用户名: 密码: 验证码:
堆积层斜坡的地震诱导行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土石堆积层斜坡在我国地震山地灾害较为严重的西南山区分布广泛,就其地震诱导行为的研究对于国民经济建设、保障人民生命财产有重要意义。由于岩土体成因、赋存地质环境、演变历程等的差异,加之地震、降雨、人类工程活动等诸多不确定因素的影响,不同地区土石堆积层斜坡状态不一,各具特点;但是在各个地区,地貌、环境条件等因素相近的前提下,堆积层在扰动下的变形规律及稳定状态存在一定共性。堆积层一般是由第四纪堆积作用形成的土石混合体构成,在与下覆基岩于界面处组成强耦合系统时,两种材料对地震扰动的响应程度有较大的差异,分析时需综合考虑耦合两域各自特性及其相互作用;另一方面,土石混合体作为一种复合体材料,其力学性质受块石级配、形状、土石体积比等因素控制,同时受加载方式、速率、应力水平等影响。针对堆积层边坡的特点,论文在五个方面进行了研究:
     1)根据四川省地貌与区域环境特征,在对收集到的68处省内公路堆积层边坡信息加以汇总的基础上,将影响边坡稳定的特征因素归结为堆积层厚度、边坡高度、坡率、岩性及其组合、地下水条件、平均年降水量及地震作用等七项指标,进而分别以各项特征因素为参变量,研究其与挡墙、抗滑桩、锚杆、锚索综合、抗滑桩+挡墙及锚杆+挡墙等六类省内公路堆积层边坡典型加固方案之间的统计关系。
     2)以08年8.30攀枝花6.1级地震对邻近的攀田高速公路望江岭隧道出口堆积层斜坡状态的影响为案例,研究地震作用下堆积层斜坡的变形时效性。在现场连续测斜监测基础上,分析了地震前、后斜坡体深部变形特性及其随时间的演进规律。结果表明,同震顺坡向位移明显,其最大值达到了厘米级,并且顺坡向位移有随深度呈减小的趋势。分析监测数据发现,虽然震后约430天,局部坡体顺坡向位移仍处于调整状态,但主要测孔附近岩土体的时效变形于震后300天左右达到峰值后,已逐渐趋于收敛。综合现场监测成果,可以认为,在经历了大约一年的自适应调整,特别是经09年雨季后,堆积层斜坡已处于整体稳定状态。
     3)运用平面快速拉格朗日有限差分方法,以地震加速度幅值、频谱特性等为主要参数,分析了地震对望江岭隧道出口堆积层斜坡的扰动。结果表明:(1)输入地震加速度幅值特别是峰值强度的提高不仅对堆积体累积塑性变形具显著影响,且于堆积体稳定状态具有较强的扰动效应;(2)不同地震波动激励下,堆积层斜坡水平位移变化规律较大程度上依赖于所输入动载荷的固有属性;(3)峰值强度为0.49m/s2的Loma Prieta水平地震加速度作用20s末,数值虚拟试验计算结果与现场测斜同震相对位移在量值与分布趋势方面均较为接近。
     4)考虑到基岩的小变形与堆积体大变形之间差异,论文提出采用有限差分与离散单元外部耦合计算方法研究堆积层斜坡同震响应。首先以支挡结构-填上相互作用实例验证准静态外部耦合算法的有效性,进而将耦合方法由准静态模拟扩展至动力分析,研究地震作用下堆积层斜坡变形规律与动力特性。数值试验中采用平面应变有限差分网格和平行连接圆盘离散元分别模拟下伏基岩与上覆堆积体,界面平滑过渡通过耦合两域取相同时步交替迭代的方法加以实现。动力计算以自重作用下的静力平衡为初始条件,基岩两侧由引入的自由场边界来消除辐射阻尼影响,进而从模型底部输入水平加速度以模拟地震激励。应用上述方法于堆积层斜坡地震响应分析,并对输入地震加速度幅值、持时、频谱特性、堆积体颗粒平行连接强度等相关参数进行了敏感性讨论,结果表明,不同于传统的基于连续介质理论的分析手段,文中采用的连续-离散介质动力耦合算法可描述动载荷作用下堆积体内部细观损伤、分级滑动、表层崩塌等地震灾变的产生、发展全过程。
     5)论文将坡体概化为花岗岩强风化土与砂土配制而成的匀质土模型,采用土工离心模型试验的方法,探讨地震影响深度为10m时不同震松程度(震松坡体压实系数分为0.90、0.85、0.80)对坡体震后变形与稳定特性的影响,结果表明:(1)随震松坡体损伤程度增大,其应力与位移场于震后短期的调整幅度将相应提高;(2)地震震松坡体密实程度以压实系数表征于0.90-0.80间变化时,其位移场于震后的主要调整时间约为0.7-1.1年;(3)由于物理试验中边坡坡度较缓(约35.7°),地震震松坡体时效位移以竖向固结为主。
Slopes covered by deposits are widely distributed in China's south-western mountainous areas, thus, studies for earthquake induced behaviors of slopes covered by deposits play an important role for both national economic construction and protection of human life and property. Due to othernesses in geological geneses, geological environments and evolution histories of different slope bodies, and also influenced with a good many uncertainties such as earthquakes, rainfalls and artificial activities, slopes covered by deposits in different regions have their own characteristics; in terms of engineering researches, because of the similar landforms and geologic features of the slopes covered by deposits in the same region, there are commonnesses in deformation laws and stability conditions of the slope bodies. From macro perspectives, such a slope could be considered as a strong coupling system that combined deposits and bedrock, responses of the slope to earthquake loads are influenced with behaviors of the two coupling domains and their interactions. On the other hand, deposits could be viewed as a composite material of multi-phases, mechanical property of deposits depends upon factors such as soil-rock volume ratio, and shape and gradation of rubbles, besides, it is influenced by patterns, rates and levels of loads. Based on above mentioned characteristics of slopes covered by deposits, five subjects were studied in this dissertation as follows:
     1) According to topographic features and regional environments in Sichuan province, characteristic factors interrelated with stabilities of slopes covered by deposits were induced to be the following7indicators:(1) thickness of deposits;(2) height of slope;(3) grade of slope;(4) lithologic association;(5) groundwater condition;(6) average annual precipitation;(7) earthquake effect. And on the basis of gathered information for68slopes covered by deposits of highway in Sichuan province, typical reinforcement schemes are classified into6types:(1) retaining wall;(2) anti-sliding pile;(3) rockbolt;(4) synthetical schemes containing anchor cable;(5) anti-sliding pile+retaining wall;(6) rockbolt+retaining wall. Then, statistical relations between each typical reinforcement schemes and above mentioned characteristic factors were thoroughly discussed.
