Coleman J,Hench K,Garbutt K,et al.Treatment of domestic wastewater by three wetland plant species in constructed wetlands.Water Air Soil Pollut,2001,128(3-4):283-295
    [184]汤显强,李金中、李学菊,等.7种水生植物对富营养化水体氮磷去除效果的比较.亚热带资源与环境学报,2007,Vol.2(2):8-14
    [185]Stottmeister U,WieSner A,Kuschk P,et al.Effects of plants and microorganisms in constructed wetlands for wastewater treatment.Biotechnol Adv,2003,22(1-2):93-117
    [186]Klomjek P,Nitisoravut S.Constructed treatment wetland a study of eight plant species under saline conditions.Chemosphere,2005,58(5):585-593
    [187]Vymazal J,Kropfelova L.Growth of Phragmites australis and Phalaris arundinacea in constructed wetlands for wastewater treatment in the Czech Republic.Ecol Eng,2005,25(5):606-621
    [188]Huett D O.Diagnostic leaf nutrient standards for low chill peaches in subtropical Australia.Aust J Exp Agric,1997,37(1):119-126
    [189]Adcock P W,Ganf G G.Growth characteristics of three macrophyte species growing in a natural and constructed wetland system.Water Sci Technol,1994,29(4):95-102
    [190]Brix H.Treatment of wastewater in the rhizosphere of wetland plants:the root-zone method.Water Sci Technol,1987,19(1-2):107-118
    [191]Froend R H,McComb A J.Distribution,productivity and reproductive phenology of emergent macrophytes in relation to water regimes at wetlands in south-western Australia. Aust. J Mar Freshwater Res, 1995, 45 (8) : 1491-1508
    [192] Pullin B P, Hammer D A. Aquatic plants improve wastewater treatment. Water Environ. Technol, 1991, 3 (3) : 36-40
    [193] Ho Y B. Chemical composition studies on some aquatic macrophytes in three Scottish Lochs. 1. Chlorophyll, ash, carbon, nitrogen and phosphorus. Hydrobiologia, 1979, 63(2): 161-166
    [194] Busnardo M J, Gersberg R M, Langis R, et al. Nitrogen and phosphorus removal by wetland mesocosms subjected to different hydroperiods. Ecol Eng, 1992, 1 (4) : 287— 307
    [195] Hocking P J. Seasonal dynamics of production, and nutrient accumulation and cycling by Phragmites australis (Cav.) Trin. ex Steudel in a nutrient enriched swamp in inland Australia. I. Whole plants. Aust J Mar Freshwater Res, 1989, 40 (4) : 445—464
    [196] Garver E G, Dubbe D R, Pratt D C. Seasonal patterns in accumulations and partitioning of biomass and macronutrients in Typha spp. Aquat Bot, 1988, 32 (1-2) : 115—127
    [197] Toet S, Bouwman M, Cevaal A, et al. Nutrient removal through autumn harvest of Phragmites australis and Typha latifolia shoots in relation to nutrient loading in a wetland system used for polishing sewage treatment plant effluent. J Environ Sci Health 2005, 40 (6-7) : 1133-1156
    [198] Atkin O K. Reassessing the nitrogen relations of arctic plants: a mini-review. Plant Cell Environ, 1996, 19 (6) : 695-704
    [199] McBride G B, Tanner C C. Modelling biofilm nitrogen transformation in constructed wetland mesocosms with fluctuating water levels. Ecol Eng, 2000, 14(1-2) : 93—106
    [200] ScholzM, Lee B H. Constructed wetlands: a review. Int J Environ Stud, 2005, 62 (4) : 421-447
    [201] Verhoeven J T A, Meuleman A F M. Wetlands for wastewater treatment: opportunities and limitations. Ecol Eng, 1999, 12 (1-2) : 5—12
    [202] Vymazal J. The use of sub-surface constructed wetlands for wastewater treatment in the Czech Republic: 10 years experience. Ecol Eng, 2002, 18 (5) : 633—646
    [203] Carvantes F J, Dela Rosa D A, Gomez J. Nitrogen removal from wastewater at low C/N ratios with ammonium and acetate as electron donors. Bioresource Technol, 2001, 79 (2): 165-170
    [204] Sousa J T, Foresti E. Domestic sewage treatment in the upflow anaerobic sludge-sequencing batch reactor system. Water Sci Technol, 1996, 33 (3) : 73—84
    [205] Lucas A D, Rodriguez L, VillasenorJ, et al. Denitrification potential of industrial wastewaters. Water Res, 2005, 39 (15) : 3715—3726
    [206]Zeng R J, Lemaire R, Yua Z, et al. Simultaneous nitrification, denitrification, and biological phosphorus removal in a lab scale sequencing batch reactor. Biotechnol Bioeng, 2003, 84 (2) : 170-178
    [207] Kuschk P, Wieβer A, Kappelmeyer U, et al. Annual cycle of nitrogen removal by a pilot-scale subsurface horizontal flow in a constructed wetland under moderate climate.Water Res,2003,37(17):4236-4242
    [208]De-Bashan L E,Bashan Y.Recent advances in removing phosphorus from wastewater and its future use as fertilizer(1997-2003).Water Res,2004,38(19):4222-4246
    [209]Armstrong W,Cousins D,Armstrong J,et al.Oxygen distribution in wetland plant roots and permeability barriers to gas-exchange with the rhizosphere:a microelectrode and modelling study with Phragmites australis.Ann Bot,2000,86(3):687-703
    [210]Go'mez Cerezo R,Sua'rez M L,Vidal-Abarca M R.The performance of a multistage system of constructed wetlands for urban wastewater treatment in a semiarid region of SE Spain.Ecol Eng,2001,16(4):501-517
