用户名: 密码: 验证码:
川西安宁河断裂带晚第四纪地层地貌序列和构造活动性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以川西安宁河河谷第四纪沉积记录和晚第四纪地表构造变形研究为基础,借助孢粉分析、构造过程等诸多定量信息,试图较深入的认识河谷阶地成因及其块体边界断裂的活动特征和强震活动特征,为进一步开展边界断裂动力学研究和强震预测提供详实和可靠的基础资料。
     安宁河谷是四川省内仅次于成都平原的第二大河谷平原,它地处世界闻名的攀西大裂谷中,具有复杂的地质构造和特殊的气候特征。同时安宁河谷是一条断裂谷,安宁河断裂带由此通过。前人对该区已经做了大量艰苦的工作,该断裂晚第四纪以来活动性强,尤其是在第四纪地质、活动构造、地震活动特征等方面都取得了非常丰硕的成果,已经比较清晰的论述了川西安宁河地区活动构造的基本特征。其中最重要的研究成果就是获得了关于安宁河断裂带的晚第四纪活动定量数据,同时对安宁河河谷阶地的晚第四纪以来的阶地、台地的高度和时代取得了一些有意义的数据,为该区晚第四纪以来的构造活动和演化奠定了良好的基础。
     但是,由于川西安宁河谷晚第四纪地层和地貌序列还未得到全面系统的研究,对晚第四纪以来的该区沉积物和微地貌的形成过程认识不足,从而不可避免的导致了对边界带晚第四纪以来不同阶段位移量和滑动速率等定量数据在认识上的偏差,故而影响到了对该区第四纪构造演化的认识。现今的活动构造研究主要依据地貌面时代,根据野外微地貌特别是构造地貌的研究,判断构造活动的位移量,利用被错地貌面的时间来估算活动速率(包括滑动速率、抬升速率等),显然,在没有其它因素影响的情况下,这种技术途径是可行的。但由于第四纪地层分布不稳定,岩性变化极大,断裂带两侧难以找到明显的“岩性标志层”;谷地边缘是一个陡的斜坡,在断裂两侧对比难度较大;加上难以准确测定各沉积层的绝对年龄,特别是现有的测年技术还难以准确地获得阶地面、台地面、洪积扇面等地貌面的形成年龄,从而可能使所得结果存在较大不确定性。已有的研究结果表明同一地区不同人的研究结果有较大的偏差,这也正是暴露出这种方法在研究构造活动速率中存在一定的不确定性。
     为了合理的认识安宁河河谷及安宁河断裂的晚第四纪活动性,本文以安宁河谷晚第四纪地层和河流阶地的研究为切入点,正确了解安宁河地区及断裂在第四纪时期的总体演化特征、第四纪气候变化特点和断层运动变化的主要影响因素,重点分析晚更新世以来该区的气候变化,阶地成因等。在第四纪地貌调查的基础上,建立该区统一的地貌地层序列,明确第四纪地貌单元的成因和时代,为获取安宁河断裂的定量参数打下基础,通过野外调查测量,最终获取较为合理的安宁河断裂的运动学参数(滑动速率等)。
     论文在充分应用前人工作成果的基础上,借助973项目的研究,以河谷阶地孢粉取样分析,野外地质调查、测量和测年样品的测试等结果作为基本数据,通过构造地质学、第四纪地质学、地貌学、地层学、沉积学、(古)生物学、(古)气候学和地层年代学等多学科综合研究,取得了如下一些研究成果:
     1)对河谷阶地测年和孢粉分析的综合性研究,恢复晚更新世以来的古气候和古环境
     在冕宁泸沽镇附近对安宁河I-III级阶地剖面和其支流马尿河I-II阶地剖面采集了孢粉样品和测年样品,对晚更新世以来安宁河地区的古环境和古气候进行了系统的研究,结果表明:这些阶地剖面沉积时期,既可见有分布于不同地形高度的松及冷杉等木本针叶裸子植物,也有桦、栎、胡桃及榆等阔叶被子植物,还有蒿、藜、禾本科及麻黄等灌木及草本植物,说明在这些阶地剖面附近及其周边之植被,也与现今相似或类似,具有明显的垂直分带性。根据阶地剖面沉积时期的一些居多数的木本植物树种及草本植物之种属中,既有生长于各种山地之针叶裸子植物松、冷杉及铁杉,也有不多的生长于丘陵、坡地及沟壑等处的桦、栎、胡桃及榆等阔叶被子植物,还可见到一些或不多的适生于低地、洼地、湿地及水体的蒿、藜、莎草科、禾本科及狐尾藻等草本植物。它们在这些阶地之剖面中,都是同时较多的存在及出现,这说明在这些阶地剖面之周边及其附近,不仅可能有丘陵、低山及或中山等山体的存在,也有坡地、平地、沟谷、凹地、湿地及水体的存在,推论当时在这些阶地剖面附近之地形,其高差亦相对较大,看来今昔该处之地形地貌亦大体相似,总体面貌可能变化不大。森林多反映暖湿,草原多显示干旱。据于这些阶地剖面之沉积时期,安宁河I级阶地沉积时期的植被以针叶裸子植物松为主组成的常绿针叶林,气候温和较湿或轻湿。II级阶地中无论种类及数量均明显少于I级阶地,也可说明在该阶地沉积时期的温度及湿度均比I级阶地时低,III级阶地沉积时期无论植被和气候也曾出现过两次以上比较明显的变化及波动。该阶地沉积时期的植被应属以松为主森林型的常绿针叶林,气候温和较湿或轻湿。看出该阶地堆积时期的温度及湿度均比II级阶地时高,但又均比I级阶地时低。马尿河1级阶地沉积时期之气候与泸沽1级阶地沉积时期之气候相比,看来该阶地沉积时期之温度及温度均比泸沽一级阶地时相对较低。马尿河II级阶地与安宁河II级阶地相比较可能均是成因于大体相同之地史时期及古环境条件之下。
     2)安宁河河谷阶地结构研究及形成时代讨论
     在冕宁泸沽镇附近和礼州镇附近安宁河发育4-5级阶地,其中安宁河I级阶地为堆积阶地,拔河高度7.9~9m,剖面具备一个完整的二元沉积结构,II级阶地在泸沽镇附近为加积-切割型(堆积)阶地,拔河高度为30.3~38.8m,在其它河段的大部分地区为堆积阶地,局部可见基座,岩性为灰绿色细砂岩加粘土,局部加砾石层,剖面具有阶地的二元沉积结构。III级阶地为基座阶地,岩性为昔格达组的湖湘堆积物,拔河高度为173~223m,剖面可分3大层,上层为洪积物,可能为阶地形成后洪积扇的堆积。中层为河漫滩相和河床相堆积,中层下部可能为冰水堆积物;表现为在III级阶地堆积初期水动力的不稳定性,反映了气候波动变化。下层为阶地基座,岩性为昔格达组的湖相地层。在野外的调查中,安宁河I-III级阶地结构特征说明,安宁河阶地不具备气候阶地的特征如各级阶地之间的高差应该较小,砾石层属加积类型,一般具有多个二元结构,沉积砾石中多见坡积物与砾石层交错互层,阶地的底部经常是倾斜的等,也就说气候变化不是安宁河阶地成因的主因素。
     安宁河河谷发育有4~5级阶地,综合前人研究结果,根据区域对比和本次取样测年,在IV级阶地的砾石层中取细砂做ESR测年,结果IV级阶地形成时代约550kaB.P.,III级阶地形成时代应在30~46ka B.P.,安宁河II级阶形成时代为16~26ka B.P.,安宁河I级阶地的形成时代应该在4.1~10.3ka B.P.。
     3)安宁河河谷阶地成因分析
     在前面研究的基础上,根据阶地的成因理论,根据阶地形成时期气候、构造运动的变化特征来综合分析安宁河阶地成因,结果表明,川西安宁河流域I-III级阶地的形成,反映了青藏高原的构造抬升运动对青藏高原边缘地区的影响,是对青藏高原构造抬升运动的响应。古气候变化并非安宁河阶地成因的主要因素,气候的变化为安宁河阶地的形成起了调节作用,并且表现不同时期气候对阶地形成的影响程度不同。用单一的构造模式或气候模式很难准确解释安宁河I-III级阶地的结构和形成时期的气候变化。因为受单一气候变化制约的河流地貌发育模式可以解释河流的反复堆积-侵蚀过程,但它难以解释形成安宁河多级阶地的逐步(或间歇性)下切过程。由此推断安宁河流域多级阶地的形成一定同时受到构造抬升和气候变化的制约。在冰期时,进入河道的搬运物质增加和河流径流量搬运能力减小而产生的抵抗能可能超过由构造抬升引起的河流梯度增加而产生的驱动能,最终导致河谷发生堆积;在冰期-间冰期过渡时段,当河流径流量增加,进入河谷的搬运物质减少,驱动能超过抵抗能时,构造抬升的效应才能释放出来,引起河谷发生下切,如安宁河II级阶地是在冰盛期堆积的,在冰期-间冰期过渡的时期,水动力增强,发生下切形成了I、II级阶地,阶地的结构也证明,安宁河III级阶地(基座阶地)形成时受构造运动的影响要大于I、II级阶地的形成。
     4)安宁河河谷晚第四纪地层地貌序列的建立及晚第四纪以来地貌、构造、气候的演化过程(为确定合理的地貌面时代和构造活动分析打下基础)
     通过野外调查,年代学样品的测定,区域对比等手段,建立了该区域的晚第四纪地层或地貌序列,为构造活动的定量研究提供了基础资料。分析了该区晚第四纪以来的地貌、构造、气候演化过程。⑴38kaB.P~21ka.B.P.即II级阶地形成之前到III级阶地形成之后:孢粉记录反映该阶地沉积时期的植被应属以松为主森林型的常绿针叶林,气候温和较湿或轻湿,古里雅冰芯反映的青藏高原MIS3段温暖程度已达间冰期的程度。⑵21kaB.P~7.2ka.B.P.即I级阶地形成之前到II级阶地形成之后:相当于古里雅冰芯的MIS2末次冰期晚冰阶,古里雅冰芯记录上18ka.B.P左右为LGM低温出现时间。阶地孢粉记录反映了该时期植被以森林草原,气候温凉轻湿。⑶7.2ka.B.P至今,即I级阶地形成以来,该时期河流下切的平均速率为1.63mm/a。相当于古里雅冰芯的MIS1冰后期,而6~7 ka.B.P为全新世最暖期。孢粉记录揭示该阶段以针叶裸子植物松为主组成的常绿针叶林,气候温和较湿。5)边界断裂带-安宁河断裂带晚第四纪以来运动学定量参数研究
     综合以上研究可知,安宁河断裂带田湾-冕宁段水平滑动速率与垂直滑动速率比为4:1,距今25~20ka以来,左旋滑动速率为3.8~4.2mm/a。垂直滑动速率为0.9~1.4mm/a。全新世晚期左旋和垂直滑动速率为:4~6.2mm/a和0.9~1.4mm/a。
     而冕宁东北的大海子-干海子一带为南北两段的过渡段,该处断层有2支,大海子-干海子一带为断裂带的东支断层,断层的最后一次活动与西昌1536年的7.5级地震有关,古地震揭示西昌强震发生断裂破裂带有可能到达该段。
     安宁河断裂带南段:根据安宁河河谷的不对称可以推断冕宁-西昌段抬升速率为1.90mm/a,水平滑动速率为5~7mm/a,由地貌位错得到垂直滑动速率为1.8~0.73mm/a,水平滑动量与垂直滑动量的比值接近3:1。抬升速率与断层微地貌的研究结果是不一样的,因为利用河流阶地计算的抬升速率是断裂带整体抬升量,而不是某一小的地貌单元的位错量。这个计算结果也定量的说明了安宁河断裂带特别是南段抬升的事实。南北两段垂直滑动速率与水平滑动比值不同也说明了断裂带南北两段在运动性质和形态上有区别。
Quantitative information that is used to infer climate changes and tectonic movement was derived from the Quaternary sedimentary records and surface topography along the Chianti Anning River, to demonstrate a long-term active characteristic of the Anning River basin and boundary faults of the Sichuan-Yunnan rhombic block, which may provide some basic data for strong earthquake prediction and the study of dynamic process of the boundary faults.
     The Anning river valley is the second valley plain only inferior to the Chengdu plain in Sichuan, It is situated in the world-famous Panxi big rift valley and the complex geologic structure and the special climate characteristic. Meanwhile it is a rift valley where the Anning River fault zone runs through. Predecessors have done much hard work and have made great achievements in this area, particularly in the Quaternary geology, active tectonics, and seismic activity characteristics. Since the late Quaternary the fault activity is strong and there is much elaboration on the active tectonic characteristics of the Anning River valley in western Sichuan. One of the most important research results is the quantitative data of the Anning River fault zone in Late Quaternary, while there have been some meaningful data such as the height and the age of the terrace and platform in the Anning River valley, which has laid a good foundation for the research of tectonic activity and evolution of this area since the Late Quaternary.
