用户名: 密码: 验证码:
桥渡压缩冲刷数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桥渡压缩冲刷是桥梁建筑物压缩过流断面而在桥下河床全断面内产生的普遍冲刷,其发展规律受桥位河段水流、泥沙运动及河床变形的控制。本文根据水流、泥沙运动基本理论,考虑桥渡压缩对水流流态的影响、悬移质泥沙运动机理,利用水流、泥沙运动方程和河床变形方程,通过数值计算,研究了桥渡压缩冲刷随水文条件的演变规律、悬沙的紊动猝发机理及应用,并分析了水文随机性特性的影响及断面冲刷的横向分布,主要取得了以下研究成果:
     (1)从悬移质中的床沙质对水流紊动扩散的抑制作用出发,采用了基于制紊假说的水、沙方程(模型一),用数值方法模拟了桥渡压缩冲刷。模拟时考虑了桥位压缩河段回流边界的概化处理、天然河道断面几何特征的因时变化及泥沙组成的不均匀性。给出分组水流挟沙能力及级配、悬移质及床沙级配计算方法。采用有限差分法对模型进行数值离散并编制计算程序,通过枝城长江大桥压缩冲刷计算实例,验证了模型的合理性与准确性。结果表明,模型可以合理反映桥址及其上下游断面水位变化与河床冲淤变化,在实际流量过程作用下,桥址河床压缩冲刷具有汛期冲刷而汛后淤积的特点。
     (2)采用基于悬沙紊动猝发机理的水沙运动方程(模型二)模拟桥渡压缩冲刷。根据天然河流床沙质含沙量资料,采用最小二乘回归方法得到无量纲紊动猝发尺度比与颗粒雷诺数满足幂函数关系,又通过模型率定确定枝城大桥河段对应的无量纲紊动猝发尺度比具体形式。仍用枝城长江大桥的压缩冲刷实例进行了验证计算,模拟值与实测值接近。
     (3)研究了来水来沙特征量变化对桥渡压缩冲刷的影响。通过对桥位河段水文特征的分析,将水沙特征量概括为洪水频率、流量峰型系数、含沙量及悬移质粒径级配,用模型一模拟了各变量对压缩冲刷的单因素影响以及水沙条件同时变化对压缩冲刷的影响。
     (4)建立了考虑流量过程不确定性的桥渡压缩冲刷随机分析方法。首先提出一类基于FARIMA模型的日流量随机模拟方法,可以较好地反映日流量的统计特性。基于桥渡压缩冲刷数学模型(模型一),结合Monte Carlo方法,研究了枝城长江大桥在不同时间尺度流量过程作用下的压缩冲刷随机性规律。
     (5)用不同的数值模拟方法研究了压缩冲刷的横向分布。首先采用平面二维模型FESWMS FST2DH研究了矩形试验水槽长压缩段的冲淤分布,结合回归分析方法得到压缩冲刷横向分布与垂线平均纵向流速横向分布的相关关系。其次,利用模型一,对枝城长江大桥压缩冲刷横向分布进行数值模拟研究,给出两类典型断面(U型及V型断面)的垂线平均流速横向分布经验公式,并将其用于冲淤横向分布计算,得到了天然河流典型断面冲淤的横向分布。结果表明,本文得到的U型断面冲淤分布与实测值更为接近,而V型断面尚存在一定差别,有待研究。
Contraction scour at bridge crossings is defined as the general scour of riverbed cross section under the bridge due to the constriction of underwater structures, which is governed by flow and sediment transport, and river bed deformation. Numerical simulation of contraction scour is studied in this dissertation using the theory of flow and sediment transport, in which the influence of constriction on water flow and the transport mechanism of suspended sediment are considered. Numerical simulation methods are then applied in the researches such as the characteristics of temporal evolution of contraction scour under different hydrologic conditions, the turbulent bursting mechanism of suspended sediment and its application, the stochastic effects of hydrologic variable on contraction scour and the transverse distribution of contraction scour, etc. Main research achievements are as follows:
     (1) A mathematical model for contraction scour as the first model, including equations of flow and sediment transport on the hypothesis of turbulence restriction of bed material load near the river bed, is proposed and applied in the numerical simulation of contraction scour at bridge crossings in alluvial rivers. In this model, several key aspects are considered, such as the simplification of recirculation boundary at the constricted reach, the temporal variation of geometrical properties of cross sections, and the sediment non-uniformity. The calculation methods are proposed for the sediment carrying capacity and its gradation, and the gradations of suspended sediment and bed material, respectively. Finite difference method (FDM) is adopted and the program CSBC implemented in Compaq Visual Fortran(?) is utilized for numerical simulation of contraction scour. The verification of the model at Zhicheng Yangtze River Bridge shows that the model is capable of predicting water surface elevation and bed elevation with reasonable accuracy. The results for contraction scour also indicate that the erosion happens mainly during the floods and the deposition happens after floods and mainly in the lower water period.
