用户名: 密码: 验证码:
金属纳米粒子在生物成像与生物医学上的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着纳米科技与纳米工艺的不断发展,贵金属纳米粒子以其优良的物理化学性质,越来越多地受到广大研究人员的关注,并被广泛应用于生物医学与生命科学等领域。金属纳米粒子作为光学探针,拥有其他传统光学探针无法比拟的优势,如光稳定性好、光学信号强、易于制备与修饰,生物兼容性良好等等,在化学分析与生物传感、生物医学与生物成像等方面具有广阔的应用前景。基于金属纳米粒子光学特性的单粒子成像与单粒子光谱技术,具有纳米尺度空间分辨率以及毫秒级时间分辨率的特点,已经成为在单细胞层面上研究生物分子的行为与功能的重要手段。具有高表面化学活性的金属纳米粒子,也被作为性能优良的纳米催化剂用于化工与环境催化、生物化学与生物医药等研究方向。然而,人们在利用金属纳米粒子进行科学研究与实际应用时,仍然面临着许多挑战,如纳米粒子其尺寸和形貌不均一引起的检测灵敏度下降,现有的分析手段难以满足实际需求、复杂体现干扰难以排除等等。
     本论文围绕以上提出的问题与难点开展研究,在已有的研究工作基础之上,开展了以下主要工作:
     (1)采用密度梯度离心法对纳米棒进行了分离纯化。在纳米粒子稳态沉降过程中受力分析基础之上,推导了不同尺寸与形状的纳米粒子沉降速率的计算公式。利用其在离心过程中沉降速率的差异,采用不同浓度的蔗糖溶液配制的密度梯度液对不同长径比的棒状金纳粒子成功地进行了分离,并考察了梯度液组成以及离心时间对于分离效率的影响。实验结果与计算结果均表明,尽管存在着特殊情形下无法分离的局限性,但离心分离法仍能够有效地对具有不同长径比和不同尺寸的纳米粒子进行分离纯化。(第二章)
     (2)系统性地研究了金纳米棒的光学特性。考察了基于Gans理论的金纳米棒等离子共振吸收与散射光谱计算公式,探讨了产生等离子共振的条件并推导了其等离光谱偏移量与介质溶液折射率变化之间的关系式。实验结果显示,金纳米棒的光谱偏移了随着介质折射率变化的增大而发生红移,而光谱变化的灵敏度也随着金纳米棒长径比的增大而增加,与计算结果完全一致。此外,还考察了采用单粒子光谱进行检测时的各种干扰因素。(第三章)
     (3)以金银壳核结构的棒状纳米粒子为探针,采用传统紫外可见吸收光谱仪和单粒子暗场光谱显微镜对硫化物进行了高灵敏度高选择性的检测,并获得了比传统方法更宽的动态检测范围和更低的检测下限。采用紫外可见吸收光谱与单粒子暗场光谱显微镜进行检测的动态范围分别为0.1μM~1mM和0.01nM~10μM,该结果说明基于单粒子光谱成像技术的检测手段比宏观光谱测量具有更高的灵敏度以及更低的检测下限。(第四章)
     (4)基于金银壳核结构的棒状纳米探针与硫化物的反应动力学过程,发展了一种在单个纳米粒子水平上对活细胞内硫化氢的浓度及其变化进行实时检测的新方法。通过推导该反应动力学过程与探针光谱偏移速率之间的关系式,建立了硫化物浓度变化与探针光谱变化速率的关系。进一步,我们通过实际测量和理论计算获得了在不同浓度的硫化物作用下纳米探针的光谱变化时间曲线。以该曲线为标准曲线,通过实时测量细胞内纳米探针光谱的变化速率可对细胞内局部硫化氢浓度及其变化进行测量。采用这一方法,实时检测了在外界刺激下细胞内源性硫化氢的产生过程。(第五章)
     (5)利用柱面镜的散光原理,建立了一种以金纳米颗粒为探针的三维暗场成像技术,并利用该技术对溶液中的纳米颗粒进行了长时间的三维示踪。根据散光像斑的形状我们可以对垂直方向上的运动方向进行准确判断。与已有的三维散射成像技术相比,该技术拥有更高的垂直空间分辨率(~70nm)。利用该成像技术,我们准确地测量了溶液中处于自由运动状态的金纳米粒子的三维扩散系数。(第六章)
     (6)采用种子诱导生长法,制备了一种能够催化双氧水、超氧根离子等活性氧化物分解的金铂复合纳米材料。经过表面功能化修饰,该颗粒能够大量进入细胞,并具有良好的生物适应性,同时能够催化细胞内活性氧化物的分解。利用该纳米粒子的这一催化特性,成功地抑制了紫外线辐射引起的细胞内活性氧化物浓度的升高,从而实现了紫外线辐射的防护作用。(第七章)
With the continuous advancements in nanoscience and nanotechnology, noblemetal nanoparticles with unique physical and chemical properties, which attractedmore and more interests of scientific researchers, have been widely applied in variousareas such as biochemistry and life sciences. As optical probes, metal nanoparticlessuch as gold and silver nanoparticles, possess of many advantages comparing withother traditional optical probes, such as high photostability, large opticalcross-section, easy to prepare and modify, well biocompatibility. Thus, noble metalnanoparticles displayed promising prospects in the applications of chemical analysisand biological sensing, biomedical and bioimaging. Based on the optical properties ofmetal nanoparticles, single-particle imaging and single-particle spectroscopy withnanometer-scale spatial resolution and millisecond time resolution have becomeimportant means for studying the behaviors and functions of biomolecules atsingle-cell level. Due to high surface chemical activities, metal nanoparticles havealso been used as active nano-catalyst for the catalysis in chemical engineering andenvironmental protection, biochemistry and biomedicine. However, there are stillgreat challenges we have to meet during various applications of metal nanoparticles,such as the declining in detection sensitivity due to the polydispersity of particle sizeand morphology, lower selectivity and temporal-spatial resolution of current methodsfor detecting in biological environments, etc.