     2) In order to further explore aging deformation characteristics of slopes covered by deposits under earthquake loads, a slope covered by deposits of Panzhihua-Tianfang motor way at exit of the Tianfang end of Wangjiangling tunnel is taken as the study object, which is about9.7km from the epicenter of8.30Panzhihua6.1earthquake in2008. On the basis of the continuous borehole inclination monitoring results, coseismic responses and subsequent aging deformation of the slope covered by deposits were investigated. The results show that, the maximum values of coseismic longitudinal displacement for each inclinometer borehole are26to28mm, and the coseismic displacement decreases gradually along with depth. After aging deformation of the slope body near inclinometer boreholes J3and J5reaching the peak value300days after8.30Panzhihua earthquake, it tended to stable condition gradually; But, for inclinometer borehole J1, because of influences of comprehensive factors, its longitudinal displacement was still in the adjusting state430days after8.30Panzhihua earthquake. It is therefore concluded that, by the end of the rainy season in2009, the slope covered by deposits was globally stable.
     3) Coseismic response rules of the slope covered by deposits were then further studied with the2-D fast Lagrangian finite difference method numerically, and effects of amplitudes and spectrum characteristics of the input horizontal accelerations were also investigated. Simulation results reveal that:(1). Both the cumulative plastic deformation and globe stability condition of the deposits are very sensitive to the amplitude especially the peak value of the input horizontal acceleration;(2). Evolution rules of horizontal displacements of the deposits depend to a great extent on the intrinsic attributes of the earthquake loads;(3). After continuous loadings of the Loma Prieta horizontal acceleration with peak value of0.49m/s2and duration of20s, the coseismic relative longitudinal displacements corresponding to inclinometer borehole J3in the numerical simulation are quite close to the field monitoring results in both the magnitude and distribution pattern.
     4) Considering of the differences in deformation laws of the deposits and bedrock under earthquake actions, a coupling numerical method that bridging both the finite difference method and discrete element method is introduced in this dissertation. After the applicability of quasi-static analysis of the coupling method being verified with a case study of a shoulder retaining wall acted by soil backfills, the introduced model was extended from quasi-static to dynamic analysis to study deformation rule and dynamic characteristic of the slope covered by deposits subjected to earthquake loads. In the proposed model, the bedrock and deposits are respectively described with the plane-strain finite difference meshes and a collection of parallel bonded rigid disks of DEM. Smooth transition across the continuous and discontinuous domains is obtained by imposing the compatibility condition and equilibrium condition along the interfaces, and the same time step was chosen for the two coupling domains in the iteration procedure. In the course of computation, after the static equilibrium under gravity loads being obtained, dynamic calculation would begin under excitation of horizontal seismic accelerations inputted from the continuum model bottom, and free-field horizontal seismic accelerations inputted from the continuum model bottom, and free-field boundaries were adopted for lateral grids of bedrock meshes to eliminate the radiation damping effect in dynamic calculation. Through above mentioned calculation procedures, dynamic analyses of the slope covered by deposits were conducted, and effects of the relevant parameters such as spectrum characteristics, duration and amplitude of input horizontal acceleration and parallel-bonded strength of the deposits were further investigated. Dynamic coupling numerical results show that, unlike the traditional analysis means based on the continuum theory, with the introduced dynamic coupling method in this dissertation, the whole processes of catastrophes such as meso-damage, multi-stage sliding and surface collapse of the deposits in the earthquake could be studied systematically.
     5) Three groups of geotechnical centrifuge model tests were conducted to further study the deformation development laws of slope covered by deposits after earthquake actions. Slope bodies were generalized into fabricated soil (mixed with weathered granite soil and sandy soil) models, and influence depth of earthquake to the slope was taken as10m, then, effects of loose degrees of the earthquake loosed slope body on aging deformation and long-term stability of the slope were investigated. The following conclusions could be drawn from analyses:(1). With development of damage extents of the earthquake loosed slope body, adjustment extents of the stress/strain fields in the short term after the earthquake increased accordingly;(2). As compaction coefficients of the earthquake loosed slope body vary from0.90to0.80, the main adjusting time of the slope's displacement field after the earthquake lies within0.7-1.1years;(3). In the tests, because of the gentle gradient of the slope (35.7°), aging displacments of the slope bodies are domindated with the vertical consolidation.
引文
[1]黄润秋.20世纪以来中国的大型滑坡及其发生机制[J].岩石力学与工程学报,2007,26(3):433-454.
    [2]殷跃平.中国地质灾害减灾回顾与展望——从国际减灾十年到国际减灾战略[J].国土资源科技管理,2001,18(3):26-29.
    [3]王思敬.工程地质学的任务与未来[J].工程地质学报,1999,7(3):195-199.
    [4]张有天,周维垣.岩石高边坡的变形与稳定[M].北京:中国水利水电出版社,1999.
    [5]陈祖煜.土质边坡稳定分析——原理·方法·程序[M].北京:中国水利水电出版社,2003.
    [6]张倬元,王士天,王兰生.工程地质分析原理[M](第二版).北京:地质出版社,1994.
    [7]祁生文,伍法权,严福章,等.岩质边坡动力反应分析[M].北京:科学出版社,2007.
    [8]卫宏,王兰生.川西山区公路边坡地质灾害研究[M].北京:煤炭工业出版社,2001.
    [9]CUI Peng, CHEN Xiaoqing, ZHU Yingyan, et al. The Wenchuan Earthquake (May 12, 2008), Sichuan Province, China, and resulting geohazards [J]. Nat Hazards,2009, online first, DOI:10.1007/s 11069-009-9392-1.
    [10]黄润秋.汶川8.0级地震触发崩滑灾害机制及其地质力学模式[J].岩石力学与工程学报,2009,28(6):1239-1249.
    [11]Clough, R.W., Penzien, J. Dynamics of structures [M]. McGraw-Hill,1975.
    [12]胡聿贤.地震工程学[M](第二版).北京:地震出版社,2006.
    [13]Ambraseys, N.N., Sarma, S.K. The response of earth dams to strong earthquakes [J]. Geotechnique,1967,17:181-213.
    [14]油新华,何刚,李晓.土石混合体边坡的细观处理技术[J].水文地质工程地质,2003,1:18-21.
    [15]尚彦军,杨志法,廖秋林,等.雅鲁藏布江大拐弯北段地质灾害分布规律及防治对策[J].中国地质灾害与防治学报.2001,12(4):30-40.
    [16]赫建民.三峡库区土石混合体的变形与破坏机制研究[D].北京:子宫矿业大学博士:学位论文(北京校区),2004.
    [17]陈红旗,黄润秋,林峰.大型堆积体边坡的空间工程效应研究[J].岩土上程学报,2005,27(3):323-328.
    [18]周中,傅鹤林,刘宝琛,等.堆积层边坡开挖致滑的原位监测试验研究[J].岩石力 学与工程学报,2006,25(10):2065-2070.