     However, the research on stratigraphy and geomorphic sequence since the late Quaternary has not yet been comprehensive and systematic in the area, It lacks knowledge of the sediments and the formation of micro-topography, which inevitably leads to the deviation of understanding displacement and slip rate data and other quantitative data of the boundary faults with different stages since the late Quaternary, Therefore, it has further affected understanding the tectonic evolution of this area.
     Active tectonics research is based primarily on the times of geomorphic surfaces and the displacement of the tectonic activity determined by the landscape of the field micro-topography of structure, using the dislocation time of surface topography to estimate the rate of displacement (including slip rate, uplift rate, etc.). It is clear that this technical approach is feasible in the absence of other influence factors. But in fact, because the Quaternary stratum distribution is unstable, the lothological change is enormous; the valley edge is a steep pitch and the determination of the absolute age of deposit formations is difficult and inaccurate, It is very hard to identify an obvious lithologic maker unit on the both sides of fault zone, at the same time the current dating techniques are also difficult to accurately access the formation age of geomorphic surfaces, such as the terrace, platforms and alluvial fans, all those factors lead to the results of much uncertainty. Existing research results show that different people in the same area have a large deviation in results, which indicates this method in the study of the rate of tectonic activity has some uncertainties.
     For a further understanding of fault activity and the terrace formation in the Anning River valley in the Late Quaternary, this work takes the late Quaternary Period stratum and river terrace's research as a breakthrough point, this purpose is to correctly understand overall evolution characteristic of the Anning River area and the faults in Quaternary time, the Quaternary climate change characteristic and the major affect factors of the fault movement, focusing on analysis of regional climate change and the causes of river terraces since late Pleistocene. After a thorough evaluation of previous studies, this work establishes a unified landform stratum sequence of this area,analyzes the origin and the time of the Quaternary landform unit and builds the foundation of the quota parameters for the Anning River fault。At last the reasonable fault movement parameters are derived.
     On the basis of previous work, with 973 research projects, field observations, and laboratory sample analyses, this thesis attempts to address much better the above-mentioned questions of the Anning River valley by means of multi-disciplinary methods including structural geology, Quaternary geology, geomorphology, stratigraphy, sedimentology, paleontology, pale-climatology, and geo-chronology. The following conclusions are derived:⑴38kaB.P~21ka.B.P, the terrace of III is formed. During terrace development, the regional vegetation was dominated by pine forest. This indicates a temperate wet or slightly wet climate; The Guliya ice core reflected the Qinghai-Tibet Plain MIS3 section warm degree has reached the interglacial period the degree.⑵21kaB.P~7.2ka.B.P.The terrace of II is formed. During terrace development, the pollen records indicate that temperature and humidity in the deposition period were rarer than in the first terrace and in the last interglacial period.⑶7.2ka.B.P to present is the post-glacial period, since the formation of terrace I, A change to coniferous forest occurred and was dominant during terrace deposition, indicating a wet or slightly wet climate.
     1) The comprehensive study of the valley terraces dating and pollen analysis and recovery pale climatic and pale environmental since the late Pleistocene
     The pollen samples and dating samples were collected on the terraces I-III section of the Anning River and its tributaries Maniao River I-II terrace profile in the Mianning Lugu township.the research shows that: during the deposition of these terraces, both can be seen with a high degree of pine and fir tree needles and other gymnosperms can be seen located in different terrains. There are birch, oak, walnut and elm and other broad-leaved angiosperms, There are Artemisia, Chenopodium, Poaceae and Ephedra and other shrubs and herbaceous plants, indicating that these bands to profile in the vicinity of and around the vegetation, also similar to the present with obvious zonation in vertical direction.
     The plant spores and pollen are more desirable to the recovery of organic indicators of environmental change. It had great significance using palynological indicators to restore the Anning River since the late Pleistocene climate evolution of the environment for the Quaternary stratigraphic subdivision and regional paleoclimate contrast. Based on detailed investigation, the Anning river terraces are divided. The results show that I-class terraces of Anning river bands formed during the Holocene (Q4), when climate belonged to wet or light wet. I-class terraces deposited during the Pleistocene (Q3) or the early Holocene, when temperature and humidity were lower than I–class terraces at that time, and meanwhile vegetation and climate occurred more than two times with obvious changes and fluctuations during the course of sedimentary terraces. III-class terraces deposited during the Late Pleistocene when climate was wet or light wet. At the same time, the terrace accumulated when temperature and humidity were higher than II-class, yet lower than I-class terraces.