     Based on the existing research, we setted out to provide some solutions for theproblems and challenges in previous studies and the main points of our work in thisthesis are summarized as follows:
     (1) A new kind of method has been proposed for the purification ofnanoparticles by using density gradient centrifugation. On the basis of force balanceof steady sedimentation, we have deduced the expressions of sedimentation rate ofnanoparticles with different sizes and shapes. By using the rate difference in thedensity gradient centrifugation, gold nanorods with differents aspect ratios has beensuccessfully isolated and purifed. To improve the separation efficiency, the effect ofcomposition of gradient solutions and centrifugation time were studied in ourexperiments. Both experimental results and calculated results demonstrated that,although particles can not be sperated for some special cases, density gradient centrigugation is still an effective method for the separation of nanoparticles withdifferent shapes and sizes.(Chapter2)
     (2) The unique optical properties of gold nanorods were systematically studied.The locallized surface plasmon resonance (LSPR) absorption and scattering of goldnanorods can be calculated according to Gans theory. In this section, the expressionfor the relationships between spectral shifts and refractive index changes of mediumsolution was derived based on the resonance conditions of gold nanorods. Theexperimental results show that, the spectral redshift of gold nanorods linearly scaledup with the increase of refractive index of the medium solution, and the sensitivity ofspectral is related with the aspect ratios of gold nanorods. These results arecompletely consistent with the calculated results. In addition, we also investigatedthe factors which can affect the accuracy of single-particle detection.(Chapter3)
     (3) Detection of sulfide with high sensitivity and selectivity was achieved byusing conventional UV-visible spectroscopy and single-particle spectral microscopywith gold-silver core-shell nanorods as probes. The gold-silver core-shell nanorodswere highly selective towards sulfide than other chemical species due to ultralowsolubility of Ag2S (pKsp=50.83). Two linear ranges from0.1μM to1mM and from0.01nM to10μM were obtained by using UV-visible spectroscopy andsingle-particle spectroscopy, respectively. The limit of detection of single-particledetection is much lower than by UV-visible spectroscopy, which implies thedetection at single-particle level a much sensitive than that of bulk measurements.(Chapter4)
     (4) From the study of reaction kinetics between the gold-silver core-shellnanoprobes and sulfide, we successfully measured the local concentrations ofhydrogen sulfide (H2S) and its oscillation in live cells by monitoring the spectralredshift of nanoprobs. A relationship between the reaction kinetics and shifting rateof the spectra of single nanoprobes has been established. Then the time-dependentspectral shifting curves were obtained both experimentally and theoretically when thenanoprobes were exposed to different concentrations of sulfide solutions.By usingthese curves as external calibration curves, the variations of local H2S concentrationin live cells can be determined throuth detecting the LSPR spectral of singlenanoprobes in real time.With this method, generation of endogenous H2S in live cellsby applying external stimulation were detected with the nanoprobes.(Chapter5)
     (5) Using the astigmatism phenomenon induced by a cylindrical lens, we havedeveloped a three-dimensional dark-field imaging techniques with gold nanoparticles as optical probes, and tracked the three dimentional diffusion of gold nanoparticles inthe solution. The direction of particle diffusion can be distinguished accuratelyaccording to the changes in the length of two axis of scattering spots. Comparingwith existing methods for three-dimensional imaging, a much higher vertical spatialresolution (~70nm) was obtained and the three-dimentional diffusion coefficients ofmoving gold nanoparticles have been measured in our experiments.(Chapter6)
     (6) Highly active gold-platinum nanocomposites (Au-Pt NPs), which cancatalyze the decomposition of hydrogen peroxide, superoxide anion and otherreactive oxygen species, have been prepared with seed mediated growth method. TheAu-Pt NPs can be readily uptake by human skin cells after surface modification. Theresults of cell cytoxicity indicated that the Au-Pt NPs are well biocompatible, andalso the Au-Pt NPs can remarkably reduce cellular oxidation stress after treated withhydrogen peroxide. This propertiy was used for scavenging cellular reactive oxygenspecies and protecting from UV Irradiation induced cell damages in our study.(Chapter7)
引文
[1] Henglein A. Physicochemical properties of small metal particles in solution:"microelectrode" reactions, chemisorption, composite metal particles, and theatom-to-metal transition. The Journal of Physical Chemistry,1993,97(21):5457-5471.