    [19]周家文,徐卫亚,孙怀昆.古水水电站工程区域堆积体边坡工程地质分析[J].工程地质学报,2009,17(4):489-495.
    [20]中华人民共和国建设部.岩土工程勘察规范(GB50021-2001)[S].北京:中国建筑工业出版社,2001.
    [21]《工程地质手册》编写委员会.工程地质手册[S].北京:中国建筑工业出版社,1992.
    [22]廖秋林,李晓,郝钊,等.土石混合体的研究现状及研究展望[J].工程地质学报,2006,14(6):800-807.
    [23]Xiao Li, Qiulin Liao, Jianming He. In-situ Test and Stochastic Structural Model of Rock and Soil Aggregate in the Three Gorges Reservoir Area [J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(3):494.
    [24]油新华.土石混合体的随机结构模型及其应用研究[D].北京:北京交通大学博士学位论文,2001.
    [25]黄广龙,周建,龚晓南.矿山排土场散体岩土的强度变形特性[J].浙江大学学报(工学版),2000,34(1):54-59.
    [26]何兆益,周虎鑫.高填方路堤填筑体沉降的三维有限元分析[J].重庆交通学院学报,2000,19(3):58-62.
    [27]韩世莲,周虎鑫,陈荣生.土和碎石混合料的蠕变试验研究[J].岩土工程学报,1999,21(2):196-199.
    [28]徐文杰,胡瑞林.循环荷载下土石混合体力学特性野外试验研究[J].工程地质学报,2008,16(1):63-69.
    [29]周志军,南浩林,张熠.土石混合料路用工程力学性质试验[J].长安大学学报(自然科学版),2007,27(5):11-15.
    [30]徐文杰,胡瑞林,谭儒蛟,等.虎跳峡龙蟠右岸土石混合体野外试验研究[J].岩石力学与工程学报,2006,25(6):1270-1277.
    [31]陈希哲.粗粒土的强度与咬合力的试验研究[J].工程力学,1994,11(4):56-63.
    [32]柴贺军,陈谦应,孔祥臣,等.土石混填路基修筑技术研究综述[J].岩土力学.2004,25(6):1005-1010.
    [33]Hoek E, Bray J.W.岩石边坡工程[M].卢世宗等译.北京:冶金工业出版社,1983.
    [34]谷德振.岩体工程地质力学基础[M].北京:科学出版社,1983.
    [35]晏同珍,杨顺安,方云.滑坡学[M].北京:中国地质大学出版社,2000.
    [36]马惠民,王恭先,周德培.山区高速公路高边坡病害防治实例[M].北京:人民交通出版社,2006.
    [37]薛守义.岩体边坡动力稳定性研究[D].中国科学院地质研究所博士学位论文. 1989.
    [38]杨志法,尚彦军,刘英.关于岩土工程类比法的研究[J].工程地质学报,1997,5(4):299-305.
    [39]张文修,梁怡.不确定性推理原理[M].西安:西安交通大学出版社,1996.
    [40]陈新民,罗国煜,夏佳.边坡稳定性类比评价的定量实现[J].工程地质学报,2000,8(2):244-248.
    [41]张华.公路深挖碎裂断层岩质边坡施工过程行为研究[D].西南交通大学硕士学位论文.2007.
    [42]龚晓南.土工计算机分析[M].北京:中国建筑工业出版社,2000.
    [43]Bishop, A.W. The use of the slip circle in the stability analysis of slopes [J]. Geotechnique,1955,1(1):7-17.
    [44]Janbu, N. Slope stability computation, Embankment Dam Engineering [M]. New York: John Wiley and Sons,1973.
    [45]Spencer, E. A method of analysis of embankments assuming parallel inter-slice forces [J]. Geotechnique,1967,17:11-26.
    [46]Sarma, S.K. Stability analysis of embankments and slopes [J]. Geotechnique,1973, 23(3):423-433.
    [47]Morgenstern, N.R., Price, V. The analysis of the stability of general slip surface [J]. Geotechnique,1965,15(1):79-93.
    [48]潘家铮.建筑物的抗滑稳定和滑坡分析[M].北京:水利出版社,1980.
    [49]Chen Zuyu, Morgenstern, N.R. Extensions to the generalized method of slices for stability analysis [J]. Canadian Geotechnical Journal,1983,20(1):104-119.
    [50]陈祖煜.土力学经典问题的极限分析上、下限解[J].岩土工程学报,2002,24(1):1-11.
    [51]朱大勇,钱七虎.三维边坡严格与准严格极限平衡解答及工程应用[J].岩石力学与工程学报,2007,26(8):1513-1528.
    [52]陈祖煜,弥宏亮,汪小刚.边坡稳定三维分析的极限平衡法[J].岩土工程学报,2001,23(5):525-529.
    [53]徐佳成,陈祖煜,孙平,等.地震工况下坝坡的抗滑安全系数取值标准研究[J].岩上力学,2011,32(增1):483-487.
    [54]陈菊香,朱大勇,卓建平,等.基于Monte-Carlo法的上坡抗震可靠度分析[J].地下空间与工程学报,2009,5(5):884-892.
    [55]Newmark, N.M. Effects of earthquakes on dams and embankments [J]. Geotechnique, 1965,15(2):139-160.
    [56]Sarma, S.K. Seismic stability of earth dams and embankments [J]. Geotechnique,1975, 25(4):743-761.
    [57]Seed, H.B. Considerations in the earthquakes-resistant design of earth and rockfill dams [J]. Geotechnique,1979,29(3):215-263.
    [58]Kramer, S.L., Smith, M.W. Modified Newmark model for seismic displacements of compliant slopes [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,1997,123(7):635-644.
    [59]卢坤林,朱大勇,朱亚林,等.三维边坡地震永久位移初探[J].岩土力学,2011,32(5):1425-1429.
    [60]钱学森.我对今日力学的认识[J].力学与实践,1995,4:1-1.
    [61]钱学森.中国大学为何创新力不足?[J].青年教师,2009,12:14-16.
    [62]Zienkiewicz, O.C., Taylor, R.L. The finite element method: Basic formulation and linear problems [M] (the 4th edition). London, McGraw-Hill,1989.
    [63]Itasca Consulting Group Inc. FLAC2D user's manual, version 5.0 [M]. Minneapolis, Minnesota,2005.
    [64]Cundall P.A., Strack O.D.L. A discrete numerical model for granular assemblies [J]. Geotechnique,1979,29(1):47-65.
    [65]石根华.数值流形方法与非连续变形分析[M].裴觉民,译.北京:清华大学出版社,1997.
    [66]Lorig L.J., Brady B.H.G., Cundall P.A. Hybrid discrete element-boundary element analysis of jointed rock [J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts,1986,23(4):303-312.