     (2) The second mathematical model is proposed based on the mechanics of turbulent bursting for suspended sediment and applied in the numerical simulation of contraction scour. According to the measured near-bed concentration data of natural rivers, form of power function is deduced for the relationship between the turbulent bursting dimensionless ratio and the particle Reynolds number using the least square regression analysis, and its specific form is derived by numerical model calibration for the reach of Zhicheng Yangtze River Bridge due to the absence of measured data. The numerical results of contraction scour indicate that the simulated values are satisfactory with acceptable error compared to the measured values at the bridge crossing.
     (3) Effects of characteristic quantities of incoming discharge and sediment on contraction scour are studied using the first mathematical model. First, the quantities are summarized as the flood frequency, flood wave type, sediment concentration and grading of suspended sediment according to the analysis of hydrologic characteristics. Second, the independent and mutual effects of these quantities are obtained by numerical simulation, in which the latter mainly considers the simultaneous changes of incoming discharge and sediment.
     (4) A stochastic analysis scheme for contraction scour is proposed considering the uncertainty of incoming discharge. A stochastic simulation method for daily river flow is put forward by adopting the FARIMA model which is proper for consideration of the statistical properties of daily river flows. The first mathematical model, coupled with the Monte Carlo method, is utilized to perform the statistical analysis of the contraction scour at the bridge crossing with different time scales.
     (5) The transverse distribution of contraction scour is numerically studied using different numerical simulation methods. First, the distribution of contraction scour in a rectangular flume is simulated by the two-dimensional depth-averaged model FESWMS FST2DH. Results show that the transverse distribution of contraction scour can be expressed in the function of the longitudinal depth-averaged velocity and time in this case. Second, the transverse distribution of contraction scour at Zhicheng Yangtze River Bridge is studied by the first model which incorporates the formulae for transverse distribution of erosion and deposition with empirical relations for transverse distribution of depth-averaged velocity for two typical cross sections (U and V type). The results show that the calculated transverse distribution of contraction scour is basically closer to the measured values for U type cross section and some differences between the calculated and measured results exist for V type cross section which needs to be studied.
引文
[1]阚译.桥渡冲刷[M].北京:中国铁道出版社,2004,35-47,126-179.
    [2]铁道部科学研究院铁道建筑研究所.铁路桥梁浅基防护调查总结[R].北京:铁道部科学研究院,1973.
    [3]陈小莉.局部绕流冲刷机理及数值模拟研究[D].北京:清华大学,2008.
    [4]Brice J C, Blodgett J C. Countermeasures for hydraulic problems at bridges (Volume 1: Analysis and Assessment; Volume 2:Case Histories)[R]. Washington, D.C.:Federal Highway Administration,1978.
    [5]Shirole A M, Holt R C. Planning for comprehensive bridge safety assurance program (Transportation Research Report No.1290)[R]. Washington, D.C.:Transportation Research Board,1991,137-142.
    [6]Richardson E V, Davis S R. Evaluating scour at bridges (fourth edition)[R]. Washington, D.C.: Federal Highway Administration,2001.
    [7]Smith D W. Bridge failures[C]. Proceedings of the Institution of Civil Engineers (ICE),1976, 60(3):367-382.
    [8]Smith D W. Why do bridges fail?[J]. Civil Engineering-ASCE,1977,47(11):58-62.
    [9]Hamill L. Bridge hydraulics[M]. London:E & FN Spon,1999.
    [10]Macky G H. Survey of roading expenditure due to scour-a report for the Road Research Unit (Report No. CR 90.09)[R]. Chistchurch:DSIR Hydrology Center,1990.
    [11]Brandimarte L. A statistical approach to evaluate the scour vulnerability of river bridges in cohesive soils[D]. Bologna, Italy:Univ. of Bologna,2005.
    [12]Wikipedia, the free encyclopedia.List of bridge failures [EB/OL]. http://en.wikipedia.org/wiki/List_of_bridge_failures.
    [13]阚译.桥渡水害及防治[M].北京:中国铁道出版社,2007,323-382.
    [14]Coleman S E, Melville B W. Case study:New Zealand bridge scour experiences[J]. J. Hydraul. Eng.,2001,127(7):535-546.
    [15]Johnson P A. Advancing bridge-pier scour engineering[J]. J. Prof. Issues Eng. Educ. Pract., 1991,117(1):48-55.
    [16]Tsai C H, Tzang S Y, Hsiao S S, et al.Coastal structure failures and coastal waves on the north coast of Taiwan due to Typhoon Herb[J]. J. Coastal Res.,2006,22(2):393-405.
    [17]雷俊卿.桥梁安全耐久性与病害事故分析[J].中国安全科学学报,2005,15(2):86-90.
    [18]徐学东.桥渡冲刷评估与桥梁浅基防护[J].铁道标准设计,2006(1):66-69.
    [19]张耀哲,王敬昌,梁宗祥,等.灞桥河段河床演变及陇海铁路桥失事原因分析[J].人民黄河,2005,27(3):17-19.