    [2] Collier C P, Saykally R J, Shiang J J, et al. Reversible tuning of silver quantumdot monolayers through the metal-insulator transition. Science,1997,277(5334):1978-1981.
    [3] Kim S H, Medeiros R G, Ohlberg D A A, et al. Individual and collectiveelectronic properties of Ag nanocrystals. The Journal of Physical Chemistry B,1999,103(47):10341-10347.
    [4] Beverly K C, Sampaio J F, Heath J R. Effects of size dispersion disorder on thecharge transport in self-assembled2-D Ag nanoparticle arrays. The Journal ofPhysical Chemistry B,2002,106(9):2131-2135.
    [5] Burda C, Chen X, Narayanan R, et al. Chemistry and properties of nanocrystalsof different shapes. Chemical Reviews,2005,105(4):1025-1102.
    [6] Liu J, Lu Y. A Colorimetric Lead Biosensor Using DNAzyme-directedassembly of gold nanoparticles. Journal of the American Chemical Society,2003,125(22):6642-6643.
    [7] Lee J S, Han M S, Mirkin C A. Colorimetric detection of mercuric ion (Hg2+)in aqueous media using DNA-functionalized gold nanoparticles. AngewandteChemie,2007,119(22):4171-4174.
    [8] Ai K, Liu Y, Lu L. Hydrogen-bonding recognition-induced color change ofgold nanoparticles for visual detection of melamine in raw milk and infantformula. Journal of the American Chemical Society,2009,131(27):9496-9497.
    [9] Li W, Liang C, Zhou W, et al. Preparation and characterization of multiwalledcarbon nanotube-supported platinum for cathode catalysts of direct methanolfuel cells. The Journal of Physical Chemistry B,2003,107(26):6292-6299.
    [10] Bashyam R, Zelenay P. A class of non-precious metal composite catalysts forfuel cells. Nature,2006,443(7107):63-66.
    [11] Jain J, Arora S, Rajwade J M, et al. Silver nanoparticles in therapeutics:development of an antimicrobial gel formulation for topical use. MolecularPharmaceutics,2009,6(5):1388-1401.
    [12] Kumar K, Duan H, Hegde R S, et al. Printing colour at the optical diffractionlimit. Nature Nanotechnology,2012,7(9):557-561.
    [13] Ko S H, Park I, Pan H, et al. Direct nanoimprinting of metal nanoparticles fornanoscale electronics fabrication. Nano Letters,2007,7(7):1869-1877.
    [14] Chen G, Wang Y, Tan L H, et al. High-purity separation of gold nanoparticledimers and trimers. Journal of the American Chemical Society,2009,131(12):4218-4219.
    [15] Sun X M, Tabakman S M, Seo W S, et al. Separation of nanoparticles in adensity gradient: FeCo@C and gold nanocrystals. Angewandte ChemieInternational Edition,2009,48(5):939-942.
    [16] Xu X Y, Caswell K K, Tucker E, et al. Size and shape separation of goldnanoparticles with preparative gel electrophoresis. Journal of ChromatographyA,2007,1167(1):35-41.
    [17] Nie S M, Zare R N. Optical detection of single molecules. Annual Review ofBiophysics and Biomolecular Structure,1997,26(1):567-596.
    [18] Lee K S, El-Sayed M A. Gold and silver nanoparticles in sensing and imaging:sensitivity of plasmon response to size, shape, and metal composition. TheJournal of Physical Chemistry B,2006,110(39):19220-19225.
    [19] Choi W K, Liew T H, Chew H G, et al. A combined top-down and bottom-up approach for precise placement of metal nanoparticles on silicon. Small,2008,4(3):330-333.
    [20] Duval Malinsky M, Kelly K L, Schatz G C, et al. Nanosphere lithography:effect of substrate on the localized surface plasmon resonance spectrum ofsilver nanoparticles. The Journal of Physical Chemistry B,2001,105(12):2343-2350.
    [21] Rechberger W, Hohenau A, Leitner A, et al. Optical properties of twointeracting gold nanoparticles. Optics Communications,2003,220(1):137-141.