     2) Structural features and formation ages of terraces I–III in the Anning River Valley
     The Anning River valley has 5–6 terraces of different ages. Terrace I is an aggradation terrace, and its height is 7.9-9 m. Terrace II is a fill-cut terrace near Lugu County, with a height of 30.3-38.8 m. In most other areas this is an accumulation-fill terrace. The base is visible at some localities, with clay and fine sand lithology. Terrace III is the base terrace, comprised of early Pleistocene latchstring deposits. The height of the terrace is 81.3-96.8 m; the profile can be divided into three layers: the upper layer is alluvial flats. The middle layer is river bed accumulations derived from ice accretion with low psephicity. The layers are interbedded with fine-grained and coarse-grained layers, which represent unstable hydrodynamic conditions in the early accumulation period, and the alternating layers reflect the climate changes. The lower layer is the Xigeda group’s lacustrine, which is the terrace base. Based on research on river terraces in Central Europe, Starkel identified four lines of evidence that terraces were formed by climate processes:(1) elevation differences between the various terraces should be smaller,(2) Accumulation of gravel layers, usually with several dual structures, (3) Mixed alluvium and gravel layers, and (4) the bottom of the terraces is often low-angle slopes. Anning River terraces do not have these characteristics, as seen in the field investigation, suggesting that climate fluctuations are not the main cause of terrace formation. According to this comprehensive analysis, terrace I of the Anning River was formed between 4.1–10.3 ka, terrace II was formed 16–26 ka, and terrace III was formed 30–46 ka. Terrace IV was formed 550kaB.P.
     3) Preliminary study on causes of Anning River valley terrace formation
     According to research, it can be concluded that formation of the Anning River terraces is related to both tectonic uplift and the climatic fluctuations. During the glacial period, the resistance of sediment transported into the river system combined with decreasing stream power might exceed the driving energy produced by increasing river gradient. This was caused by tectonic uplift and finally resulted in river accumulation. In the transition glacial to interglacial, river sediment accumulation is reduced because of increasing runoff and stream power. The effect of tectonic uplift is manifested only when the driving energy surpasses the resistance energy, and then the river channels incise. For example, terrace II accumulated during the Last Glacial Maximum. In the transition from glacial to interglacial, the increase in stream power resulted in river incision to form terraces I and II. The terrace structure also suggests that the influence of tectonic movement on terrace III (base terrace) was larger than that when terrace I and II were formed.
     4) Establishment of the sequence of the landscape or stratigraphy and the evolution of geomorphology, tectonics, climate since late Quaternary in Anning River Valley
     According the field investigation, the samples dating and regional contrast, the sequence of the landscape or stratigraphy was established in this area, as basic data to Quantitative research of the active tectonics. At last, the evolution of geomorphology, tectonics, and climate since late Quaternary in the Anning River Valley is:
     5) Quantitative research of kinematic parameters of the Anning River faults since late Quaternary
     Since 20~25 ka.B.P, on the north section of the Anning river fault: the ratio of the vertical slip rate to horizontal slip rate is 4:1, the average of vertical slip rate is 0.9~1.4mm/a and the horizontal slip rate is 3.8~4.2mm/a.
     The transition section of the Anning River fault is in the northwest of the Mianning County. There are two branch faults and the east branch is in the Dahaizi-Ganhaizi vallge which produced the Xichang earthquake of Ms7.5 in 1536 according to the research of palaeo-quakes.
     On the south section of the Anning River fault zone; the vertical slip is 1.8~0.73 mm/a, the horizontal slip rate is 5-7mm/a and the uplift rate is 1.9 mm/a. The ratio of the horizontal slip rate to vertical slip rate is 3:1. This result shows that the slip rate is different in the results of the study on fault miro-landscape, because the uplift rate is determined using the overall uplift of the river terraces of the eastern plate of the fault, not the landscape of a small amount of dislocation cell. The quantitative calculation results show the fact of east wall uplift of the Anning River fault, especially in the southern section. The different vertical slip rates and slip ratios existing between the north and south sections also imply difference in the movement feature and forms.
引文
Aki K., 1979.Characterization of barriers on an earthquake fault [J].Geophy. Res,84: 6140~6148.
    Allegree C.J., et al., 1984.Structure and evolution of the Himalayan-Tibet organic Belt.Nature,Vol.307, No.5946:17~22.
    Anderson, J. G., 1979.Estimating the seismicity from geological structure for seismic risks studies.Bull, Seism.Soc. Am, 69, 135~158.
    Avouce, J. P., P. Tapponnier, M. Bai, et al. Active thrusting and folding along the northern Tianshan and late Cenozoic rotation of the Tarime relative to Dzungaria and Kazakhstan, J, Geophys.Res, 1993,98,6755~6804.
    Balázs Székely.2004.DEM-based morphometry as a tool for reconstructing primary volcanic landforms:examples from the B?rzs?ny Mountains[J],Hungar.Geomorphology , 63(1-2) :25~37.
    Benn, K., Ham, N.M. and Pignotta, G.S., et al., 1998.Emplacement and deformation of granites during transgression: magnetic fabrics of the Archean Sparrow platoon.Slave Province, Canada.Journal of Structural Geology, 20(9-10): 1 247~1 259.
    Berryman K R et al.The Alpine Fault, New Zealand: Variation in Quaternary structure style and geomorphic expression.Annals Tectonic, 1992, Supplement 4:126~163.
    Berryman K R. Late quaternary movement on the Wellington Fault in the Upper Hutt area, New Zealand.New Zealand Journal of Geology and Geophysics,1990,33;257~270.
    Boronkay, K.and Doutsos, T., 1994.Transgression and transtension within different structural levels in the central Aegean region.Journal of Structural Geology, 16(11): 1 555~1 573.
    Bowman, D., King, G. , Tapponnier, P. 2003.Slip partitioning by elastoplastic propagation of oblique slip at depth.Science, 300:1 121~1 123.
    Braun J, Beaumont C., 1995.Three-dimensional numerical experiments of strain partitioning at oblique plate boundaries: implications for contrasting tectonic styles in the southern Coast Ranges, California, and central South Island, New Zealand.Journal of Geophysical Research, 100(B9): 18 059~18 074.
    Bridgland D R.River terraces system in northwest Europe:an archive of environmental change uplift and early human occupation [J].Quaternary Science Review, 2000, 19, 1 293~1 303.
    Bull.W B. Geomorphic response to climatic change [M].New York: Oxford University Press, 1991.
    Burchfiel B C, Zhang Peahen, Wang Yipping, et a1.1991.Geology of the Haiyuan fault zone,Ningxiaautonomous Region,China,and its relation to the evolution of the northeastern m margin of the Tibet plateau.Tectonics,10(6):1 091~1 110.
    Burrough,P.A. Principles of Geographic Information Systems for land Resources Assessment(Oxford:Clarendon Press),1986.
    Burrough.P.A , Mcdonnell.R.A. Principles of Geographical Information System .Oxford, UK: OxfordUniversity Press, 1998.
    Burrough.P.A, MacMillan.R.A. High-resolution landform classification using fuzzy K-means.Sets and System, 2000, 113(I):37~52.
    Cashman, EH.Fontaine, S. A..2000.Strain partitioning in the northern Wailker Lane, western Nevada and northeastern California.Tectonophysics, 326:111~130.
    Chang Chengfa, Robert M.Shackle ton, et al.The geological evolution of Tibet.In: Report of the 1985 Royal Society-academia Sinica Geotraverse of the Qinghai-Xizang Plateau.London: London the Royal Society, 1988, I~413.
    Crone, A. J., 1987.Introduction to Directions in Paleoseismology, USGSOpen File Report, 87~683, pp1~6.
    D. W., and Richards P. C., eds.Earthquake prediction An international Review: Washington D. C., American Geological Union, Maurice Ewing Series 4, 209~216.
    Davis A., Brewer S., Stevenson A. C., et al.The temperature of Europe during the Holocene reconstructed from pollen data〔J〕.Quaternary Science Reviews, 2003, 22: 1 701~1 716.
    Deng Qidong, Liao Yuha, 1996.Paleoseismology along the range-front of Helan Mountains.North Central China.JGR,101(B3):5 873~5 894.
    Dhont D, Chorowicz J,Yucrur,et a1.Polyphased block tectonics along the North Anatolian Fault in the Tosya basin area (Turkey)UI.Tectonophysics,1998.
    Di Bucci D., Mazzoli S., Nesci O., et a1.Active deformation in the frontal part of the Northern Apennines:insights from the lower Metauro River basin area (northern Marcher, Italy) and adjacent Adriatic off-shore[J].Journal of Geodynamics, 2003, 36, 231~238.
    England P, Molnar P. Surface uplift, uplift of rocks, and exhumation of rocks. Geology, 1990, 18: 1173~1177.
    England P. and Houseman G., Finite strain calculations of continental deformation 2, Comparison with the India-Asia collision.J. Geophysics.Res., 1986.91: 3 664~3 667.
    England P. and Molnar P., 1997.The field of crystal velocity in Asia calculated from Quaternary rates of slip on faults.Geophys.J.Int, 130: 551~582.
    England P. C. and Housemen G. A., 1988.The mechanics of Tibetan Plateau.Phil Trans R. Soc Lond A 326:301~320.
    England P. C. and P. Molnar, 1990.Right-lateral shear and rotation as the explanation for strike-slip faulting in eastern Tibet.Nature, 344:140142.
    England P. C., McKenzie D. A thin viscous sheet model for continental deformation.Geophys.J. R. Astro.Soc., 1982, 70:295~321.
    Evans, LS.An intergrated system of terrain analysis and sloping mapping[J].. GeoMorphology.Suppl,1980,36: 274~295.