    [20]康家涛.冲刷对桥墩安全性的影响研究[D].长沙:中南大学,2008.
    [21]王彬.宝成线客运列车车厢坠河[J].广东交通,2010(5):61.
    [22]张红武,马继业,张俊华,等.河流桥渡设计[M].北京:中国建材工业出版社,1993.
    [23]中华人民共和国铁道部.TB10017-99铁路工程水文勘测设计规范[s].北京:中国铁道出版社,1999.
    [24]中华人民共和国交通部.JTG C30-2002公路工程水文勘测设计规范[S].北京:人民交通出版社,2002.
    [25]陆浩,高冬光.桥梁水力学[M].北京:人民交通出版社,1996.
    [26]Straub L G. Effect of channel contraction works upon regimen of movable bed streams[J]. Trans. AGU,1934, (2):454-463.
    [27]Laursen E M. Scour at bridge crossing[J]. J. Hydraul. Div.,1960,86(2):39-54.
    [28]Komura S. Equilibrium depth of scour in long constrictions[J]. J. Hydraul. Div.,1966,92(5): 17-37.
    [29]Gill M A. Bed erosion in rectangular long contraction[J]. J. Hydraul. Div.,1981,107(3): 273-284.
    [30]Lim S Y. Clear water scour in long contractions[C]. Proceedings of the ICE-Water Maritime and Energy,1993,101(2):93-98.
    [31]Lim S Y, Cheng N S. Scouring in long contractions[J]. J. Irrig. Drain. Eng.,1998,124(5): 258-261.
    [32]Dey S, Raikar R V. Scour in long contractions[J]. J. Hydraul. Eng.,2005,131(12):1036-1049.
    [33]Dey S, Raikar R V. Live-bed scour in long contractions[J]. Int. J. Sediment. Res.,2006,21(2): 166-170.
    [34]Johnson P A, Daniel A. Dock. Probabilistic bridge scour estimates[J]. J. Hydraul. Eng.,1998, 124 (7):750-754.
    [35]李义天,赵明登,曹志芳.河道平面二维水沙数学模型[M].北京:中国水利水电出版社,2001.
    [36]Habersack H M. Numerical sediment transport models-theoretical and practical aspects[C]. Modelling Soil Erosion, Sediment Transport and Closely Related Hydrological Processes, Vienna, Austria, July 13-17,1998:299-308.
    [37]Chang H H. Generalized computer program FLUVIAL-12:Mathematical model for erodible channels users manual[R]. Rancho Santa Fe, CA:Chang Consultants,2006.
    [38]高冬光.桥梁河道冲刷和壅水过程数学模型[J].西安公路学院学报,1988,6(3):50-58.
    [39]HEC-6:Scour and deposition in rivers and reservoirs user's manual[R]. Davis, CA:US Army Corps of Engineers Hydrologic Engineering Center, August,1993.
    [40]Havis R N, Alonso C V., King J G. Modeling sediment in gravel-bedded streams using HEC-6[J]. J. Hydraul. Eng.,1996,122(10):559-564.
    [41]Brunner G W. HEC-RAS river analysis system user's manual[R]. Davis, CA:US Army Corps of Engineers Hydrologic Engineering Center, January,2010.
    [42]Holly F M, Karim M F. Simulation of Missouri river bed degradation[J]. J. Hydraul. Eng., 1986,112(6):497-516.
    [43](Thanos)Papanicolaou A, Elhakeem M, Krallis G, et al. Sediment transport modeling review-current and future developments[J]. J. Hydraul. Eng.,2008,134(1):1-14.
    [44]Yang C T, Ann J. User's manual for GSTARS4[R]. Fort Collins, CO:Hydroscience and Training Center, Colorado State University,2011.
    [45]韩其为.非均匀悬移质不平衡输沙的研究[J].科学通报,1979,(17):804-808.
    [46]韩其为,何明民.水库淤积与河床演变的(一维)数学模型[J].泥沙研究,1987,(3):14-29.
    [47]韩其为.水库淤积[M].北京:科学出版社,2003.
    [48]杨国录.河流数学模型[M].北京:海洋出版社,1993.
    [49]Vieira D A, Wu Weiming. One-dimensional channel network model CCHE1D-user's manual[R]. University, MS:National Center for Computational Hydroscience and Engineering, the University of Mississippi, January,2002.
    [50]Wu Weiming, Vieira D A, Wang S S Y. One-dimensional numerical model for nonuniform sediment transport under unsteady flows in channel networks [J]. J. Hydraul. Eng.,2004,130(9):914-923.
    [51]Briaud J L, Chen H C, Li Y, et al. SRICOS-EFA method for contraction scour in fine-grained soils [J]. J. Geotech. Geoenviron. Eng.,2005,131(10):1283-1294.
    [52]Wang Jun. The SRICOS-EFA method for complex pier and contraction scour[D]. Texas: Texas A&M University,2004.