    [22] Ohno T, Bain J A, Schlesinger T E. Observation of geometrical resonance inoptical throughput of very small aperture lasers associated with surfaceplasmons. Journal of Applied Physics,2007,101(8):083107-083107-083104.
    [23] Hostetler M J, Wingate J E, Zhong C J, et al. Alkanethiolate gold clustermolecules with core diameters from1.5to5.2nm: core and monolayerproperties as a function of core size. Langmuir,1998,14(1):17-30.
    [24] Loo C, Lin A, Hirsch L, et al. Nanoshell-enabled photonics-based imaging andtherapy of cancer. Technology in Cancer Research&Treatment,2004,3(1):33-40.
    [25] Wiley B J, Im S H, Li Z-Y, et al. Maneuvering the surface plasmon resonanceof silver nanostructures through shape-controlled synthesis. The Journal ofPhysical Chemistry B,2006,110(32):15666-15675.
    [26] Chen H M, Hsin C F, Liu R-S, et al. Synthesis and characterization ofmulti-pod-shaped gold/silver nanostructures. The Journal of Physical ChemistryC,2007,111(16):5909-5914.
    [27] Pillai Z S, Kamat P V. What factors control the size and shape of silvernanoparticles in the citrate ion reduction method? The Journal of PhysicalChemistry B,2003,108(3):945-951.
    [28] Anand M, Bell P W, Fan X, et al. Synthesis and steric stabilization of silvernanoparticles in neat carbon dioxide solvent using fluorine-free compounds.The Journal of Physical Chemistry B,2006,110(30):14693-14701.
    [29] Khomutov G B, Koksharov Y A. Effects of organic ligands, electrostatic andmagnetic interactions in formation of colloidal and interfacial inorganicnanostructures. Advances in Colloid and Interface Science,2006,122(1):119-147.
    [30] Geneviève M, Vieu C, Carles R, et al. Biofunctionalization of goldnanoparticles and their spectral properties. Microelectronic Engineering,2007,84(5):1710-1713.
    [31] Xia Y, Xiong Y, Lim B, et al. Shape-controlled synthesis of metal nanocrystals:simple chemistry meets complex physics? Angewandte Chemie InternationalEdition,2009,48(1):60-103.
    [32] Plieth W, Dietz H, Anders A, et al. Electrochemical preparation of silver andgold nanoparticles: Characterization by confocal and surface enhanced Ramanmicroscopy. Surface Science,2005,597(1):119-126.
    [33] Vosgr ne T, Meixner A J, Anders A, et al. Electrochemically deposited silverparticles for surface enhanced Raman spectroscopy. Surface Science,2005,597(1):102-109.
    [34] Starowicz M, Stypu a B, Bana J. Electrochemical synthesis of silvernanoparticles. Electrochemistry Communications,2006,8(2):227-230.
    [35] Huang C J, Chiu P H, Wang Y H, et al. Electrochemical formation of crookedgold nanorods and gold networked structures by the additive organic solvent.Journal of Colloid and Interface Science,2007,306(1):56-65.
    [36] Kim F, Song J H, Yang P. Photochemical Synthesis of Gold Nanorods. Journalof the American Chemical Society,2002,124(48):14316-14317.
    [37] McGilvray K L, Decan M R, Wang D, et al. Facile photochemical synthesis ofunprotected aqueous gold nanoparticles. Journal of the American ChemicalSociety,2006,128(50):15980-15981.
    [38] Sakamoto M, Tachikawa T, Fujitsuka M, et al. Photochemical formation ofAu/Cu bimetallic nanoparticles with different shapes and sizes in a poly(vinylalcohol) film. Advanced Functional Materials,2007,17(6):857-862.
    [39] Zhu J, Shen Y, Xie A, et al. Photoinduced synthesis of anisotropic goldnanoparticles in room-temperature Ionic Liquid. The Journal of PhysicalChemistry C,2007,111(21):7629-7633.
    [40] Chen W, Cai W P, Liang C H, et al. Synthesis of gold nanoparticles dispersedwithin pores of mesoporous silica induced by ultrasonic irradiation and itscharacterization. Materials Research Bulletin,2001,36(1–2):335-342.
    [41] Sun Y, Zhang L, Zhou H, et al. Seedless and templateless synthesis ofrectangular palladium nanoparticles. Chemistry of Materials,2007,19(8):2065-2070.
    [42] Wani I A, Ganguly A, Ahmed J, et al. Silver nanoparticles: ultrasonic waveassisted synthesis, optical characterization and surface area studies. MaterialsLetters,2011,65(3):520-522.
    [43] Kariuki N N, Luo J, Maye M M, et al. Composition-controlled synthesis ofbimetallic gold-silver nanoparticles. Langmuir,2004,20(25):11240-11246.