    [67]Horner D.A., Peters J.F., Carrillo A.R. Large scale discrete element modeling of vehicle-soil interaction [J]. Journal of Engineering Mechanics, ASCE,2001,127(10): 1027-1032.
    [68]Clough, R.W., Woodward, R.J. Analysis of embankment stresses and deformation [J]. Journal of Soil Mechanics and Foundation Division, ASCE,1967,93(SM4).
    [69]Duncan, J.M., Chang, C.Y. Nonlinear analysis of stress and strain in soils [J]. Journal of Soil Mechanics and Foundation Division, ASCE,1970,96(SM5).
    [70]Kulhawy, F.H., Duncan, J.M. Stresses and movements in Oroville Dam [J]. Journal of Soil Mechanics and Foundation Division, ASCE,1972,98(SM7):653-665.
    [71]Duncan, J.M. State of the art:Limit equilibrium and finite element analysis for slopes [J]. Journal of Geotech. Engineering, ASCE,1996,122 (7):577-595.
    [72]沈珠江,米占宽.膨胀土渠道边坡降雨入渗和变形耦合分析[J].水利水运工程学报, 2004,3:7-11.
    [73]殷宗泽,朱俊高,袁俊平,等.心墙堆石坝的水力劈裂分析[J].水利学报,2006,37(11):1348-1353.
    [74]王成华,夏绪勇.边坡稳定分析中的临界滑动面搜索方法述评[J].四川建筑科学研究,2002,28(3):34-39.
    [75]Griffiths, D.V., Lane, P.A. Slope stability analysis by finite elements [J]. Geotechnique, 1999,49(3):387-403.
    [76]Dawson, E.M., Roth, W.H. Slope stability analysis by strength reduction [J]. Geotechnique,1999,49(6):835-840.
    [77]殷宗泽,吕擎峰.圆弧滑动有限元土坡稳定分析[J].岩土力学,2005,26(10):1525-1529.
    [78]赵尚毅,郑颖人,时卫民,等.用有限元强度折减法求边坡稳定安全系数[J].岩土工程学报,2002,24(3):343-346.
    [79]郑颖人,赵尚毅.有限元强度折减法在土坡与岩坡中的应用[J].岩石力学与工程学报,2004,23(19):3381-3388.
    [80]钱家欢,殷宗泽.土工原理与计算[M](第二版).北京:中国水利水电出版社,1996.
    [81]徐志英,周健.土坝地震孔隙水压力产生、扩散和消散的三维动力分析[J].地震工程与工程振动,1985,5(4):57-72.
    [82]周健,董鹏,戚佩江.灰渣坝抗震稳定性的三维有效应力动力分析[J].水利学报,2000,7:43-48.
    [83]徐则民,张倬元,许强,等.九寨黄龙机场填方高边坡动力稳定性分析[J].岩石力学与工程学报,2004,23(11):1883-1890.
    [84]徐文杰,陈祖煜,何秉顺,等.肖家桥滑坡堵江机制及灾害链效应研究[J].岩石力学与工程学报,2010,29(5):933-942.
    [85]Itasca Consulting Group, Inc. FLAC3D (Fast Lagrangian Analysis of Continua in 3 Dimensions) user's manual, version 2.1 [M]. Minneapolis, Minnesota,2002.
    [86]王泳嘉,刑纪波.离散单元法同拉格朗日元法及其在岩土力学中的应用[J].岩上力学,1995,16(2):1-14.
    [87]刘波,韩彦辉FLAG原理、实例与应用指南[M].北京:人民交通出版社,2005.
    [88]朱继良,黄润秋.某水电站坝前堆积体稳定性的三维数值模拟分析[J].岩土力学,2005,26(8):1318-1322.
    [89]丁秀丽,付敬,张奇华.三峡水库水位涨落条件下奉节南桥头滑坡稳定性分析[J].岩石力学与工程学报,2004,23(17):2913-2919.
    [90]张华,陆阳,程强.岩质边坡锚杆(索)框架梁加固的数值模拟[J].公路交通科 技,2008,25(1):21-26.
    [91]徐光兴,姚令侃,李朝红,等.边坡地震动力响应规律及地震动参数影响研究[J].岩土工程学报.2008,30(6):918-923.
    [92]何铮,徐卫亚,石崇,等.顺层岩质高边坡地震变形破坏机制三维数值反演研究[J].岩石力学与工程学报,2009,30(11):3512-3518.
    [93]郑颖人,叶海林,黄润秋.地震边坡破坏机制及其破裂面的分析探讨[J].岩石力学与工程学报,2009,28(8):1714-1723.
    [94]Shi Genhua. Discontinuous deformation analysis: A new numerical model for the statics and dynamics of deformable block structures [J]. Engineering Computations,1992, 9(2):157-168.
    [95]Gen-hua Shi, Richard E. Goodman. Two Dimensional Discontinuous Deformation Analysis [J]. Int. J. for Num. and Analy. Methods in Geomech.,1987,9:541-556.
    [96]Cundall, P.A. Formulation of a three-dimensional distinct element model-part I:a scheme to detect and represent contacts in a system composed of many polyhedral blocks [J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts,1988,25:107-116.
    [97]周少怀,杨家岭.DDA数值方法及工程应用研究[J].岩土力学,2000,21(2):123-125.
    [98]马永政,郑宏,朱合华.DDA法计算边坡安全系数的粘聚力影响分析[J].岩土工程学报.2009,31(7):1088-1093.
    [99]刘君,孔宪京,Shyu Kuokai. DDA与FEM耦合法在分缝重力坝非线性分析中的应用[J].计算力学学报.2004,21(5):585-591.
    [100]姜清辉,周创兵,罗先启,等.三维DDA与有限元的耦合分析方法及其应用[J].岩土工程学报.2006,28(8):998-1001.
    [101]李树忱,程玉民.数值流形方法及其在岩石力学中的应用[J].力学进展.2004,34(4):446-454.
    [102]王芝银,李云鹏.数值流形方法及其研究进展[J].力学进展.2003,33(2):261-266.
    [103]姜清辉,王书法.锚固岩体的三维数值流形方法模拟[J].岩石力学与工程学报.2006,25(3):528-532.
    [104]朱爱军,曾祥勇,邓安福.数值流形方法框架下散体系统与连续介质共同作用模拟[J].岩土力学.2009,30(8):2495-2500.
    [105]Sitharam, T.G. Numerical simulation of particulate materials using discrete element modeling [J]. Current Science,2000,78 (7):876-886.
    [106]Cundall, P.A. A computer model for simulating progressive large scale movements in blocky rock systems [A]. Proc. Symp. Int. Soc. for Rock Mech.1971,1.
    [107]黄晚清.SMA粗集料骨架结构的细观力学模型研究[D].西南交通大学博士学位论文.2007.