    [53]Brandimarte L, D'Odorico P, Montanari A. A probabilistic approach to the analysis of contraction scour[J]. J. Hydraul. Res.,2006,44(5):654-662.
    [54]谢鉴衡.河流模拟[M].北京:水利电力出版社,1990.
    [55]刘有录,褚衍东.桥渡全沙冲淤数值模拟[J].铁道学报,1993,15(4):96-102.
    [56]Lai Y G, Greimann B P. Predicting contraction scour with a two-dimensional depth-averaged model[J]. J. Hydraul. Res.,2010,48(3):383-387.
    [57]Mclean J P, Curry J E, Gtiven O, et al. A two-dimensional numerical model study of clear-water scour at a bridge contraction with a cohesive bed[R]. Auburn, Alabama:Highway Research Center, Harbert Engineering Center, Auburn University, April,2003.
    [58]Harris D T. Numerical model evaluations of cumulative contraction scour at a bridge site with cohesive soils[D]. Auburn, Alabama:Auburn University,2005.
    [59]Due B M, Rodi W. Numerical simulation of contraction scour in an open laboratory channel [J]. J. Hydraul. Eng.,2008,134(4):367-377.
    [60]Phillips B C, Sutherland A J. Spatial lag effects in bed load sediment transport J]. J. Hydraul. Res.,1989,27(1):115-133.
    [61]Kaatz K J, James W P. Analysis of alternatives for computing backwater at bridges[J]. J. Hydraul. Eng.,1997,123(9):784-792.
    [62]Seckin G, Yurtal R, Haktanir T. Contraction and expansion losses through bridge constrictions[J]. J. Hydraul. Eng.,1998,124(5):546-549.
    [63]Hunt J, Brunner G W, Larock B E. Flow transitions in bridge backwater analysis[J]. J. Hydraul. Eng.,1999,125(9):981-983.
    [64]Hunt J, Brunner G W. Flow transitions in bridge backwater analysis[R]. Davis, CA:US Army Corps of Engineers, Institute for Water Resources Hydrologic Engineering Center,1995.
    [65]窦国仁,柴挺生,樊明,等.丁坝回流及其相似律的研究[J].水利水运科技情报,1978,(3):1-24.
    [66]李国斌,韩信,傅津先.非淹没丁坝下游回流长度及最大回流宽度研究[J].泥沙研究,2001,(3):68-73.
    [67]韩玉芳,陈志昌.丁坝回流长度的变化[J].水利水运工程学报,2004,(3):33-36.
    [68]王兴奎,邵学军,李丹勋.河流动力学基础[M].北京:中国水利水电出版社,2002.
    [69]张瑞瑾.河流泥沙动力学[M].北京:中国水利水电出版社,1998.
    [70]钱宁,万兆惠.泥沙运动力学[M].北京:科学出版社,1983.
    [71]van Rijn L C. Sediment pick-up functions[J]. J. Hydraul. Eng.,1984,110(10):1494-1502.
    [72]Einstein H A. The bed-load function for sediment transportation in open channel flow[R]. United States Dept. of Agriculture, Technical Bulletin No.1026, Washington, D.C.,1950.
    [73]Yalin M S. Mechanics of sediment transport (2nd Edition)[M]. Oxford, England:Pergamon Press,1977.
    [74]Garcia M, Parker G. Entrainment of bed sediment into suspension[J]. J. Hydraul. Eng.,1991, 117(4):414-435.
    [75]Wright S, Parker G. Flow resistance and suspended load in sand-bed rivers:simplified stratification model [J]. J. Hydraul. Eng.,2004,130(8):796-805.
    [76]程年生,朱立俊.床面泥沙的状态转移概率与质量交换率[J].西北水资源与水工程,1993,4(3):1-8.
    [77]程年生,朱立俊.床面附近泥沙交换率在悬移质输沙计算中的应用[J].水科学进展,1993,4(4):274-280.
    [78]白玉川,李世森,董文军.不平衡输沙计算中泥沙起悬量与沉降量的确定-以沉沙池为例[J].海洋通报,1996,15(6):42-50.
    [79]曹志先.基于湍流猝发的床面泥沙上扬通量[J].水利学报,1996,(5):18-21.
    [80]Cao Zhixian. Turbulent-bursting based sediment entrainment function[J]. J. Hydraul. Eng., 1997,123(3):233-236.
    [81]周宜林,姚仕明,唐洪武等.均匀沙上扬通量的能量平衡模型[J].水力发电学报,2008,27(5):118-122.
    [82]Zhong Deyu, Liu Jinmei, Zhang Hongwu, et al. A PDF model for entrainment rate of bed sediment into suspension[C]. Proc.29th IAHR Congress, Theme E, Beijing,2001.
    [83]钟德钰,张红武.明渠挟沙水流中悬移质的床面平衡浓度[J].水利学报,2006,37(7):789-794.
    [84]赵士清,窦国仁.在三峡工程变动回水区中一维全沙数学模型的研究[J].水利水运科学研究,1990,(2):115-124.