    Fielding E J, Isacks B, Barazangi M, et a1. How flat is Tibet?[J].Geology,1994,22:163~167.
    Fielding E J. Tibetan uplift and erosion [J].Tectonophysics, 1996, 260:55~84.
    Fielding E J.2000. Morph tectonic evolution of the Himalayas and Tibetan Plateau[A].In:Summerfield M A ed.Geomorphology and global tectonics[M].London:JohnWiLey& SomPress, Ltd.201~222.
    Fish H. N. Loess and quaternary geology of the lower Mississippi Valley[J].Journal of Geology, 1951, 59, 333~356.
    Florinsky LV.Quantitative topographic method of fault morphology recognition, geomorphology, 1996,16:103~119.
    Formento-Trigilio M. L., Burbank D. W. and Nicol A., et a1.River response to an active fold-and-thrust belt in aeonvergent margin setting, North Island, New Zealand [J].Geomorphology, 2002(49), 125~152.
    Fossen H., Tikoff B., 1993.The deformation matrix for simultaneous simple shearing, pure shearing and volume change and its application to transpression-transtension tectonics.Journal of Structural Geology.16(1): 16 435~16 460.
    Gugan,DJ& L.J.Dowman..Accuracy and Completeness of Topographic Mapping from SPOT Imagery[J] .Photogrammetric Record ,1988, 12(72):787~796
    Harland W. B., 1971.Tectonic transpression in Caledonian Spitsbergen, Geological Magazine, 108(1): 27~42. Harrison T., Copel Kidd W., et al.Raising Tibet.Science.1990, 255:1663~1670.
    Holbrook J., Schumann S. A., 1999.Geomorphic and sedimentary response of rivers to tectonic deformation:a brief review and critique of a tool for recognizing subtle eerie-genie deformation in modern and ancientsettings[J].Tectonophysics ,305, 287~306.
    Holt W. E., Chamot-Rooke N. and Le Pichon, et al, 2000.Velocity field in Asia inferred from Quaternary fault slip rates and Global Positioning System observations.Journal of Geophysical Research, 105(B8): 19 185~19 209.
    Hosokawa, Hoshi. Landform classification method using self-organizing map and its application to earthquake damage evaluation. International Geoscience and Remote Sensing Symposiun, 2001, 4:1684~1686.
    Housemen G. and England P., 1986.Finite strain calculations of continental deformation 1,method and general results for convergent zones.Journal of Geophysical Research, 91: 3 664~3 676.
    Igor V, Florinsky. Quantitative topographic method of fault morphology recognition[J].geomorphology, 1996,16:103~119.
    Jiang X. D., Yu J. and McNutt M. K., 2004.Lithospheric deformation beneath the Altyn Tagh and West Kunlun faults from recent gravity surveys.Journal of Geophysical Research, 109: 1~14.
    Johansson M.Analysis of digital elevation data for palaeosurfacesin south-western Sweden [J]. Geomoph-ology, 1999,6:279~295.
    Jones R.R., Holdsworth R. E. and Bailey W., 1997.Lateral extrusion in transpression zone: the importance of boundary conditions.Journal of Structural Geology, 19:1 201~1 217.
    Keller, E.A... Investigation of active tectonics: use of surfacial earth processes. In: R.E. Wall-ace(Editor) [J].Active Tectonics. National Academy Press,Washington,1986, 136~147.
    Kelvin Berryman Michael Marden Dennis eden et al, 2000.Tectonic and paleoclimatic significance of Quaternary river terraces of the Waipaoa River, east coast, North Island, New Zealand.New Zealand Journal of Geology & Geophysics, Vol.43: 229~245.
    Kirby E,Whipple K,Tang W ,et a1.Distribution of active rock uplift along the eastern margin of the Tibetan Plateau : Inferencesfrom bedrock channel longitudinal profiles[J] . Joumal of Geophysical Research, 2003,108(B4):2217~2223
    Kirkwood D., 1995.Strain partitioning and progressive deformation history in a transpressive belt, northern Appalachians.Tectonophysics, 241:15~34.
    Kühni A, Priffner OA. The relief of the Swiss Alps and adjacent areas and its relation to lithology and structure: topographic analysis from 250-m DEM[J].Geomorphology, 2001,41:285~307.
    Lattman, L.H. Techinque of mapping geologic fracture traces and lineaments on aerialphotographs. Photogramm. Remote Sensing,, 1958,4:568~576.
    Lave J. and J. P. Avouce, 2000.Active folding of the fluvial terraces across the Siwaliks Hills, Himalays of central Nepal, J. Geophysical Research, 105:5 735~5 770.
    Lave J. and J. P. Avouce, 2001.Active fluvial incision and tectonic uplift across the Himalayas of the central Nepal.Joural of Geophysics Research.106(B11): 26 561~26 591.
    Lee J. Digital analysis of viewshed inclusion and topographic features on digital elevation models [J].Photogrammetric Engineering and Remote Sensing, 1994, 60(4): 451~456.
    Li J. J., Fang X. M., Van de Voo R., et a1.Magnetostratigraphic dating of river terraces:Rapid and intermittent incision by the Yellow River of the northeastern margin of the Tibetan Plateau during the M. R, et al.(Ed.), Climate; History Periodicity and Predictability.Van Nostrand Reinhold, New York, pp323~332.
    Li Y. L., Yang J. C. and Xia Z. K., et a1.Tectonic geomorphology in the Shanxi Graben System,northern China[J].Geomorphology.1998,23,77~89.
    M.P Bishop, J.F.Shroder Jr,B.L..Hickman, SPOT PanchromaticImagery and Neural Networks for Information Extraction in a Complex Mountain Environment [J]. Geocarto International, V14 (2), 1999.
    Maddy D. Up lift driven valley incision and River Terrace formation in Southern England [J].Journal ofQuaternary Science, 1997, 12: 539~545.
    Maddy D., Bridgland D. and Westaway R., 2001.Uplift-driven valley incision and climate-controlled five terrace development in the Thames Valley, UK[J].Quaternary International,79.23~26.
    McCaffrey R., 1992.Oblique plate convergence, slip vectors, and forearc deformation.Journal of Geological Research, 97:8 905~8 915.
    McClain J P. Paleoseismology. Academic Press, .1996 ,San Diego,588.
    McMillan M E.Basin fill, erosion surface and tilted markers: Evidence of Late Cenozoic tectonic uplit of the Rocky Mountain orogenic plateau [D], Doctor Thesis,University of Wyoming,2003,1~118.
    Melton F. A. Aerial photographs and structural geology [J].J. Geo1., 1959, 67, 351~370.
    Milne, J.D.G., Clayden,B, Singleton,P.L,Wilson,A.D.Soil Description Handbook. Manaaki Whenua Press, Landcare Research, Lincoln, New Zealand. 1995
    Molnar P. and Tapponnier P., 1975.Cenozoic tectonics of Asia: effects of a continental collision.Science, 189: 419~426.
    Molnar P. B., et al.Geomorphic evidence for active faulting on the Altgn Togh and Northern Tibet and qualitative estimates of its contribution in the convergence of India and Eurasia.Geolgy, 1987, 15:249~253.
    Molnar P. E. T., Brown B. C. and Burchfiel et al.Quaternary climate change and the formation of river terraces across growing anticline anticlines on the north flank of the Tien Shan, China.J. Geol .1994,102:583~602.
    Molnar P., .Continental tectonics in the aftermath of plate tectonics.1988,Nature, 335 (6186): 131~137.
    Molnar P., 1979.Earthquake recurrence intervals and plate tectonics.Bull, Seism.Soc. Am, 69,119~134.
    Molnar P., England P. and Martinod J., Mantle dynamics, uplift of the Tibet plateau, and the Indian monsoon.Rev.Geophysics, 1993.31:357396.
    Molnar P., England P., 1990.Temperatures, heat flux, and frictional stress near major thrust faults Journal of Geophysical Research, 95: 4 833~4 856.
    Newsome J.C. Pollen-vegetation relationships in semi-arid south-western Australia [J] . Review of Palaeobotanyand Palynology, 1999, 106:103~119.
    Oguchi T,Aoki T,Matsuta N.Identification of an active fault in the Japanese A1ps from DEM-based hill shading [J].Computers& Geosciences. 2003,29:885~891.
    Onasch C. M., Sheng-Tu B. M. and Couzens-Schultz B. A., 1998.Strain partitioning and factorization in a quartz arenite.Jounal of Structural Geology, 20(8): 1 065~1 074.
    P A.Shary, Land Surface in Gravity Point Classification by a Complete System of Curvature[J].Mathematic Geology, 1995.V 27, No.3 .
    Pan B. T., Burbank D. and Wang Y. X., et a1.Record of strath terrace formation during glacial interglacial transitions in northwest China[J].Geology,2003,31,957~960.Penck A,Bruckner E Die Alpenim Eiszetalter[J].Tauehnitz Leipzig,1909,3,1199.
    Passchier C. W. and Urai J. L., Vorticity and strain analysis using Mohr diagrams.Journal of Structural Geology, 1988.10: 755~763.