    [211]Korkusuz E A,Bekli(o|¨)glu M,Demirer N G.Comparison of the treatment performances of blast furnace slag-based and gravel-based vertical flow wetlands operated identically for domestic wastewater treatment in Turkey.Ecol Eng,2005,24(3):187-200
    [212]Tanner C C,Sukias J P.Accumulation of organic solids in gravel bed constructed wetlands.Water Sci Technol,1995,32(3):229-239
    [213]Aslan S,Kapdan I.K.Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae.Ecol Eng,2006,28(1):64-70
    [214]Van Dongen U,Jetten M S M,Van Loosdrecht M C M.The SHARON-Anammox process for treatment of ammonia rich wastewater.Water Sci Technol,2001,44(1):153-160
    [215]Tanwar P,Nandy T,Khan R,et al.Intermittent cyclic process for enhanced biological nutrient removal treating combined chemical laboratory wastewater.Bioresource Technol,2007,98(13):2473-2478
    [216]Mace S,Mata-Alvarez J.Utilization of SBR technology for wastewater treatment:An overview.Ind Eng Chem Res,2002,41(23):5539-5553
    [217]Dapena-Mora A,Campos J L,Mosquera-Corral A,et al.Stability of the ANAMMOX process in a gas lift reactor and a SBR.J Biotechnol,2004,110(2):159-170
    [218]Yang L,Chang H T,Huang M N L.Nutrient removal in gravel- and soil-based wetland microcosms with and without vegetation.Ecol Eng,2001,18(1):91-105
    [219]Luederitz V,Eekert E,Lange-Weber M,et al.Nutrient removal efficiency and resource economics of vertical flow and horizontal flow constructed wetlands.Ecol Eng,2001,18(2):157-171
    [220]Huett D O,Morrisb S G,Smitha G,et al.Nitrogen and phosphorus removal from plant nursery runoff in vegetated and unvegetated subsurface flow wetlands.Water Res,2005,39(14):3259-3272
    [221]邹华生,陈焕钦.生物填料塔处理餐厅污水的研究.工业水处理,2001,Vol.21(6):32-34
    [222]程丽华,钟华文,谢文玉.炼油废水处理生物填料的选择与优化研究.环境污染治理技术与设备,2006,Vol.7(5):90-92
    [223]Yu H Y,Hu M X,Xu Z K,et al.Surface modification of polypropylene microporous membranes to improve their antifouling property in MBR:NH3 plasma treatment.Sep PurifTechnol, 2005, 45 (1) : 8-15
    [224] Liu L, Xu Z H, Song C Y, et al. Adsorption-filtration characteristics of melt-blown polypropylene fiber in purification of reclaimed water. Desalination, 2006, 201 (1-3) : 198-206
    [225] Boley A, Muller W R, Haider. Biodegradable polymers as solid substrate and biofilm carrier for denitrification in recirculated aquaculture systems. Aquacult Eng, 2000, 22 (1-2) : 75-85
    [226] Cannon A D, Gray K. R, Biddlestone A J, et al. Pilot-scale development of a bioreactor for the treatment of dairy dirty water. J Agr Eng Res, 2000, 77 (3) : 327—334
    [227] Richardson C J. Mechanisms controlling phosphorus retention capacity in freshwater wetlands. Science, 1985, 288 (4706) : 1424-1427
    
    [228] Reddy G B, Hunt P G, Phillips R, et al. Treatment of swine wastewater in marsh-pond-marsh constructed wetlands. Water Sci Technol, 2001, 44 (11-12) : 545—550
    [229] Sikora F J, Tong Z, Behrends L L, et al. Ammonium and phosphorus removal in constructed wetlands with recirculating subsurface flow: Removal rates and mechanisms. Water Sci Technol, 1995, 32 (3) : 193-202
    [230] Chen T Y, Kao C M, Yeh T Y, et al. Application of a constructed wetland for industrial wastewater treatment: A pilot-scale study. Chemosphere, 2006, 64 (3) : 497—502
    [231] Zalidis G. Management of river water for irrigation to mitigate soil salinization on a coastal wetland. J Environ Manage, 1998, 52 (2) : 161 — 167
    [232] Chauvelon P. A wetland managed for agriculture as an interface between the Rhone river and the Vaccares lagoon (Camargue, France): transfers of water and nutrients. Hydrobiologia, 1998, 373&374: 181-191
    [233] Green M, Safray I, Agami M. Constructed wetlands for river reclamation: experimental design, start-up and preliminary results. Bioresource Technol, 1996, 55 (2) : 157—162
    [234] Jing S R, Lin Y F, Lee D Y, et al. Nutrient removal from polluted river water by using constructed wetlands. Bioresource Technol, 2001, 76 (2) : 131 — 135
    [235] Lee C Y, Lee C C, Lee F Y, et al. Performance of subsurface flow constructed wetland taking pretreated swine effluent under heavy loads. Bioresource Technol, 2004, 92 (2) : 173-179
    [236] Simek M, JiSova L, Hopkins D W. What is the so-called optimum pH for denitrification in soil? Soil Biol Biochem, 2002, 34 (9) : 1227-1234
    [237] Choi S S, Yoo Y J. Removal of phosphate in a sequencing batch reactor by Staphylococcus auricularis. Biotechnol Lett, 2000, 22 (19) : 1549—1552
    [238] Bigambo T, Mayo A W. Nitrogen transformation in horizontal subsurface flow constructed wetlands II: Effect of biofilm. Phys Chem Earth, 2005, 30(11-16) : 668—672

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700