    [108]Itasca Consulting Group Inc. PFC2D (Particle Flow Code in 2 Dimensions) user's manual, version 3.1 [M]. Minneapolis, Minnesota,2004.
    [109]Itasca Consulting Group Inc. UDEC (Universal Distinct Element Code) user's manual, version 4.0 [M]. Minneapolis, Minnesota,2004.
    [110]Itasca Consulting Group Inc. PFC3D (Particle Flow Code in 3 Dimensions) user's manual, version 3.1 [M]. Minneapolis, Minnesota,2005.
    [111]Itasca Consulting Group Inc.3DEC (3-Dimensional Distinct Element Code) user's manual, version 3.0 [M]. Minneapolis, Minnesota,2003.
    [112]Ting, J.M., Khwaja, M., Meachum, L., and et al. An ellipse based discrete element model for granular materials [J]. International Journal for Numerical and Analytical Methods in Geomechanics.1993,17:603-623.
    [113]Rothenburg, L., Bathurst, R.J. Micromechanical features of granular assemblies with planar elliptical particles [J]. Geotechnique,1992,42 (1):79-95.
    [114]Ng, T.T. Numerical simulation of granular soil using elliptical particles [J]. Computer and Geotechnics,1994,16:153-169.
    [115]Lin X, Ng, T.T. A three-dimensional discrete element model using arrays of ellipsoids [J]. Geotechnique,1997,47 (2):319-329.
    [116]Ng, T.T. Fabric study of granular materials after compaction [J]. Journal of Engineering Mechanics, ASCE,1999,125 (12):1390-1394.
    [117]Williams, J.R., O'Conner, R. A linear complexity intersection algorithm for DEM simulations of arbitrary geometries [J]. Engineering Computations,1995,12:185-201.
    [118]Hogue, C. Shape representation and contact detection for discrete elements simulations of arbitrary geometries [J]. Engineering Computations,1998,15(3): 374-390.
    [119]Favier, J.F., Kremmer, M., Raji, A.O. Shape representation of axi-symmetrical, non-spherical particles in discrete element simulation using multi-element model particles [J]. Engineering Computations,1999,16 (4):467-480.
    [120]徐泳,孙其诚,张凌,等.颗粒离散元法研究进展[J].力学进展.2003,33(2):251-260.
    [121]Rothenburg, L., Kruyt, N.P. Critical state and evolution of coordination number in simulated granular materials [J]. Int. J. Solids and Structures,2004,41(21):5763-5774.
    [122]Yu A.B., Standish, N. Porosity calculations of multi-component mixtures of spherical particles [J]. Powder Technnology,1987,52:233-241.
    [123]Nolan, G.T., Kavanagh, P.E. Computer simulation of random packing of hard spheres [J]. Powder Technology,1992,72(2):149-155.
    [124]Chang K.G., Meegoda, J.N. Micromechanical simulation of hot mix asphalt [J]. Journal of Engineering Mechanics, ASCE,1997,123(5):495-503.
    [125]Mustoe, G.G.W, Miyata, M. Material flow analysis of noncircular-shaped granular media using discrete element methods [J]. Journal of Engineering Mechanics, ASCE, 2001,127(10):1017-1026.
    [126]Oda, M., Kazama, H. Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils [J]. Geotechnique,1998, 48(4):465-481.
    [127]Horner, D.A., Carrillo, A.R., Peters, J.F., and et al. High resolution soil vehicle interaction modeling [J]. Mech. Struct. And Machines,1998,26 (3):305-318.
    [128]Thornton, C., Barnes, D.J. Computer simulated deformation of compact granular assemblies [J]. Acta Mechanic,1986,64(1-2):45-61.
    [129]Masson S, Martinez J. Micromechanical analysis of the shear behavior of a granular material [J]. Journal of Engineering Mechanics, ASCE,2001,127 (10):1007-1016.
    [130]Potyondy, D.O., Cundall, P.A. A bonded-particle model for rock [J]. International Journal of Rock Mechanics & Mining Sciences,2004,41:1329-1364.
    [131]Williams, J.R., Rege, N. The development of circulation cell structures in granular materials undergoing compression [J]. Powder Technology,1997,90:187-194.
    [132]Anandarajah A. Discrete element method for simulating behavior of cohesive soil [J]. Journal of Geotechnical Engineering,1994,120 (9):1593-1613.
    [133]Anandarajah A. Numerical simulation of one-dimensional behavior of kaolinite [J]. Geotechnique,2000,500 (5):509-519.
    [134]Kuhn, M.R., Mitchell, J.R. Modeling of soil creep with the discrete element method [J]. Engineering Computations,1992,9(2):277-287.
    [135]Walton, O.R. Numerical simulation of inclined chute flows of monodisperse inelastic, frictional spheres [J]. Mechanics of Materials,1993,16:239-247.
    [136]Munjiza, A., Rougier, E., John, N.W.M. Discrete element method for molecular scale visualization of micro-flows [J]. Journal of Flow Visualization and Image Processing,2007,14(1):17-34.
    [137]Latham, J.P., Lu Y., Munjiza, A. A random method for simulating loose packs of angular particles using tetrahedral [J]. Geotechnique,2001,51(10):871-879.
    [138]Fu G., Dekelbab, W.3-D random packing of polydisperse particles and concrete aggregate grading [J]. Powder Technology,2003,133(1-3):147-155.
    [139]Moakher, M., Shinbrot, T., Muzzio, F.J. Experimentally validated computations of flow, mixing and segregation of non-cohesive grains in 3D tumbling blenders [J]. Powder Technology,2000,109(1-3):58-71.
    [140]Cheng, Y.P., Bolton, M.D., Nakata, Y. Crushing and plastic deformation of soils simulated using DEM [J]. Geotechnique,2004,54 (2):131-141.
    [141]Cheng, Y.P., Nakata, Y., Bolton, M.D. Discrete element simulation of crushable soil [J]. Geotechnique,2003,53 (7):633-641.
    [142]Bolton, M.D., Nakata, Y., Cheng, Y.P. Micro-and macro-mechanical behaviour of DEM crushable materials [J]. Geotechnique,2008,58 (6):471-480.
    [143]Lohner, R., Onate, E. An advancing front technique for filling space with arbitrary separated objects [J]. Int. J. Numer. Meth. Engng.,2009,78:1618-1630.
    [144]Cleary, P.W. Large scale industrial DEM modelling [J]. Engineering Computations, 2004,21:169-204.
    [145]刘凯欣,高凌天.离散元法研究的评述[J].力学进展.2003,33(4):483-490.
    [146]Han, K., Peric, D., Owen, D.R.J. A combined finite/discrete element simulation of shot peening processes. Part I:studies on 2D interaction laws [J]. Engineering Computations,2000,17 (5):593-619.