    Peltzer G., Tapponnier P. and Zhitao Zh. et a1., 1985.Neogene and Quaternary faulting in and along the Qinling Shan Nature, 317(10): 500~505.
    Peucker, T.K. and Douglas, D.H... Detection of surface specific points by local parallelproc-essing of discrete terrain elevation data Computer Graphics and ImageProcessing 4, 1974pp.375~387.
    Philip England Peter Molnar Late Quaternary to decadal velocity fields in Asia Journal of Geophysical Research, VOL.110, B12401, doi: 10. 1029/2004JB003541, 2005 ,Pp687~691.
    Phylosophov,V.P..Brief Manual on the Morphometric Method for Tectonic Structure Search [J]. Saratov University Press. Saratov, 1960, pp, 94.
    Pierre Antoine, Jean Pierre Lautridou and Michel Laurent.Long-term fluvial archives in NW France: response of the Seine and Somme rivers to tectonic movements, climatic variations and sea-level changes, Geomorphology 33 2000, 183–207.
    Porter S. C., An Z. S., and Zheng H. B., 1992.Cyclic Quaternary alluviation and terracing in a no glaciated drainage basin on the north flank of the Qingling Shan, central China [J] .Quaternary Research, 38,157~169.
    Pratt B., Burbank D. W. and Heimsath A., et a1. 2002.Impulsive alluviation during early Holocene strengthened monsoons, central Nepal Himalayan[J].Geology, 30,91 1~914.
    Ratschbacher L., Frisch W. and Chen C. et a1. 1996.Cenozoic deformation,rotation,and stress patterns in east Tibet and western Sichuan, China.In:Yin A, Harrison T M , et. al.The Tectonic Evolution of China.New York:Cambridge Univ.Press, 227~249.
    Richard P. and Cobbold P., 1989.Structures enfleur positives at decrochements crustaux: modification analogous at interpretation mecanique.C. r. Acad. Sic., Paris Ser, II, 308:553~560.
    Rockwell T. K., E. A. Keller, and G. R. Dembroff, 1988.Quaternary rate of folding of the Ventura Avnue Anticline, western Transverse Ranges, southern Clifornia, Geol. Soc. Am. Bull. 100:850~858.
    Rodriguez F,Marie E,Courjault-Rade P,et a1. The Black Top Hat function applied to a DEM:A tool to estimate recent incision in a mountainous watershed (Estibère Watershed.Central Pyrenees) [J].Geophysical Research Letters,2002,9(6):91~94.
    Ron H., Beroza G. and Nur S., 2001.Simply model explains complex faulting, EOS, 82, 125~128.
    Royden L. H., Burehifiel B. C. and King R. W., et a1., 1997.Surface deformation and lower crustal flow in eastern Tibet.Science, 276:788~790.
    Schowengerdt R.A., and Glass, C.E. digitally processed topographic data for regional tectonic evaluation [J]. Geo. Soc. Am. Bull., .1983, 4:549~556.
    Schumm S. A. The Fluvial System[M], New York:Willey, 1977:211,338.
    Schumm S. A., Mosley M. P. and Wwaver W. E.,.Experimental fluvial geomorphology [M].New York: Wiley Interscience, 1987.
    Schwartz D. P., 1988.Prehistoric large earthquakes produced by slip on he San Andreas fault at Pallett Creek California, J. Geophys.Res, vol. 94, 3 907~3 939.
    Shary, P.A. The second derivative topographic method. In: L.N. Stepanov (Editor), the GeoMetry of the Earth Surface Structures [J]. Pushchino Research Centre Press, Pushchino, 1991, 30~60.
    Sieh, K. E., R. Jahns. Holocene activity of the San Andreas Fault at Wallace Creek, California, Geol. Soc. Am. Bull, 1984b, 95, 883~896.
    Slemmons and Depolo, Evaluation of active fautling and associated hazards. In: R.E.Wallace (Editor) Active Tectonics. National Academy Press, Washington, 1986. pp. 45~62.
    Small E E,Andeson R S.Pleistocene relief production inLaramide mountain ranges , western United States[J].Geology, 1998, 26:123~126.
    Solar G. S. and Brown M., 2001.Deformation partitioning during transpression in response to Early Devonian oblique convergence, northern Appalachian orogen, USA.Journal of Structural Geology, 23(6-7): 1 043~1 065.
    Starkel Leszek,.Long-term and short-term rhythmicity in terrestrial landforms and deposits.In: Rampino, Quaternary[J] Geophys.Res., 1987, 102, 10 121~10 132.
    Starkel Leszek.Climatically controlled terraces in uplifting mountain areas,Quaternary Science Reviews.2003 (22), 2 189~2 198.
    T. Shimanoto, et. al., Effect of simulated clay gouges on the sliding behavior of Tennessee sandstone, Tectonophysics, 1981, vol, 113. No. 1, 243~255.
    Takashi O, Tatsuto A., Nobuhisa M. Identification of an active fault in the Japanese Alps from DEM-based hill shading [J].Computers Geosciences, 2003, 885~891.
    Tang Rongchang, Wen Dehua and Zhang Shenglin et. al., Movement and earthquake occurrences along the anning river fault 1987.journal of seismological research, Vol.10, No.3, 363~378.
    Tapponnier P. and Molnar P., 1977.Active faulting and tectonics in China.J. G. R, 82(20): 2905~2930.
    Tapponnier P. and Molnar P.1976, Slip-line field theory and large-scale continental tectonics.Nature, 264, (5584): 319~324.
    Tapponnier P. and Zhitao Zh., et a1. 1985.Neogene and Quaternary faulting in and along the Qinling Shan Nature, 317(10): 500~505
    Tapponnier P. B., Meyer J. P. and Avouac et al., 1990.Active thrusting and folding in the Qi Lian Shan and decoupling between upper crust and mantle in northeastern Tibet.Earth Planet Sci Lett, 97(1990) 382~403.
    Tapponnier P. Peltzer Gels Dain A. Y. et a1. 1982.Propagating extrusion tectonic in Asia: New insights from simple experiments with plasticine.Geology, 10:611~616
    Tapponnier P. Ryerson F. J. and Woerd J. V. et a1. 2001.Long-term slip rates and characteristic slip: keys to active fault behavior and earthquake hazard.Earth and Planetary Sciences, 333: 483~494.
    Tapponnier P. Z., Xu F. and Roger, et. Al., (2001b).Oblique stepwise rise and growth of Tibet plateau.Science, 294, 1 671~1 677.
    Tapponnier P., Lacassin R. and Leloup P. H., et al, 1990.The Ailao shan red-river metamorphic belt: Tertiary left-lateral shear between Indochina and South China.Nature, 343:431~437.
    Tapponnier P., Mercier J. F. and Proust, et al., 1981.The Tibetan side of the India-Eurasia collision.Nature, 294,405~410.
    Tapponnier P., Mercier J. R. and Armijo, et al, 1981.Field evidence for active normal faulting in Tibet, Nature, 294:410~414.
    Thatcher W., Order and diversity in the modes of Circums Pacific earthquake recurrence [J].Geophy Res, 1990.95: 2 609~2 623
    Thelin, G.P, Pike,R.J. Landforms of the conterminous United States-a digital shaded-relief portrayal.1991. Manual of US Geological Survey Map 1~2206.
    Thompson L G, Yao T, Davis M E, et al. Tropical climate instability: the last glacial cycle from a Qinghai-Tibetan ice core. Science, 1997, 276: 1821~1825
    Tyracek J. Upper Cenozoic fluvial history in the Bohe-mian Massif [J]. Quaternary International, 2001, 79, 37~53.
    Valdiya K. S. The main boundary thrust zone of the Himalaya, Inia.Annals Tectonic, 1992, Supplement 4:54~84.
    Van Balen R. T., Houthast R. F. and Vander Wateren F. M., et a1., 2000.Sediment budget and tectonic evolution of the Ardennes and Roe valley rift system[J].Global and Planetary Change, 27:113~129.
    Vandenberghe J. Timescales, climate and river development [J].Quaternary Science Review, 1995, 14, 631~638.
    Vandenberghe J., Kasse K. and Bohncke S., et a1. Climate-related revier activity at the Weichselian-Holocene transition:a comparative study of the Warta and Maas river[J].Terra Nova,1994,6,476~485.
    Veldkamp A. and Van den Berge M. W., 1993.Three-dimensional modeling of Quaternary fluvial dynamics in a climate-tectonic dependent system.A case study of the Mass record(Maastricht, the Netherlands)[J].Global and Planetary Change, 8, 203~218.
    Wallace R. E., 1970.Earthquake recurrence intervals on the San Andreas fault.Geo. Am. Bull. 81, 2 875~2 890.
    Wallace R. E., Active faults, paleoseismology and earthquake hazards in the western United States, in Simpson Wang E. and Burchfield B. C., 1 997.Interpretation of Cenozoic tectonics in the right-lateral accommodation zone between the Ailaoshan shear zone and the eastern Himalayas syntaxis.Int. Geo1. Rev., 39:191~219.