    [85]陆永军,张华庆.水库下游冲刷的数值模拟-模型的构造[J].水动力学研究与进展,1993,8(1):81-89.
    [86]陆永军,张华庆.水库下游冲刷的数值模拟-模型的检验[J].水动力学研究与进展,1993,8(增刊):491-498.
    [87]吴伟明,李义天.一种新的河道一维水流泥沙运动数值模拟方法[J].泥沙研究,1992,(1):1-8.
    [88]Yang C T, Simoes F J. GSTARS computer models and their applications, part Ⅰ:theoretical development[J]. Int. J. Sediment. Res.,2008,23(3):197-211.
    [89]巨江,徐桂萍.准二维河床变形模拟的流管模型[J].水利学报,1993,(7):34-37.
    [90]徐国宾,赵丽莉.准二维非恒定非均匀泥沙数学模型[J].天津大学学报,2008,41(9):1041-1045.
    [91]Lee H Y, Hsieh H M, Yang J C, et al. Quasi-two dimensional simulation of scour and deposition in alluvial channels[J]. J. Hydraul. Eng.,1997,123(7):600-609.
    [92]Zhou Jianjun, Lin Bingnan. One-dimensional mathematical model for suspended sediment with lateral integration[J]. J. Hydraul. Eng.,1998,124(7):712-717.
    [93]Raikar R V, Dey S. Pier scour and thin layered bed scour within a long contraction[J]. Can. J. Civil Eng.,2006,33:140-150.
    [94]Zevenbergen L W. Time scale for contraction scour at bridges[C]. Joint Conference on Water Resource Engineering and Water Resources Planning and Management, Minneapolis, Minnesota, US, July 30-August 2,2000.
    [95]Li Ya. Bridge pier scour and contraction scour in cohesive soils on the basis of flume tests[D]. Texas:Texas A&M University,2002.
    [96]Nurtjahyo P Y. Chimera RANS simulations of pier scour and contraction scour in cohesive soils[D]. Texas:Texas A&M University,2003.
    [97]Yanmaz A M, Altinbilek H D. Study of time-dependent local scour around bridge piers[J]. J. Hydraul. Eng.,1991,117(10):1247-1268.
    [98]Kothyari U C, Garde R J, Ranga Raju K G. Temporal variation of scour around circular bridge piers[J]. J. Hydraul. Eng.,1992,118 (8):1091-1106.
    [99]Melville B W, Chiew Y M. Time scale for local scour at bridge piers[J]. J. Hydraul. Eng.,1999, 125 (1):59-65.
    [100]Oliveto G, Hager W H. Temporal evolution of clear-water pier and abutment scour[J]. J. Hydraul. Eng.,2002,128 (9):811-820.
    [101]Yanmaz A M. Omer K. A semi-empirical model for clear-water scour evolution at bridge abutments[J]. J. Hydraul. Res.,2009,47 (1):110-118.
    [102]Ballio F, Radice A, Dey S. Temporal scales for live-bed scour at abutments[J]. J. Hydraul. Eng.,2010,136 (7):395-402.
    [103]Lu J Y, Shi Z Z, Hong J H, et al. Temporal variation of scour depth at nonuniform cylindrical piers[J]. J. Hydraul. Eng.,2011,137 (1):45-56.
    [104]Ballio F. Local and contraction scour at bridge abutments[C]. Joint Conference on Water Resource Engineering and Water Resources Planning and Management, Minneapolis, Minnesota, US, July 30-August 2,2000.
    [105]Oliveto G, Beniamino O, Comuniello V. Scour in long rectangular contractions[C]. Proceedings of the 31st Congress-International Association for Hydraulic Research,2005,1: 671-672.
    [106]Lu J Y, Hong J H, Su C C, et al. Field measurements and simulation of bridge scour depth variations during floods[J]. J. Hydraul. Eng.,2008,134(6):810-821.
    [107]Johnson P A. The probability of bridge failure due to pier scour[D]. Univ. of Maryland,1990: 123-163.
    [108]Bolduc L C, Gardoni P, Briaud J L. Probability of exceedance estimates for scour depth around bridge piers[J]. J. Geotech. Geoenviron. Eng.,2008,134(2):175-184.
    [109]Briaud J L, Ting F C K, Chen H C, et al. SRICOS:Prediction of scour rate in cohesive soils at bridge piers[J]. J. Geotech. Geoenviron. Eng.,1999,125(4):237-246.
    [110]Brandimarte L, Montanari A, Briaud J L, et al. Stochastic flow analysis for predicting river scour of cohesive soils[J]. J. Hydraul. Eng.,2006,132(5):493-500.
    [111]张佰战,王群.桥渡冲刷可靠度计算[J].铁道工程学报,2001,(1):50-52.
    [112]程永舟,胡旭跃,沈小雄.建筑物基础冲刷深度的可靠性分析[J].长沙交通学院学报,2004,20(3):48-52.