    [147]Han, K., Peric, D., Owen, D.R.J. A combined finite/discrete element simulation of shot peening processes. Part II:3D interaction laws [J]. Engineering Computations, 2000,17 (65):680-702.
    [148]Owen, D.R.J., Feng Y.T. Parallelised finite/discrete element simulation of multi-fracturing solids and discrete systems [J]. Engineering Computations,2001,18 (3): 557-576.
    [149]Owen, D.R.J., Feng Y.T., and et al. The modelling of multi-fracturing solids and particulate media [J]. Int. J. Numer. Meth. Engng.,2004,60(1):317-339.
    [150]Munjiza, A. The combined finite-discrete element method [M]. Chichester, John Wiley and Sons,2004.
    [151]Munjiza, A., Bangash, T., John, N.W.M. The combined finite-discrete element method for structural failure and collapse [J]. Engineering Fracture Mechanics,2004, 71(4-6),469-483.
    [152]Xiang, J.S., Munjiza, A., Latham, J.P. Finite strain, finite rotation quadratic tetrahedral element for the combined finite-discrete element method [J]. Int. J. Numer. Meth. Engng.,2009,79(8):946-978.
    [153]Munjiza, A., Xiang, J.S., Garcia, X., and et al. The Virtual Geoscience Workbench, VGW:Open Source tools for discontinuous systems [J]. Particuology,2010,8(2): 100-105.
    [154]Latham, J.P., Munjiza, A., Mindel, J., and et al. Modelling of massive particulates for breakwater engineering using coupled FEMDEM and CFD [J]. Particuology,2008, 6(6):572-583.
    [155]Idelsohn, S.R., Onate, E., Pin, F.D. A Lagrangian meshless finite element method applied to fluid-structure interaction problems [J]. Computers and Structures,2003,81: 655-671.
    [156]Onate, E., Rojek, J., Chiumenti, M. Advances in stabilized finite element and particle methods for bulk forming processes [J]. Comput. Methods Appl. Mech. Engrg., 2006,195:6750-6777.
    [157]Onate, E., Celigueta, M.A., Idelsohn, S.R. Modeling bed erosion in free surface flows by the particle finite element method [J]. Acta Geotechnica,2006,1:237-252.
    [158]Pin, F.D., Idelsohn, S.R., Onate, E., and et al. The ALE/Lagrangian Particle Finite Element Method:A new approach to computation of free-surface flows and fluid-object interactions [J]. Computers and Fluids,2007,36:27-38.
    [159]Cai, M., Kaiser, P.K., Morioka, H., and et al. FLAC/PFC coupled numerical simulation of AE in large-scale underground excavations [J]. International Journal of Rock Mechanics & Mining Sciences,2007,44:550-564.
    [160]Feng Y.T., Han, K., Owen, D.R.J. Coupled lattice Boltzmann method and discrete element modeling of particle transport in turbulent fluid flows:Computational issues [J]. Int. J. Numer. Meth. Engng.,2007,72:1111-1134.
    [161]Feng Y.T., Han, K., Owen, D.R.J. Combined three-dimensional lattice Boltzmann method and discrete element method for modelling fluid-particle interactions with experimental assessment [J]. Int. J. Numer. Meth. Engng.,2010,81:229-245.
    [162]王泳嘉.离散单元法——一种适用于节理岩石力学分析的数值方法[A].第一届全国岩石力学数值计算及模型试验讨论文集[C].峨嵋:西南交通大学出版社.1986:32-37.
    [163]邢纪波,王泳嘉.离散元法的改进及其在颗粒介质研究中的应用[J].岩土工程学报,1990,12(5):51-57.
    [164]魏群.散体单元法的基本原理,数值方法及程序[M].北京:科学出版社,1991.
    [165]焦玉勇.三维离散单元法及其应用[D].中国科学院武汉岩土力学研究所博士学位论文.1998.
    [166]王光纶,张楚汉,彭冈,等.刚块动力试验与离散元法动力分析参数选择的研究[J].岩石力学与工程学报,1994,13(2):124-133.
    [167]李世海,高波,燕琳.三峡永久船闸高边坡开挖三维离散元数值模拟[J].岩土力学,2002,23(3):272-277.
    [168]唐志平.激光辐照下充压柱壳失效的三维离散元模拟[J].爆炸与冲击.2001,21(1):1-7.
    [169]蒋明镜.用于触探试验分析的粒状材料本构模型之展望[J].岩土工程学报,2007,29(9):1281-1288.
    [170]周健,王家全,孔祥利,等.砂土颗粒与土工合成材料接触界面细观研究[J].岩土工程学报,2010,32(1):61-67.
    [171]黄晚清,陆阳.散粒体重力堆积的三维离散元模拟[J].岩土工程学报,2006,28(12):2139-2143.
    [172]李世海,汪远年.三维离散元土石混合体随机计算模型及单向加载试验数值模拟[J].岩上工程学报,2004,26(2):172-177.
    [173]徐文杰,胡瑞林,王艳萍.基于数字图像的非均质岩土材料细观结构PFC2D模型[J].煤炭学报,2007,32(4):358-362.
    [174]孔祥臣,陈谦应,贾学明.土石混合料振动击实试验的PFC2D模拟研究[J].重庆交通学院学报,2005,24(1):61-67.
    [175]唐志平,胥建龙.离散元与壳体有限元结合的多尺度方法及其应用[J].计算力学学报,2007,24(5):591-596.
    [176]金峰,贾伟伟,王光纶.离散元-边界元动力耦合模型[J].水利学报,2001,1:23-27.
    [177]金峰,王光纶,贾伟伟.离散元-边界元动力耦合模型在地下结构动力分析中的应用[J].水利学报,2001,2:24-28.
    [178]周健,周凯敏,姚志雄,等.砂上管涌-滤层防治的离散元数值模拟[J].水利学报,2010,1:17-24.
    [179]张泉,陆阳,杨智敏,等.碎石化混凝土路面沥青加铺层结构的数值分析[J].公路交通科技,2009,26(8):22-27.
    [180]杨庆华,姚令侃,杨明.地震作用下松散堆积体崩塌的颗粒流数值模拟[J].西南交通大学学报,2009,44(4):580-584.
    [181]崔芳鹏,胡瑞林,殷跃平,等.纵横波时差耦合作用的斜坡崩滑效应离散元分 析—以北川唐家山滑坡为例[J].岩石力学与工程学报,2010,29(2):319-327.
    [182]李海波,肖克强,刘亚群.地震荷载作用下顺层岩质边坡安全系数分析[J].岩石力学与工程学报,2007,26(12):2385-2394.
    [183]谭儒蛟,徐鹏逍,胡瑞林,等.地震作用下边坡岩体动力稳定性数值模拟[J].岩石力学与工程学报,2009,28(增2):3986-3992.