    [44] Pal A, Shah S, Devi S. Preparation of silver, gold and silver-gold bimetallicnanoparticles in W/O microemulsion containing TritonX-100. Colloids andSurfaces A: Physicochemical and Engineering Aspects,2007,302(1–3):483-487.
    [45] Murphy C J, Sau T K, Gole A, et al. Surfactant-directed synthesis and opticalproperties of one-dimensional plasmonic metallic nanostructures. MRS Bulletin,2005,30(05):349-355.
    [46] Hu M, Chen J, Li Z Y, et al. Gold nanostructures: engineering their plasmonicproperties for biomedical applications. Chemical Society Reviews,2006,35(11):1084-1094.
    [47] Turkevich J, Stevenson P C, Hillier J. A study of the nucleation and growthprocesses in the synthesis of colloidal gold. Discussions of the Faraday Society,1951,(11):55-75.
    [48] Frens G. Controlled nucleation for the regulation of the particle size inmonodisperse gold suspensions. Nature Physical Science,1973,241:20-22.
    [49] Brust M, Walker M, Bethell D, et al. Synthesis of thiol-derivatised goldnanoparticles in a two-phase Liquid-Liquid system. Journal of the ChemicalSociety, Chemical Communications,1994,0(7):801-802.
    [50] Brust M, Fink J, Bethell D, et al. Synthesis and reactions of functionalised goldnanoparticles. Journal of the Chemical Society-Chemical Communications,1995,(16):1655-1656.
    [51] Jana N R, Gearheart L, Murphy C J. Seed-mediated growth approach forshape-controlled synthesis of spheroidal and Rod-like gold nanoparticles usinga surfactant template. Advanced Materials,2001,13(18):1389-1393.
    [52] Srnová I, Vl ková B, Bastl Z, et al. Bimetallic (Ag)Au nanoparticles preparedby the seed growth method: two-dimensional assembling, characterization byenergy dispersive X-ray analysis, X-ray photoelectron spectroscopy, andsurface enhanced Raman spectroscopy, and Proposed Mechanism of Growth.Langmuir,2004,20(8):3407-3415.
    [53] Lu L, Kobayashi A, Tawa K, et al. Silver nanoplates with special shapes:controlled synthesis and their surface plasmon resonance and surface-enhancedRaman scattering properties. Chemistry of Materials,2006,18(20):4894-4901.
    [54] Xiong Y, Cai H, Wiley B J, et al. Synthesis and mechanistic study of palladiumnanobars and nanorods. Journal of the American Chemical Society,2007,129(12):3665-3675.
    [55] Yuan H, Ma W, Chen C, et al. Shape and SPR evolution of thorny goldnanoparticles promoted by silver ions. Chemistry of Materials,2007,19(7):1592-1600.
    [56] Nikoobakht B, El-Sayed M A. Preparation and growth mechanism of goldnanorods (NRs) using seed-mediated growth method. Chemistry of Materials,2003,15(10):1957-1962.
    [57] Gou L, Murphy C J. Fine-tuning the shape of gold nanorods. Chemistry ofMaterials,2005,17(14):3668-3672.
    [58] Ni W, Kou X, Yang Z, et al. Tailoring longitudinal surface plasmonwavelengths, scattering and absorption cross sections of gold nanorods. ACSNano,2008,2(4):677-686.
    [59] Jiang X C, Yu A B. Silver nanoplates: a highly sensitive material towardinorganic anions. Langmuir,2008,24(8):4300-4309.
    [60] DuChene J S, Niu W, Abendroth J M, et al. Halide anions as shape-directingagents for obtaining high-quality anisotropic gold nanostructures. Chemistry ofMaterials,2012.
    [61] Novak J P, Nickerson C, Franzen S, et al. Purification of molecularly bridgedmetal nanoparticle arrays by centrifugation and size exclusion chromatography.Analytical Chemistry,2001,73(23):5758-5761.
    [62] Arnold M S, Stupp S I, Hersam M C. Enrichment of single-walled carbonnanotubes by diameter in density gradients. Nano Letters,2005,5(4):713-718.
    [63] Chen C C, Lin Y P, Wang C W, et al. DNA-gold nanorod conjugates for remotecontrol of localized gene expression by near infrared irradiation. Journal of theAmerican Chemical Society,2006,128(11):3709-3715.
    [64] Hanauer M, Pierrat S, Zins I, et al. Separation of nanoparticles by gelelectrophoresis according to size and shape. Nano Letters,2007,7(9):2881-2885.
    [65] Khanal B P, Zubarev E R. Purification of high aspect ratio gold nanorods:Complete removal of platelets. Journal of the American Chemical Society,2008,130(38):12634-12635.
    [66] Anker J N, Hall W P, Lyandres O, et al. Biosensing with plasmonicnanosensors. Nature Materials,2008,7(6):442-453.