    [113]何明民,韩其为.挟沙能力级配及有效床沙级配的概念[J].水利学报,1989,(3):17-26.
    [114]何明民,韩其为.挟沙能力级配及有效床沙级配的确定[J].水利学报,1990,(3):1-12.
    [115]韩其为.水量百分数的概念及其非均匀悬移质输沙中的应用[J].水科学进展,2007,18(5):633-640.
    [116]钱宁,张仁,周志德.河床演变学[M].北京:科学出版社,1987,547-550.
    [117]Karim M F, Kennedy J F. IALLUVIAL:a computer-based flow and sediment routing model for alluvial streams and its application to the Missouri River[R]. Iowa City, Iowa:Iowa Institute of Hydraulic Research, Univ. of Iowa,1982.
    [118]吴伟明.天然河流平面二维动床阻力问题研究[J].武汉水利电力大学学报,1996,29(3):7-12.
    [119]钱宁,麦乔威,洪柔嘉,等.黄河下游的糙率问题[J].泥沙研究,1959,4(1):1-15.
    [120]蔡晓鸣,王连祥.关于一维河床糙率的计算程序[J].水利学报,1988,(11):53-58.
    [121]董文军,姜亨余,余文唤.一维水流方程中曼宁糙率的参数辨识[J].天津大学学报,2001,34(2):201-204.
    [122]李光炽,周晶晏,张贵寿.用卡尔曼滤波求解河道糙率参数反问题[J].河海大学学报(自然科学版),2003,31(5):490-493.
    [123]雷燕,唐洪武,周宜林,等.遗传算法在河网糙率参数反演中的应用[J].水动力学研究与进展(A辑),2008,23(6):612-617.
    [124]赖锡军,姜加虎,黄群.应用最优控制理论自动率定二维浅水方程的糙率参数[J].水科学进展,2008,19(3):383-388.
    [125]张小琴,包为民,梁文清,等.河道糙率问题研究进展[J].水力发电,2008,34(6):98-100.
    [126]窦国仁.潮汐水流中的悬沙运动及冲淤计算[J].水利学报,1963,(4):13-24.
    [127]Lin P N, Shen H W. Two-D flow with sediment by characteristics method[J]. J. Hydraul. Eng., 1984,110(5):615-626.
    [128]韩其为,何明民.恢复饱和系数初步研究[J].泥沙研究,1997,(3):32-40.
    [129]韩其为.扩散方程边界条件及恢复饱和系数[J].长沙理工大学学报(自然科学版),2006,3(3):7-19.
    [130]韩其为.非均匀沙不平衡输沙的理论研究[J].水利水电技术,2007,38(1):14-23.
    [131]韩其为,陈绪坚.恢复饱和系数的理论计算方法[J].泥沙研究,2008,(6):8-16.
    [132]Nezu I, Nakagawa H. Turbulence in open-channel flows (1st edition)[M]. UK:Taylor & Francis Group,1993:166-277.
    [133]Yalin M S. River Mechanics (1st edition) [M]. Oxford:Pergamon Press Ltd.,1992:29-62.
    [134]Einstein H A, Li H. The viscous sublayer along a smooth boundary[J]. J. Eng. Mech. Div., 1956,82 (2):1-7.
    [135]Schraub F A, Kline S J, Henry J, et al. Use of hydrogen bubbles for quantitative determination of time-dependent velocity fields in low speed water flows[J]. J. Basic Eng.,1965,87(2): 429-444.
    [136]Kline S J, Reynolds W C, Schraub F A, et al. The structure of turbulent boundary layers[J]. J. Fluid. Mech.,1967,30(4):741-773.
    [137]Kim H T, Kline S J, Reynolds W C. The production of turbulence near a smooth wall in a turbulent boundary layer[J]. J. Fluid Mech.,1971,50 (1):133-160.
    [138]Offen G R, Kline S J. Combined dye-streak and hydrogen-bubble visual observation of a turbulent boundary layer[J]. J. Fluid Mech.,1974,62 (2):223-239.
    [139]Offen G R, Kline S J. A proposed model of the bursting process in turbulent boundary layers [J]. J. Fluid Mech.,1975,70 (2):209-228.
    [140]Grass A J. Structural features of turbulent flow over smooth and rough boundaries[J]. J. Fluid Mech.,1971,50 (2):233-255.
    [141]Jackson R G. Sedimentological and fluid-dynamic implications of the turbulent bursting phenomenon in geophysical flows[J]. J. Fluid Mech.,1976,77 (3):531-560.
    [142]程和琴,李茂田,薛元忠,等.长江口水下微地貌运动高分辨率探测研究[J].自然科学进展,2001,11(10):1085-1091.
    [143]Cao Zhixian, Zhang Xiaoxian, Xi Hezhong. Turbulent bursting-based diffusion model for suspended sediment in open-channel flows [J]. J. Hydraul. Res.,1996,34 (4):457-472.