    [184]黄文熙.土的工程性质[M].北京:水力电力出版社,1984.
    [185]周德培,李安洪.软岩高边坡喷锚挡护的试验研究[J].岩土力学,1997,18(4):48-53.
    [186]徐光明,王国利,顾行文,等.雨水入渗与膨胀性土边坡稳定性试验研究[J].岩土工程学报,2006,28(2):270-273.
    [187]李明,张嘎,李焯芬,等.开挖对边坡变形影响的离心模型试验研究[J].岩土工程学报,2011,33(4):667-672.
    [188]李焕强,孙红月,孙新民,等.降雨入渗对边坡性状影响的模型实验研究[J].岩土工程学报,2009,31(4):589-594.
    [189]徐邦栋.滑坡分析与防治[M].北京:中国铁道出版社,2001.
    [190]程强,黄绍槟,周永江.公路深挖路堑边坡工程施工监测与动态设计[J].岩石力学与工程学报,2005,24(8):1335-1340.
    [191]朱继良,黄润秋,阮文军,等.西南某大型水电站拱肩槽边坡开挖的变形响应研究[J].工程地质学报,2009,17(4):469-475.
    [192]胡定,张利民.土工抗震试验与分析[M].成都:成都科技大学出版社,1991.
    [193]刘君,刘福海,孔宪京,等.PIV技术在大型振动台模型试验中的研究[J].岩土工程学报,2010,32(3):368-374.
    [194]艾畅,冯春,李世海,等.地震作用下顺层岩质边坡动力响应的试验研究[J].岩石力学与工程学报,2010,29(9):1825-1832.
    [195]王丽萍,张嘎,张建民,等.土钉加固黏性土坡动力离心模型试验研究[J].岩石力学与工程学报,2009,28(6):1226-1230.
    [196]汪家林,徐湘涛,汪贤良,等.汶川8.0级地震对紫坪铺左岸坝前堆积体稳定性影响的监测分析[J].岩石力学与工程学报,2009,28(6):1279-1287.
    [197]徐文杰,胡瑞林.土石混合体概念、分类及意义[J].水文地质工程地质,2009,4:50-56.
    [198]吴景坤,方祁,蔡军刚.堆积层滑坡稳定性评价专家系统方法[J].中国地质灾害与防治学报,1994,5(2):8-16.
    [199]中华人民共和国交通部.公路路基设计规范(JTG D30-2004)[S].北京:人民交通出版社,2004.
    [200]Ishihara, K., Yoshimine, M. Evaluation of settlements in sand deposits following liquefaction during earthquake [J]. Soils and Foundations,1992,32(1):173-188.
    [201]周中,傅鹤林,刘宝琛,等.土石混合体渗透性能的正交试验研究[J].岩土工程学报,2006,28(9):1134-1138.
    [202]李晓,廖秋林,郝建明,等.土石混合体力学特性的原位试验研究[J].岩石力学与工程学报,2007,26(12):2377-2384.
    [203]周中,傅鹤林,刘宝琛,等.土石混合体边坡人工降雨模拟试验研究[J].岩土力学,2007,28(7):1391-1396.
    [204]谷天峰,王家鼎,路勋,等.藏东南妥坝3#堆积体滑坡特征及稳定性分析[J].自然灾害学报,2009,18(1):32-38.
    [205]冯玉勇.第四纪工程地质学与西南山区河床深厚覆盖层研究[D].北京:中国科学院地质与地球物理研究所博士学位论文,1999.
    [206]陆阳,等.四川公路建设复杂边坡处治技术研究[R].西南交通大学土木工程学院,2011,1.
    [207]水利电力部水利水电规划设计院.水利水电工程地质手册[M].北京:水利电力出版社,1985.
    [208]中华人民共和国建设部.建筑抗震设计规范(GB 50011-2001,2008年局部修订)[S].北京:中国建筑工业出版社,2008.
    [209]中华人民共和国建设部.建筑边坡工程技术规范(GB 50330-2002)[S].北京:中国建筑工业出版社,2002.
    [210]攀枝花至田房(川滇界)高速公路K218+160-270段支挡工程工程地质勘查报告[R].成都:四川省交通厅公路规划勘察设计研究院,2006.
    [211]5.12汶川特大地震S210线(阿坝境)公路恢复重建工程调查、检测、评估和设计文件[R].成都:四川省交通厅交通勘察设计研究院,2008.
    [212]国道317(213)线都江堰至汶川公路(F合同)龙洞子隧道出口仰坡处治工程施工图设计文件[R].成都:四川省交通厅公路规划勘察设计研究院,2004.
    [213]四川省雅安经石棉至泸沽高速公路C13合同段大宝山隧道进口滑坡防护施工图设计文件[R].成都:四川省交通厅公路规划勘察设计研究院,2008.
    [214]四川省凉山州木里县通乡公路甲波桥边坡病害应急处治工程施工图设计文件[R].成都:四川省交通厅公路规划勘察设计研究院,2008.
    [215]攀枝花至田房(川滇界)高速公路田房1号大桥震后滑坡桥墩影响区处治工程施工图设计文件[R].成都:四川省交通厅公路规划勘察设计研究院,2008.
    [216]西昌(黄联关)至攀枝花高速公路(C4、C6-C8合同段)两阶段施工图设计说明书[R].成都:四川省交通厅公路规划勘察设计研究院,2003.
    [217]国道318线雅江过境段K0+413~K0+835段边坡处治施工图设计[R].成都:四川省交通厅公路规划勘察设计研究院,2005.
    [218]国道318线川藏路海子山至竹巴笼段改建(第BT5合同段)K243+350~+500列衣滑坡处治工程滑坡治理方案设计文件[R].成都:四川省交通厅公路规划勘察设计研究院,2005.
    [219]国道318线二郎山至康定公路改建工程K2794+860~K2795+000滑坡处治工程设计方案比选[R].成都:四川省交通厅公路规划勘察设计研究院,2004.
    [220]西昌(黄联关)至攀枝花高速公路C11合同段酸水湾隧道出口抢险工程施工图设计文件汇总[R].成都:四川省交通厅公路规划勘察设计研究院,2008.
    [221]宜宾市江安县长江大桥引道滑坡及边坡病害处治工程施工图设计文件[R].成都:四川省交通厅公路规划勘察设计研究院,2006.
    [222]达渝高速公路水毁工程K5+000~K5+160.3段右侧滑坡抢险处治工程施工图设计文件[R].成都:四川省交通厅公路规划勘察设计研究院,2008.
    [223]国道318线二郎山至康定公路改建工程高边坡处治工程(第BP5合同段)施工图设计文件[R].成都:四川省交通厅公路规划勘察设计研究院,2004.
    [224]国道318线二郎山至康定公路改建工程高边坡处治工程(第BP3合同段)施工图设计文件[R].成都:四川省交通厅公路规划勘察设计研究院,2003.