    Wang E., Burchifiel B. C. and Royden L. H., et a1., 1998.Late Cenozoic Xiang shuihe-Xiaojiang, Red River, and Dali fault systems of southwestern Sichuan and central Yunnan.China.Geo1. So c.Am.Spec.Pap., 327:1~108.
    Weldon R. J. and K. E. Sieh.,1985.Holocene rate of slip and tentative recurrence interval for large earthquake on the San Andreas Fault, Cajon Pass: southern California, Geol. Soc. Am. Bull. 96:793~812.
    Wells D. L. and Coppersm ith K, J.,1994.Empirical relationships among magnitude, rapture length, rupture area, and surface displacement [J].Bull Sies. Soc. Amer, 84: 974~1 002.
    Working Group on California Earthquake Probabilities. Seismic hazards in Southern California: Probable earthquakes, 1994~2024.Bull Seis Soc Amer, 1995.85: 379~439.
    Wu G., Xiao X. and Li T., et al.,1993.Lithospheres’structure and evolution of Tibetan Plateau: The yadong Golmud geosciences transect [J].Tectonophysics, 219: 213~221.
    Zhang P. Z., Burchfiel B. C. and Molnar P., et a1., 1991.Am0unt and style of late Cenozoic deformation in the Liupanshan area, Ningxia Autonomous Region, China.Tectonics,10(6):1 111~1 129.
    Zhang P. Z., Shen Zh. K. and Wang M., et.a1. 2003.Continuous deformation of the Tibetan Plateau from GPS Nature.
    Zhou Lin, Takashi Oguchi. Drainage density, slope angle, lands from high resolutionDEM. Geomorphology and relative basin position in Japanese bare2004. 63: 159~173
    Zuchiewicz W., Cuong N. Q. and Bluszcs A., et a1. Quaternary sediments in the Dien Bien Phu fault zone.NW Vietham:a record of young tectonic processes the light of OSL-SAR dating results[J].Geomorphology, 2004. 60, 269~302.
    [苏]И.Е.古宾,[日]松田时彦,等著.活断层研究,地震出版社,1983.
    蔡学林,曹家敏,刘援朝,等.青藏高原多向碰撞-楔入隆升地球动力学模式.地学前缘,1999,6 (3): 181~189.
    常承法,潘裕生,郑锡澜等.青藏高原地质构造.北京:科学出版社.1982,1~91.
    常承法,郑锡澜.中国西藏南部珠穆朗玛地区地质构造特征以及青藏高原东西向诸山系形成的探讨.中国科学.1973,(2): 190~201.
    常宏,安芷生,强小科,等.河流阶地的形成及其对构造与气候的意义.海洋地质动态2005,21(2):1~8.
    常宏,张培震,安芷生,等.昆仑山北坡鸭子泉河阶地发育及其构造-气候意义.科学通报,2005,50(9):921~917.
    陈富斌,赵永涛.攀西地区新构造[M].成都:四川科学技术出版社, 1988.1~102.
    陈富斌.攀西地区新构造.成都,四川科学技术出版社,1988
    陈桂华,徐锡伟,闻学泽等.数字航空摄影测量方法在活动构造中的应用[J],地球科学-中国地质大学学报,2006.
    陈桂华,徐锡伟.变形分解作用研究综述.华南地震, 2004,24(4):11~20.
    陈化然,徐锡伟,赵国敏,等著.断层相互作用与地震活动.北京:科学出版社,2005.
    陈健飞,等译.地理信息系统导论.北京:科学出版社[M],2004.
    陈杰,卢演俦,尹功明,等,1996.甘肃玉门地区第四纪晚期构造阶地的红外释光测年,高校地质学报,2 (4):390~399.
    陈立春,陈桂华,陈立泽,等,柯坪塔格推覆系活动构造的ETM影像特征与解译[J],地震地质,2006.
    陈文德,裴锡瑜,李学沛,等.安宁河断裂地壳深部构造及其与地震的关系.地震研究,1984,7(3): 293~299.
    陈银.安宁河-木河断裂带近期7次地震的震源机制解.四川地震,2003(2),
    陈云,童国榜,曹家栋,等,1999.渭河宝鸡段河谷地貌的构造气候响应.地质力学学报,5 (4) :49~56.
    程建武,懂治平,四川汶川8.0级地震前后中国西部地震活动特征及其震后趋势分析,华南地震, 2009(4), 54~62.
    程建武,郭桂红,川西安宁河断裂带活动的基本特征及强震危险性分析,地震研究,2010年第3期.
    程建武.根据孢粉记录和阶地结构分析川西安宁河I-III级阶地成因.中国科学D辑,2010(出版中).
    程万正,刁桂苓,吕弋培,等.川滇块体的震源力学机制.运动速率和活动方式地震地质,2003, 25(1): 71~87.
    从柏林,赵大升,张雯华,等.西昌地区岩浆活动特征及其与构造地质的关系.地质科学,1973(3): 175~195.
    邓起东主编.活动断裂研究理论与应用(2).北京:地震出版社,1992, 247~264.
    邓起东,张培震,冉勇康,等.中国活动构造基本特征.中国科学,2002,32(12):1020~1030.
    邓起东,程绍平,闵伟,等.鄂尔多斯块体新生代构造活动和动力学的讨论.地质力学学报,1999,5(3):13~21.
    第三届全国构造地质会议论文选集(Ⅱ) .北京:科学出版社,86~95.
    杜平山,冯元保.川滇块体东缘地壳动力学问题讨论四川地震,2000(1-2),119~126
    方颖,江在森,牛福安.川滇块体东边界地壳形变研究.大地测量与地球动力学,2005,25(3): 81~85.
    斐锡瑜.晚第四纪安宁活动断裂分段的基本特征.四川地震,1998(4): 52~61.
    冯元保,将远明.川滇块体东缘的活动构造.四川地震,2000(1-2):5~23.
    傅维洲,贺日政,邱虎.川滇构造带及邻区的地壳结构与地震分布.长春科技大学学报,1999, 29(4): 369~372.
    高玄或,地貌基本形态的主客分类法.山地学报[J],2004 22 (3 ) : 261266.
    葛永刚,魏明建.青藏高原隆升综合研究.首都师范大学学报(自然科学版),2004,12(25): 128~136.
    宫会玲,安宁河断裂带晚第四纪变形的数字地形分析,2009,中国地震局地质研究所硕士论文。
    宫鹏,数字表面模型与地形变化测量[J],第四纪研究,2000.
    郭建强,朱学波.冕宁冶勒地区新生代孢粉组合特征.四川地质学报,1998,18(1),20~25.
    国家地震局,《阿尔金活动断裂带》课题组.阿尔金活动断裂带.北京:地震出版社,1992.
    国家地震局科技监测司.近期强震危险性研究.北京:地震出版社,1989, 380.
    国家地震局西南烈度队著.川滇强震区地震地质调查汇编.地震出版社,1979.
    韩渭斌,蒋国芳.大凉山断裂带与安宁河-则木河断裂带的地震活动性分析.地震研究,28(3): 207~212
    何宏林,池田安隆.安宁河断裂带晚第四纪运动特征及模式的讨论.地震学报,2007,29(5): 537~550
    侯康明,邓起东,刘百篪.冬青顶背斜的变形形式/变形幅度及形成机理[C]//汪一鹏.活动断裂研究(第6辑).北京:地质出版社,1998:188~196.
    侯元才,许伟林,俞见,等.青藏高原东北缘1.2Ma BP以来各阶段古气候演变.青海地质,2001(增刊):10~16.
    黄圣睦,董瑞英.中国强震活动图像与地震预报[M ].成都:成都地图出版社,1996.
    黄圣睦.石棉发现古地震现象[J].国际地震动态,1990 (7) : 34.
    黄仕华.川西义敦章德坝子全新世孢粉组合和环境研究.四川地质学报,2004, 24(2): 69~72.
    黄玉琪.SPOT影像的DEM自动生成[J].测绘通报,1998(9):13~16.
    间国年,钱亚东,陈钟明.基于栅格数字高程模型自动提取黄土地貌沟沿线技术研究.地理科学,1998. 18(6) :567~573.
    阚荣举,等.我国西南地区现代构造应力场与现代构造特征的探讨.地球物理学报,1977,2.
    孔祥儒,王谦身,熊绍柏.西藏高原西部综合地球物理与岩石圈结构研究.中国科学(D辑),1996,26:308~315.
    李国和,土思敬,尚彦军,等.川滇交界地区地壳结构及现代地壳活动模式地质力学学报.2000:6(2),82~91.
    李吉均,方小敏,马海州,等.晚新生代黄河上游地貌演化与青藏高原隆起[U].中国科学(D辑),1996,26(4):316~322
    李吉均,方小敏.青藏高原隆起与环境变化研究[J].科学通报,1998,43(15):1569~1574
    李吉均,康建成.中国第四纪冰期、地文期和黄土记录.第四纪研究,1989,3:269~278.
    李玶主编.鲜水河-小江断裂带.地震出版社,1993.