    [67] Ha T H, Kim Y J, Park S H. Complete separation of triangular gold nanoplatesthrough selective precipitation under CTAB micelles in aqueous solution.Chemical Communications,2010,46(18):3164-3166.
    [68] Sun X, Luo D, Liu J, et al. Monodisperse chemically modified grapheneobtained by density gradient ultracentrifugal rate separation. ACS Nano,2010,4(6):3381-3389.
    [69] Sharma V, Park K, Srinivasarao M. Shape separation of gold nanorods usingcentrifugation. Proceedings of the National Academy of Sciences of the UnitedStates of America,2009,106(13):4981-4985.
    [70] Xiong B, Cheng J, Qiao Y, et al. Separation of nanorods by density gradientcentrifugation. Journal of Chromatography A,2011,1218(25):3823-3829.
    [71] Willets K A, Van Duyne R P. Localized surface plasmon resonancespectroscopy and sensing. Annual Review of Physical Chemistry,2007,58(1):267-297.
    [72] Homola J. Surface plasmon resonance sensors for detection of chemical andbiological species. Chemical Reviews,2008,108(2):462-493.
    [73] Mayer K M, Hafner J H. Localized surface plasmon resonance sensors.Chemical Reviews,2011,111(6):3828-3857.
    [74] Hutter E, Fendler J H. Exploitation of localized surface plasmon resonance.Advanced Materials,2004,16(19):1685-1706.
    [75] Dahlin A, Z ch M, Rindzevicius T, et al. Localized surface plasmon resonancesensing of lipid-membrane-mediated biorecognition events. Journal of theAmerican Chemical Society,2005,127(14):5043-5048.
    [76] Endo T, Kerman K, Nagatani N, et al. Multiple label-free detection ofantigen-antibody reaction using localized surface plasmon resonance-basedcore-shell structured nanoparticle layer nanochip. Analytical Chemistry,2006,78(18):6465-6475.
    [77] Li Y, Lee H J, Corn R M. Detection of protein biomarkers ssing RNA aptamermicroarrays and enzymatically amplified surface plasmon resonance imaging.Analytical Chemistry,2007,79(3):1082-1088.
    [78] Stuart D A, Haes A J, Yonzon C R, et al. Biological applications of localisedsurface plasmonic phenomenae. Nanobiotechnology,2005,152(1):13-32.
    [79] Kabashin A V, Evans P, Pastkovsky S, et al. Plasmonic nanorod metamaterialsfor biosensing. Nature Materials,2009,8(11):867-871.
    [80] Schatz G C, Van Duyne R P. In Handbook of Vibrational Spectroscopy; JohnWiley&Sons, Ltd:2006.
    [81] Chumanov G, Sokolov K, Gregory B W, et al. Colloidal metal films as asubstrate for surface-enhanced spectroscopy. The Journal of Physical Chemistry,1995,99(23):9466-9471.
    [82] Liebermann T, Knoll W. Surface-plasmon field-enhanced fluorescencespectroscopy. Colloids and Surfaces A: Physicochemical and EngineeringAspects,2000,171(1–3):115-130.
    [83] VoDinh T, Allain L R, Stokes D L. Cancer gene detection usingsurface-enhanced Raman scattering (SERS). Journal of Raman Spectroscopy,2002,33(7):511-516.
    [84] Matveeva E, Gryczynski Z, Malicka J, et al. Metal-enhanced fluorescenceimmunoassays using total internal reflection and silver island-coated surfaces.Analytical Biochemistry,2004,334(2):303-311.
    [85] Shanmukh S, Jones L, Driskell J, et al. Rapid and sensitive detection ofrespiratory virus molecular signatures using a silver nanorod array SERSsubstrate. Nano Letters,2006,6(11):2630-2636.
    [86] Ye B C, Yin B C. Highly sensitive detection of mercury(II) ions byfluorescence polarization enhanced by gold nanoparticles. Angewandte ChemieInternational Edition,2008,47(44):8386-8389.
    [87] Han X X, Huang G G, Zhao B, et al. Label-free highly sensitive detection ofproteins in aqueous solutions using surface-enhanced Raman scattering.Analytical Chemistry,2009,81(9):3329-3333.
    [88] Li J F, Huang Y F, Ding Y, et al. Shell-isolated nanoparticle-enhanced Ramanspectroscopy. Nature,2010,464(7287):392-395.
    [89] Daniel M C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry,quantum-size-related properties, and applications toward biology, catalysis, andnanotechnology. Chemical Reviews,2004,104(1):293-346.
    [90] Yan N, Xiao C, Kou Y. Transition metal nanoparticle catalysis in greensolvents. Coordination Chemistry Reviews,2010,254(9–10):1179-1218.
    [91] Bell A T. The impact of nanoscience on heterogeneous catalysis. Science,2003,299(5613):1688-1691.