    [225]国道318线二郎山至康定公路改建工程高边坡处治工程(第BP1合同段)施工图设计文件[R].成都:四川省交通厅公路规划勘察设计研究院,2003.
    [226]国道318线二郎山至康定公路改建工程14处高边坡处治设计方案[R].成都:四川省交通厅公路规划勘察设计研究院,2003.
    [227]广元至巴中高速公路13-17合同两阶段施工图设计说明[R].成都:四川省交通厅公路规划勘察设计研究院,2006.
    [228]隆昌至纳溪高速公路K77+364-K77+585段右侧滑坡处治工程施工图设计文件[R].成都:四川省交通厅公路规划勘察设计研究院,2007.
    [229]达州至重庆高速公路大竹至临水邱家河段K148+730~K148+830填方路基支挡结构物外侧滑坡方案设计文件[R].成都:四川省交通厅公路规划勘察设计研究院,2007.
    [230]川主寺至黄龙公路边坡防护工程施工图设计文件[R].成都:四川省交通厅公路规划勘察设计研究院,2004.
    [231]绵广路广元至棋盘关段二专路K284+798~K284+854段边坡病害加固处治工程施工图设计文件[R].成都:四川省交通厅公路规划勘察设计研究院,2008.
    [232]西昌(黄联关)至攀枝花高速公路两阶段施工图设计文件C1合同段特殊路基设计图(德昌河东滑坡)[R].成都:中铁西北科学研究院,2003.
    [233]成都至重庆高速公路K21+655~+860左侧滑坡处治工程施工图设计文件[R].成都:四川省交通厅公路规划勘察设计研究院,2005.
    [234]国道318线川藏路海子山至竹巴笼改建(BT5合同段)K243+350-K243+500列衣滑坡处治工程补充设计文件[R].成都:四川省交通厅公路规划勘察设计研究院,2007.
    [235]国道318线川藏路海子山至竹巴笼改建(BT11合同段)K303滑坡处治工程施工图设计[R].成都:四川省交通厅公路规划勘察设计研究院,2006.
    [236]国道318线川藏路海子山至竹巴笼改建(BT4合同段)K238德达隧道进口滑坡施工图设计文件[R].成都:四川省交通厅公路规划勘察设计研究院,2005.
    [237]国道318线川藏路海子山至竹巴笼改建(BT8合同段)波戈溪隧道进口滑坡抢险工程施工图汇总文件[R].成都:四川省交通厅公路规划勘察设计研究院,2006.
    [238]国道主干线GZ40宜宾至水富高速公路两阶段施工图设计文件[R].成都:四川省交通厅公路规划勘察设计研究院,2002.
    [239]李天斌,王兰生.岩质工程高边坡稳定性及其控制[M].北京:科学出版社,2008.
    [240]郑颖人,陈祖煜,王恭先,等.边坡与滑坡工程治理(第二版)[M].北京:人民交通出版社,2010.
    [241]刘兴远,雷用,康景文.边坡工程——设计·监测·鉴定与加固[M].北京:中国建筑工业出版社,2007.
    [242]唐辉明,陈建平,刘佑荣,等.公路高边坡岩上工程信息化设计的理论与方法[M].北京:中国地质大学出版社,2003.
    [243]彭小东.季节渗流边坡的稳定性研究[D].西南交通大学硕士学位论文.2008.
    [244]Ishihara, K. Liquefaction and flow failure during earthquakes [J]. Geotechnique, 1993,43(3):351-415.
    [245]刘汉龙,费康,高玉峰.边坡地震稳定性时程分析方法[J].岩土力学,2003,24(4):553-560.
    [246]http://www.cea.gov.cn/manage/html/8a8587881632fa5c0116674a018300cf/panzhih ua/index.html.2008.
    [247]雷建成,高孟潭,俞言祥.四川及邻区地震动衰减关系[J].地震学报,2007,29(5):500-511.
    [248]陈晓清,崔鹏,李泳,等.汶川地震后北川干溪沟山地灾害及长期发展趋势初步分析[J].四川大学学报(工程科学版),2010,42(增1):22-32.
    [249]崔鹏,庄建琦,陈兴长,等.汶川地震区震后泥石流活动特征与防治对策[J].四川大学学报(工程科学版),2010,42(5):10-19.
    [250]裴来政,刘应辉,庄建琦.都汶公路地震次生地质灾害活动特征与减灾对策[J].公路,2010,8:83-89.
    [251]谢和平,邓建辉,台佳佳,等.汶川大地震灾害与灾区重建的岩土工程问题[J].岩石力学与工程学报,2008,27(9):1781-1791.
    [252]毛坚强.一种解岩土工程变形体-刚体接触问题的有限元法[J].岩土力学,2004,25(10):1594-1598.
    [253]周健,张刚,曾庆有.主动侧向受荷桩模型试验与颗粒流数值模拟研究[J].岩土工程学报,2007,29(5):650-656.
    [254]陈虬,许廷兴.动态响应分析的有限元-边界元耦合迭代法[J].西南交通大学学报,1989,4:51-56.
    [255]张华,陆阳.基于有限差分与离散元耦合的支挡结构数值计算方法[J].岩土工程学报,2009,31(9):1402-1407.
    [256]Nakashima H., Oida A. Algorithm and implementation of soil-tire analysis code based on dynamic FE-DE method [J]. Journal of Terramechanics,2004,41:127-137.
    [257]Zhang Hua, Lu Yang. Continuum and discrete element coupling approach to analyzing seismic responses of a slope covered by deposits [J]. Journal of Mountain Science,2010,7:264~275.
    [258]Craig W.H., James R.G., and Schofield A.N. Centrifuges in Soil Mechanics [M]. A.A.Balkema, Rotterdam,1988.
    [259]Schofield A.N. Cambridge Geotechnical Centrifuge Operations [J]. Geotechnique, 1980,30(3):227-268.
    [260]包承纲,饶锡保.土工离心模型的试验原理[J].长江科学院院报,1998,15(2):2-7.
    [261]包承纲.土力学的发展和土工离心模拟试验的研究[J].岩土力学,1988,9(4):23-30.
    [262]徐光明,章为民.离心模型中的粒径效应和边界效应研究[J].岩土工程学报,1996,18(3):80-86.
    [263]姚令侃,黄艺丹,杨庆华.地震触发崩塌滑坡自组织临界性研究[J].四川大学学报(工程科学版),2010,42(5):33-43.
    [264]蒋良潍,姚令侃,胡志旭,等.地震扰动下边坡的浅表动力效应与锚固控制机理试验研究[J].四川大学学报(工程科学版),2010,42(5):164-174.
    [265]中华人民共和国铁道部.铁路工程土工试验规程(TB10102-2004)[S].北京:中国铁道出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700