    [144]Cao Zhixian. Turbulent bursting-based formulation of suspended sediment transport capacity [C]. Environmental and Coastal Hydraulics:Protecting the Aquatic Habitat. Proceedings of Theme B:Water for a Changing Global Community, the 27th Congress of the International Association for Hydraulic Research, San Francisco, CA.,1997:1215-1220.
    [145]Cao Zhixian. Equilibrium near-bed concentration of suspended sediment[J]. J. Hydraul. Eng., 1999,125 (12):1270-1278.
    [146]曹文洪,张启舜.潮流和波浪作用下悬移质挟沙能力的研究[J].泥沙研究,2000,(5):16-21.
    [147]曹文洪,何少苓,方春明.黄河河口海岸二维非恒定水流泥沙数学模型[J].水利学报,2001,(1):42-48.
    [148]王殿常.明槽紊流近壁区的带状结构及颗粒运动规律研究[D].北京:清华大学,2000.
    [149]毛野,杨华,袁新明.表面糙率与明渠紊流猝发现象[J].水利学报,2002,(6):53-59.
    [150]Sumer B M, Oguz B. Particle motions near the bottom in turbulent flow in an open channel (Partl)[J]. J. Fluid Mech.,1978,86:109-127.
    [151]Sumer B M, Deigaard R. Particle motions near the bottom in turbulent flow in an open channel (Part2)[J]. J. Fluid Mech.,1981,109:311-337.
    [152]Nino Y, Garcia M H. Experiments on particle-turbulence interactions in the near-wall region of an open channel flow:implications for sediment transport[J]. J. Fluid Mech.,1996,326: 285-319.
    [153]胡春宏,惠遇甲.明渠挟沙水流运动的力学和统计规律[M].北京:科学出版社,1995.
    [154]Shen H, Ackermann N L. Constitutive relationships for fluid-solid mixtures [J]. J. Eng. Mech. Div.,1982,108 (EM5):748-763.
    [155]Shah D A, Antonia R A. Scaling of the bursting period in turbulent boundary layer and duct flows[J]. Phys. Fluids,1989,1(2):318-325.
    [156]杨奉广,刘兴年,曹叔尤,等.希尔兹曲线统一表达式及其在唐家山堰塞湖下游河道冲刷防治中的应用[J].四川大学学报(工程科学版),2010,42(5):175-179.
    [157]Brownlie W R.. Compilation of alluvial channel data:Laboratory and field[R]. California: California Institute of Technology,1981.
    [158]Cao Zhixian, Gareth Pender, Steve Wallis, et al. Computational dam-break hydraulics over erodible sediment bed [J]. J. Hydraul. Eng.,2004,130 (7):689-703.
    [159]齐梅兰,郭辉,甘森,等.高坝下游大桥洪水安全预测研究[C].北京:第二届全路工务系统技术创新成果交流会暨高峰论坛会议,2009.
    [160]Qi Meilan, Liu Xiaofeng, Garcia M H, et al. Channel degradation in the Yangtze River due to decreased sediment supply[C]. Vancouver, Canada:Proceeding of 33RD IAHR Congress: Water Engineering for a Sustainable Environment,2009,3092-3099.
    [161]Qi Meilan, Guo Hui, Wu Jidong. Reevaluating on foundation scour of bridge immediately below the Three Gorges Dam-Case study[C]. Proceedings of the 34th IAHR World Congress: 33rd Hydrology and Water Resources Symposium and 10th Conference on Hydraulics in Water Engineering, Barton, A.C.T.:Engineers Australia,2011:3722-3729.
    [162]中华人民共和国水利部.2002年、2003年、2004年、2005年、2006年、2007年、2008年、2009年、2010年中国河流泥沙公报[R].北京:中国水利水电出版社.
    [163]水利部长江水利委员会.2001年、2002年、2003年、2004年、2005年、2006年、2007年、2008年、2009年、2010年、2011年长江泥沙公报[R].武汉:长江出版社.
    [164]李丹勋,毛继新,杨胜发,等.三峡水库上游来水来沙变化趋势研究[M].北京:科学出版社,2010.
    [165]府仁寿,齐梅兰,方红卫,等.长江上游工程对宜昌来水来沙变化的影响[J].水力发电学报,2006,25(6):103-110.
    [166]潘庆桑,杨国录,府仁寿.三峡工程泥沙问题研究[M].北京:中国水利水电出版社,1999.
    [167]申冠卿,张原锋,曲少军,等.黄河下游不同峰型洪水对泥沙输移的影响[J].水利学报,2008,39(1):7-13.
    [168]董年虎,刘沛清,杨明.大尺度缩窄水流桥墩非定常局部冲刷研究[J].力学与实践,2008,30(2):45-48.
    [169]长江水利委员会水文局.三峡水库上游来水来沙变化分析研究.长江三峡工程泥沙问题研究(2001-2005,第一卷)[R].北京:知识产权出版社,2008:83-164.