    [92] Moreno M M, Pleixats R. Formation of carbon carbon bonds under catalysis bytransition-metal nanoparticles. Accounts of Chemical Research,2003,36(8):638-643.
    [93] Narayanan R, El-Sayed M A. Catalysis with transition metal nanoparticles incolloidal solution: nanoparticle shape dependence and stability. The Journal ofPhysical Chemistry B,2005,109(26):12663-12676.
    [94] Chen X, Zhu H-Y, Zhao J-C, et al. Visible-light-driven oxidation of organiccontaminants in air with gold nanoparticle catalysts on oxide supports.Angewandte Chemie,2008,120(29):5433-5436.
    [95] Zheng N, Stucky G D. A general synthetic strategy for oxide-supported metalnanoparticle catalysts. Journal of the American Chemical Society,2006,128(44):14278-14280.
    [96] Campelo J M, Luna D, Luque R, et al. Sustainable preparation of supportedmetal nanoparticles and their applications in catalysis. ChemSusChem,2009,2(1):18-45.
    [97] Hwang W S, Truong P L, Sim S J. Size-dependent plasmonic responses ofsingle gold nanoparticles for analysis of biorecognition. AnalyticalBiochemistry,2012,421(1):213-218.
    [98] Van Dijk M A, Lippitz M, Orrit M. Far-field optical microscopy of single metalnanoparticles. Accounts of Chemical Research,2005,38(7):594-601.
    [99] Kudo S, Magariyama Y, Aizawa S-I. Abrupt changes in flagellar rotationobserved by laser dark-field microscopy. Nature,1990,346(6285):677-680.
    [100] Maslov K, Stoica G, Wang L V. In vivo dark-field reflection-modephotoacoustic microscopy. Optics Letters,2005,30(6):625-627.
    [101] Verveer P J, Swoger J, Pampaloni F, et al. High-resolution three-dimensionalimaging of large specimens with light sheet-based microscopy. Nature Methods,2007,4(4):311-313.
    [102] Planchon T A, Gao L, Milkie D E, et al. Rapid three-dimensional isotropicimaging of living cells using Bessel beam plane illumination. Nature Methods,2011,8(5):417-423.
    [103] Ritter J G, Veith R, Siebrasse J-P, et al. High-contrast single-particle trackingby selective focal plane illumination microscopy. Optics Express,2008,16(10):7142-7152.
    [104] Lu H P, Xun L, Xie X S. Single-molecule enzymatic dynamics. Science,1998,282(5395):1877-1882.
    [105] Kusumi A, Nakada C, Ritchie K, et al. Paradigm shift of the plasma membraneconcept from the two-dimensional continuum fluid to the partitioned fluid:high-speed single-molecule tracking of membrane molecules. Annual Reviewof Biophysics and Biomolecular Structure,2005,34(1):351-378.
    [106] Ruff C, Furch M, Brenner B, et al. Single-molecule tracking of myosins withgenetically engineered amplifier domains. Nat Struct Mol Biol,2001,8(3):226-229.
    [107] Vrljic M, Nishimura S, Moerner W E. In Lipid Rafts; McIntosh, T, Ed.;Humana Press:2007;398,193-219.
    [108] Plakhotnik T, Donley E A, Wild U P. Single-molecule spectroscopy. AnnualReview of Physical Chemistry,1997,48(1):181-212.
    [109] Hofkens J, Maus M, Gensch T, et al. Probing photophysical processes inindividual multichromophoric dendrimers by single-molecule spectroscopy.Journal of the American Chemical Society,2000,122(38):9278-9288.
    [110] Rief M, Oesterhelt F, Heymann B, et al. Single molecule force spectroscopy onpolysaccharides by atomic force microscopy. Science,1997,275(5304):1295-1297.
    [111] Brujic J, Hermans Z R I, Walther K A, et al. Single-molecule forcespectroscopy reveals signatures of glassy dynamics in the energy landscape ofubiquitin. Nature Physics,2006:282-286.
    [112] Mortensen K I, Churchman L S, Spudich J A, et al. Optimized localizationanalysis for single-molecule tracking and super-resolution microscopy. NatureMethods,2010,7(5):377-381.
    [113] Weigel A V, Simon B, Tamkun M M, et al. Ergodic and nonergodic processescoexist in the plasma membrane as observed by single-molecule tracking.Proceedings of the National Academy of Sciences,2011,108(16):6438-6443.
    [114] Persson F, Linden M, Unoson C, et al. Extracting intracellular diffusive statesand transition rates from single-molecule tracking data. Nature Methods,2013,10(3):265-269.
    [115] Moerner W E. A Dozen Years of Single-molecule spectroscopy in physics,chemistry, and biophysics. The Journal of Physical Chemistry B,2002,106(5):910-927.