    李天袑,杜其方,游泽李,等著.鲜水河活动断裂带及强震危险性评估.四川地震局,成都地图出版社,1997.
    李廷栋.青藏高原隆升的过程和机制.地球学报,1995,1: 1~9.
    李兴唐著.活动断裂研究与工程评价.地质出版社,1991.
    李兴唐,许学汉,黄鼎成,等.渡口-西昌区域河流冲积层C14-年龄与断裂活动最新地质年代研究[J].地质科学,1984(3).
    李勇,曹叔尤,周荣军.晚新生代岷江下蚀速率及其对青藏高原东缘山脉隆升机制和形成时限的定量约束地质学报.2005,79(1):28~37.
    李有利,杨景春.河西走廊平原区全新世河流阶地对气候变化的响应.地理科学,1997,13(3):248~252.
    李志林,朱庆.数字高程模型[M].武汉:武汉大学出版社,2001.
    刘本培,吕弋培,李建中,等.川滇块体东边界中段地区现代地壳形变和断裂现今活动.四川地震,1994(4):53~63.
    刘福辉.四川西部安宁河深断裂的形成与演化.地质评论,1988,34(3):213~219.
    刘静,丁林,曾令森,等.青藏高原典型地区的地貌量化分析——兼对高原“夷平面”的讨论[J].地学前缘,2006 13(5):285~299.
    刘少峰,王陶,张会平,等.数字高程模型在地表过程研究中的应用[J].地学前缘2005,12(1)303~309.
    刘学军,基于规则格网数字高程模型解译算法误差分析与评价.博士学位论文,武汉:武汉大学,2002.
    刘勇,赵志军,李才林,等.川西杂谷脑河阶地的形成.地理学报,2006,61(3):249~254.
    鹿化煜,安芷生,王晓勇,等.最近14Ma青藏高原东北缘阶段性隆升的地貌证据.中国科学(D辑),2004,34(9):855~864.
    吕江宁,沈正康,王敏.川滇地区现代地壳运动速度场和活动块体模型研究.地震地质,2003,25(4).
    马胜利,模拟断层带摩擦滑动性状与变形特征,中国地震,1986,2(2).
    马杏垣主编.中国岩石圈动力学地图集.中国北京:中国地图出版社,1989.
    马宗晋,杜品仁.现今地壳运动问题.地质出版社,1994.
    马宗晋,张家声,汪一鹏.青藏高原地壳结构和新构造运动的东西差异一论青藏高原构造变动的非均一性.青藏高原岩石圈现今变动与动力学.北京:地震出版社,2001: 75~87.
    马宗晋,张家声,汪一鹏.青藏高原三维变形运动随时间的变化.见:马宗晋,汪一鹏,张燕平.青藏高原岩石圈现今变动与动力学.北京:地震出版社.2001.88~105.
    马宗晋,中国大陆地震分区及其动力学讨论.国际大陆岩石圈构造演化与动力学讨论会,1990.
    毛凤英,张培震,古地震研究的逐次限定法与新疆北部主要断裂带的古地震研究.活动断裂研究(4).北京:地震出版社,1995,153~164.
    米广尧,苗培森,吕梁山北段变质岩系变形作用初探.华北地质矿产杂志,1997,12(2):167~175.
    穆桂春,关于河流阶地成因分析.西南师范学院学报,1982(4):80~84.
    潘保田,李吉均,李炳元.青藏高原地面抬升证据讨论,兰州大学学报(自然科学版),2000,36(3):100~111.
    潘保田,李吉均,朱俊杰,等.青藏高原:全球气候变化的驱动机与放大器.兰州大学学报(自然科学版),1995,31(40):160~167.
    潘保田,邬光剑,王义祥,等.祁连山东段沙沟河阶地的年代与成因.科学通报,2000,45(24):2669~2675.
    潘保田、李吉均、朱俊杰,等.兰州地区黄河阶地发育与地貌演化,见:中国西部第四纪冰川与环境,北京:科学出版社,1991,271~277.
    潘保田、李吉均、朱俊杰.黄河中游阶地与构造-气候旋回.见:地貌·环境·发展,北京:中国环境科学出版社,1995 ,2~30.
    潘裕生,孔祥儒主编.青藏高原岩石圈结构演化和动力学.广州:广东科技出版社,1998.
    潘裕生.青藏高原的形成与隆升.地学前缘,1999,6(3):153~163.
    裴锡瑜,王新民,张成贵,晚第四纪安宁河断裂分段的基本特征.四川地震, 1997, (4) ,52~61.破裂行为[J].中国科学D辑,2008 38(5):543– 554.
    钱方,陈富斌.昔格达组磁性地层研究[J].山地研究,1984,2(4);275~282.
    钱方,周国兴.元谋第四纪地质与人类[M] .北京科学出版社,1991.1~122.
    钱洪,唐荣昌,文德华,黄祖智.安宁河断裂带北段的最新地面活断层与地震潜在能力研究[J].地震地质,1992.
    钱洪,伍先国,马声浩,等.安宁河断裂带北段的古地震事件及其在地震研究种的意义.中国地震,1990,6(4):43~49.
    钱洪,伍先国,马声浩,等.安宁河断裂带野鸡洞古地震事件初探四川地震.1990,1:8~11.
    强祖基,王洪涛,编著.活动构造研究.地震出版社,1992.
    冉勇康,陈立春,程建武.安宁河断裂冕宁以北晚第四纪地表变形与强震破裂行为.中国科学D辑:地球科学,2008,38(5): 543~554.
    冉勇康,程建武,宫会玲,陈立春.安宁河断裂紫马跨一带晚第四纪地貌变形与断层位移速率[J].地震地质,2008 30(1):86~98.
    冉勇康,邓起东.大地震重复特征与平均重复间隔的取值问题.地震地质,1999,1(4):316~323.
    冉勇康,邓起东.古地震学的历史、现状和发展趋势.科学通报, 1999, 44(1):12~20.
    申旭辉,田勤俭,韦开波,等.中上地壳应变分解模型及其地震学研究意义.地震,2000,20(增刊):58~64.
    申重阳,王琪,吴云,等.川滇菱形块体主要边界运动模型的GPS数据反演分析.地球物理学报,2002,45(3):352~361.
    沈玉昌,龚国元.河流地貌学概论[M ].北京:科学出版社,1987,207.
    施雅风,王昭良,等.中国全新世大暖期的气候波动于重要事件[J].中国科学(B辑),1992,(12): 1300~1307.
    施雅风.中国第四纪冰期划分改进建议.冰川冻土, 2002,24(6): 687~691
    四川地质局.1:20万冕宁幅区域地质调查报告,1967.
    四川地质局.1:20万石棉幅区域地质调查报告,1974.
    四川地质局.1:20万西昌幅区域地质调查报告,1965.
    四川省地震局.攀西地区地震危险性研究.四川省攀西地区国土综合开发及规划领导小组办公室,1986年.
    宋方敏,汪一鹏,俞维贤,等.小江活动断裂带.北京:地震出版社,1998,1~237.
    孙鸿烈.青藏高原的形成演化.上海:上海科技出版社,1996.
    索书田,钟增球,等.大别-苏鲁超高压变质带内变形分解作用对榴辉岩透镜体群发育的影响-以碧溪岭地区为例.地质科技情报,2001,20(2):15~22.
    汤国安,陈正江,等. ArcView地理信息系统空间分析方法[M].北京:科学出版社,2002.
    汤国安,刘学军,间国年,数字高程模型及其地学分析的原理与方法[M].北京:科学出版社,2005.
    汤国安,赵牡丹,等.DEM提取黄土高原地面坡度的不确定性[J].地理学报,2003,58 (6 ) : 824~830.
    汤国安,赵牡丹,地理信息系统[M].北京:科学出版社,2000.
    唐领余,沈才民.青藏高原全新世花粉记录微体古生物学报.1996,13(4):407~422.
    唐荣昌,韩渭斌,俞维贤,等.四川活动断裂与地震[M].北京:地震出版社,1993,237.
    唐荣昌,黄祖智,文德华,等.试论安宁河断裂带新活动的分段性和地震活动,1989,12(4):337~347.
    唐荣昌,黄祖智主编.攀西地区地震危险性研究.四川科学出版社.
    唐荣昌,钱洪,黄祖智,等.安宁河断裂北段晚更新世以来的分段活动特征.中国地震,1992,8(3):60~67.
    唐新明,林宗坚,吴岚,基于等高线和高程点建立DEM的精度评价方法探讨闭[J].遥感信息,1999(3):7~10
    滕吉文.西藏高原地区地壳与上地慢地球物理研究概论.地球物理学报,1985,28(增刊1):1~15.
    田勤俭,丁国瑜,申旭辉,等.青藏高原东北隅强震构造模型.地震,2002,22(1):9~16.
    汪良谋.康滇活动构造带的形成力学机制及其强震活动.地震出版社,1982.
    汪一鹏,沈军,王琪,等.川滇块体的侧向挤出问题.地学前缘,2003,10(增刊):188~192.
    王琪,张培震,马宗晋.中国大陆现今构造变形GPS观测数据与速度场.地学前缘,2002,9(2):415~429.