    [170]南京水利科学研究院.葛洲坝枢纽下游近坝段河道冲刷及对策研究.长江三峡工程泥沙问题研究(2001-2005,第四卷)[R].北京:知识产权出版社,2008:119-154.
    [171]王文圣,丁晶,金菊良.随机水文学(第二版)[M].北京:中国水利水电出版社,2008:56-87,133-151.
    [172]王文圣,金菊良,李跃清.水文随机模拟进展[J].水科学进展,2007,18(5):768-775.
    [173]王文圣,丁晶,邓育仁.日流量过程随机模拟模型的探讨[J].四川联合大学学报(工程科学版),1997,1(4):41-48.
    [174]张明,廖松,谷兆祺.径流过程随机模拟的混合模型及其应用[J].水力发电学报,2005,24(3):1-5.
    [175]Montanari A, Rosso R, Taqqu M S. Fractionally differenced ARIMA models applied to hydrologic time series:Identification, estimation, and simulation[J]. Water Resour. Res.,1997, 33 (5):1035-1044.
    [176]Cleveland R B, Cleveland W S, McRae J E, et al. STL:A seasonal-trend decomposition procedure based on Loess[J]. J. Off. Stat.,1990,6 (1):3-73.
    [177]Montanari A. Deseasonalisation of hydrological time series through the normal quantile transform[J]. J. Hydrol.,2005,313:274-282.
    [178]中华人民共和国水利部和能源部.水利水电工程设计洪水计算规范[S].北京:水利电力出版社,1993.
    [179]Krzysztofowicz R. Transformation and normalization of variates with specified distributions[J]. J. Hydrol.,1997, (197):286-292.
    [180]丛树铮.水科学技术中的概率统计方法[M].北京:科学出版社,2010:81.
    [181]Stedinger J R, Vogel R M, Foufoula-Georgiou E. Frequency analysis of extreme events [M]//Maidment D R. Handbook of Hydrology. New York:McGraw-Hill, Inc.,1993:22-29.
    [182]Box G E P, Jenkins G M. Time series analysis forecasting and control (revised edition)[M]. Holden-Day:1976.
    [183]Insightful Corporation. S-PLUS(?) 8 Guide to statistics, Volume 1[M]. Seattle, WA,2007.
    [184]Insightful Corporation. S-PLUS(?) 8 Guide to statistics, Volume 2[M]. Seattle, WA,2007.
    [185]Ihaka R, Gentleman R. R:A language for data analysis and graphics[J]. J. Comput. Graph. Stat.,1996,5 (3):299-314.
    [186]R Development Core Team. R:A language and environment for statistical computing[CP]. R Foundation for Statistical Computing, Vienna, Austria,2012.
    [187]Haslett J, Raftery A E. Space-time modelling with long-memory dependence:Assessing Ireland's wind power resource [J]. Appl. Stat.,1989,38, (1):1-50.
    [188]黄强,赵雪花,等.河川径流时间序列分析预测理论与方法[M].郑州:黄河水利出版社,2008:40-44,91-96.
    [189]盛骤,谢式千,潘承毅.概率论与数理统计[M].北京:高等教育出版社,1989:131-140.
    [190]中华人民共和国国家标准.数据的统计处理和解释-正态性检验(GB/T 4882-2001)[)S].国家质量技术监督局,2001.
    [191]Gross J. Package'nortest'-Five omnibus tests for the composite hypothesis of normality [R]//R Core Team. R:A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria,2013.
    [192]Froehlich D C. User's manual for FESWMS FST2DH:two-dimensional depth-averaged flow and sediment transport model[R]. Washington, D.C.:Federal Highway Administration,2002.
    [193]Morales R, Ettema R. Insights from depth-averaged numerical simulation of flow at bridge abutments in compound channels[R]. Laramie, Wyoming:Univ. of Wyoming,2011.
    [194]Larsen R J, Ting F C K, Jones A L. Flow velocity and pier scour prediction in a compound channel:Big Sioux River Bridge at Flandreau, South Dakota[J]. J. Hydraul. Eng.,2011, 137(5):595-605.
    [195]Ipson M K. Analysis of the sediment transport capabilities of FESWMS FST2DH[D]. Utah: Brigham Young University,2006.
    [196]Wu Weiming, Wang S S Y. Movable bed roughness in alluvial rivers[J]. J. Hydraul. Eng., 1999,125(12):1309-1312.
    [197]Nezu I, Rodi W. Open-channel flow measurements with a laser Doppler anemometer [J]. J. Hydraul. Eng.,1986,112(5):335-355.
    [198]袁国兵,郑英铭,罗嗣林,等.河道断面垂线平均流速的一种经验计算法[J].河海大学学报,1995,23(6):83-86.
    [199]张红武,吕昕.弯道水力学[M].北京:水利电力出版社,1993.
    [200]夏军强,王光谦.考虑河岸冲刷的弯曲河道水流及河床变形的数值模拟[J].水利学报,2002,(6):60-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700