    王新民,张成贵,裴锡瑜,安宁河活动断裂带的新活动性.四川地震,1998 (4) ,13~33.
    王新民,张成贵,裴锡瑜,晚第四纪以来安宁河断裂的构造活动与演化四川地震.1998,4:1~12
    王义祥.基于地理信息系统的祁连山数字地形分析和隆升机理研究。博士学位论文,兰州:兰州大学,2007.
    魏继裕.川西地区地壳形变和断层位移活动.四川地震,2004(1):1~8.
    闻学泽,杜平山,龙德雄.安宁河断裂带小相岭段古地震的新证据及最晚事件的年代.地震地质, 2000,22 (1):1~8.
    闻学泽,马胜利,雷兴林.安宁河-则木河断裂过渡段及其附近新发现历史大地震破裂的遗迹.地震地质.2007,29(4): 826~833.
    闻学泽.活动断裂地震潜势的定量评估[M ].北京:地震出版社,1995,1~150.
    闻学泽.时间相依的活动断裂分段地震危险性定量评估及其问题[J].科学通报,1998.43(14): 1 457~1 466
    闻学泽.四川西部鲜水河-安宁河-则木河断裂带的地震破裂分段特征[J].地震地质,2000.22(3): 239~249.
    闻学泽.中国大陆活动断裂的段破裂地震复发行为[J].地震学报,1999,21(6): 616~622
    吴忱,张秀清,马永红,华北山地地貌面与新生代构造运动[J],1996,华北:地震科学
    吴迪忠.安宁河活动断裂带与强震的关系探讨.中国科学技术大学研究生院,国家地震局地质研究所研究生毕业论文,1981.
    吴福莉.黄土高原中部晚新生代孢粉记录的生态环境演变.兰州大学博士论文(2004)).
    吴功建,肖序常,李廷栋.青藏高原亚东-格尔木地学断面.地质学报,1989,63(4):285~296.
    吴锡浩,王富保,安芷生,等.晚新生代青藏高原隆升的阶段与高度.见:黄土第四纪地质全球变化,第3期.北京:科学出版社.1992.
    膝吉文,张中杰,胡家富,等.青藏高原整体隆升与地壳短缩增厚的物理-力学机制研究(上).高校地质学报,1996,2(2):121~133.
    肖序常,李廷栋,李光苏,等.喜马拉雅岩石圈构造演化总论.见:地质专报(五).北京:地质出版社.1988.1~210.
    肖序常,李廷栋.青藏高原岩石圈结构、隆升机制及对大陆变形影响.地质论评.1998,44(1):112.
    谢宇平主编.第四纪地质学及地貌学.地质出版社,1994.
    熊尚发,丁仲礼,刘东生.北京地区河流阶地的发育时代,见:中国第四纪地质与环境,北京:海洋出版社,1997:221~227.
    熊绍柏,滕吉文,尹周勋.西藏高原地区的地壳厚度和莫霍界面的起伏.地球物理学报.1985.28(增刊1) :16~27.
    徐锡伟,程国良,于贵华,等.川滇菱形块体顺时针转动的构造学与古地磁学证据.地震地质,2003,25(1):61~71.
    徐锡伟,闻学泽,郑荣章,等.川滇地区活动块体最新构造变形样式及其动力来源.中国科学,2003,33(B04):151~162.
    徐锡伟,于贵华,马文涛,等.中国大陆中轴构造带地壳最新构造变动样式及其动力学内涵.地学前缘,2003,10卷特刊,160~167.
    徐锡伟,张培震,闻学泽.川西及其邻近地区活动构造基本特征与强震复发模型.地震地质,2005,27(3):446~461.
    徐学汉,裴静娴.渡口-西昌区域第四系形成与新构造运动的热发光年龄及发展史研究.地质科学,1987,(4);374~483
    徐叶邦,安宁河活动断裂中断层泥扫描电子显微结构组合特征与断层活动方式研究.西北地震学报,1989(3)
    许刘兵,周尚哲,河流阶地形成过程及其驱动机制再研究,地理科学,2007,27(5):672~677.
    许志琴,侯立纬,王宗秀,等.中国松潘-甘孜造山带的造山过程[M].北京:地质出版社,1992,1~190.
    许志琴,姜枚,杨经绥.青藏高原北部隆升的深部构造物理作用.地质学报,1996,70(3):195~206.
    燕琴,张剑清.结合AI方法解求SPOT影像外方位元素[J].遥感信息,2000(4):42~43.
    杨景春,韩慕康,刘光勋,等.汾河南段河流阶地与新构造运动.见:国家地震局地壳应力所编:地壳结构与地壳应力文集(一).北京:地震出版社,1987,30~41.
    杨景春,李有利,编著.地貌学原理.北京大学出版社,2005年.
    杨景春,谭利华,李有利,等.祁连山北麓河流阶地与新构造演化.第四纪研究,1998(3),229~237.
    姚志强.新构造运动在黄河中游河流阶地形成中的作用研究.池州师专学,2005,19(3):59~63.
    易桂喜,闻学泽,范军.由地震活动参数分析安宁河-则木河断裂带的现今活动习性及地震危险性.2004, 26(3):294~303.
    张国伟,张本仁,袁学诚,等.秦岭造山带与大陆动力学.北京:科学出版社,2001,322~351.
    张会平,刘少峰,孙亚平等.基于SRTM-DEM区域地形起伏的获取及应用国土资源遥感[J],2006.67(1)31~35
    张会平,杨农,刘少峰,张岳桥.数字高程模型(DEM)在构造地貌研究中的应用新进展地质通报,2006,25(6)660~669
    张会平,杨农,张岳桥,岷江水系流域地貌特征及其构造指示意义[J].第四纪研究,2006
    张建新,许志琴,崔军文.一个韧性转换挤压带的变形分解作用-以阿尔金断裂带东段为例.地质评论,1998,44(4):348~356.
    张培震,邓起东,张国民,等.中国大陆的强震活动与活动地块[J].中国科学(D辑),2003,33(增刊):12~20.
    张培震,毛凤英.活动断裂定量研究于中长期强地震危险性评价.国家地震局地质研究所活动断裂研究理论与应用,1996,地震出版社.
    张培震,王敏,甘卫军等.GPS观测的活动断裂滑动速率及其对现今大陆动力作用的制约.地学前缘,2003,10(增刊):81~92.
    张培震,王琪,马宗晋.青藏高原现今构造变形特征与GPS速度场.地学前缘,2002,9(2):442~450.
    张培震,王琪,马宗晋.中国大陆现今构造变形的GPS速度场与活动地块.地学前缘,2002,9(2):430~441.
    张文甫.川滇毗邻地区新构造运动与活动断裂.四川地震,1994(4):34~43.
    张岳桥,杨农,孟晖.四川攀西地区晚新生代构造变形历史与隆升过程初步研究.中国地质,2004,31(1):26~33.
    张云湘主编.中国攀西裂谷文集.地质出版社,1985.
    张宗枯.川滇南北构造带中段晚新生代地质研究[M].北京:石油工业出版社,1994,1~264.
    郑文涛,杨景春,段锋军.武威盆地晚更新世河流阶地变形与新构造活动.地震地质,2000,22(3):318~328.
    《中国岩石圈动力学地图集》编委会.中国岩石圈动力学概论.北京:地震出版社,1991:539~548.
    中国科学院青藏高原科学考察队.西藏第四系地质.北京:科学出版社,1983.
    中国岩石圈动力学图集编委会.中国岩石圈动力学图集.北京:中国地图出版社,1989.
    钟大费,丁林.青藏高原的隆升过程及其机制探讨.中国科学(D辑).1996,26: 289~295.
    周荣军,何玉林,杨涛.鲜水河-安宁河断裂带磨西-冕宁段的滑动速率与强震位错.中国地震,2001,17(3): 253~262.
    周荣军,黎小刚,黄祖智,等.四川大凉山断裂带的晚第四纪平均滑动速率.地震研究,2000,36(2):191~196.
    周伟,李延,张静华,等.川滇地区现今构造变形分析.大地测量与地球动力学,2008,28(2):22~27.
    朱俊杰,曹继秀,安兴钟,等.兰州黄河最高阶地与最老黄土沉积的发现及其古地磁年代学研究,见:青藏高原形成演化、环境变迁与生态系统研究,北京:科学出版社,1995:77~90.
    朱亮璞主编.遥感地质学.北京:地质出版社,1993.
    朱照宇,丁仲礼,中国黄土高原第四纪古气候与新构造演化.北京:地质出版社,1994,1~226.
    朱照宇,黄河中游河流阶地的形成与水系演化.地理学报,1989 ,44(4):441~452.
    朱照宇,水系沉积物-古土壤系列与气候-构造旋回,见:黄土第四纪地质·全球变化(一),北京:科学出版社,1990,62~70.
    朱照宇,中国北方半干旱区第四纪晚期构造活动性.地质力学学报,1993,3(4 ):13~18.
    庄培仁,常志忠,编著.断裂构造研究,地震出版社,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700