    [116] Hofmann H, Hillger F, Pfeil S H, et al. Single-molecule spectroscopy of proteinfolding in a chaperonin cage. Proceedings of the National Academy of Sciences,2010,107(26):11793-11798.
    [117] Soranno A, Buchli B, Nettels D, et al. Quantifying internal friction in unfoldedand intrinsically disordered proteins with single-molecule spectroscopy.Proceedings of the National Academy of Sciences,2012.
    [118] Paik D H, Perkins T T. Dynamics and multiple stable binding modes of DNAintercalators revealed by single-molecule force spectroscopy. AngewandteChemie International Edition,2012,51(8):1811-1815.
    [119] Dufrene Y F, Evans E, Engel A, et al. Five challenges to bringingsingle-molecule force spectroscopy into living cells. Nature Methods,2011,8(2):123-127.
    [120] Mason T G, Ganesan K, van Zanten J H, et al. Particle tracking microrheologyof complex fluids. Physical Review Letters,1997,79(17):3282-3285.
    [121] Saxton M J, Jacobson K. Single-particle tracking: applications to membranedynamics. Annual Review of Biophysics and Biomolecular Structure,1997,26(1):373-399.
    [122] Wang X, Zhang Z, Hartland G V. Electronic dephasing in bimetallic gold-silvernanoparticles examined by single particle spectroscopy. The Journal ofPhysical Chemistry B,2005,109(43):20324-20330.
    [123] Novo C, Funston A M, Mulvaney P. Direct observation of chemical reactionson single gold nanocrystals using surface plasmon spectroscopy. NatureNanotechnology,2008,3(10):598-602.
    [124] Wax A; Biomedical Optics, Optical Society of America:2008, BSUA.
    [125] Yang Y H, Nam J M. Single Nanoparticle tracking-based detection ofmembrane receptor-ligand interactions. Analytical Chemistry,2009,81(7):2564-2568.
    [126] Jun Y W, Sheikholeslami S, Hostetter D R, et al. Continuous imaging ofplasmon rulers in live cells reveals early-stage caspase-3activation at thesingle-molecule level. Proceedings of the National Academy of Sciences of theUnited States of America,2009,106(42):17735-17740.
    [127] Lee K J, Browning L M, Nallathamby P D, et al. In vivo quantitative study ofsized-dependent transport and toxicity of single silver nanoparticles usingzebrafish embryos. Chemical Research in Toxicology,2012,25(5):1029-1046.
    [128] Lee K J, Nallathamby P D, Browning L M, et al. In vivo imaging of transportand biocompatibility of single silver nanoparticles in early development ofzebrafish embryos. ACS Nano,2007,1(2):133-143.
    [129] Nallathamby P D, Lee K J, Xu X N. Design of stable and uniform singlenanoparticle photonics for in vivo dynamics imaging of nanoenvironments ofzebrafish embryonic fluids. ACS Nano,2008,2(7):1371-1380.
    [130] Xu X N, Brownlow W J, Kyriacou S V, et al. Real-time probing of membranetransport in living microbial cells using single nanoparticle optics and livingcell imaging. Biochemistry,2004,43(32):10400-10413.
    [131] Xu X N, Chen J, Jeffers R B, et al. Direct measurement of sizes and dynamicsof single living membrane transporters using nanooptics. Nano Letters,2002,2(3):175-182.
    [132] Nan X, Sims P A, Xie X S. Organelle tracking in a living cell with microsecondtime resolution and nanometer spatial precision. ChemPhysChem,2008,9(5):707-712.
    [133] McFarland A D, Van Duyne R P. Single silver nanoparticles as real-timeoptical sensors with zeptomole sensitivity. Nano Letters,2003,3(8):1057-1062.
    [134] Haes A J, Hall W P, Chang L, et al. A localized surface plasmon resonancebiosensor: first steps toward an assay for Alzheimer's disease. Nano Letters,2004,4(6):1029-1034.
    [135] Elghanian R, Storhoff J J, Mucic R C, et al. Selective colorimetric detection ofpolynucleotides based on the distance-dependent optical properties of goldnanoparticles. Science,1997,277(5329):1078-1081.
    [136] Rosi N L, Mirkin C A. Nanostructures in biodiagnostics. Chemical Reviews,2005,105(4):1547-1562.
    [137] Kim Y, Johnson R C, Hupp J T. Gold nanoparticle-based sensing of“spectroscopically silent” heavy metal ions. Nano Letters,2001,1(4):165-167.
    [138] Liu J, Lu Y. Accelerated color change of gold nanoparticles assembled byDNAzymes for simple and fast colorimetric Pb2+detection. Journal of theAmerican Chemical Society,2004,126(39):12298-12305.
    [139] Xue X, Wang F, Liu X. One-step, room temperature, colorimetric detection ofmercury (Hg2+) using DNA/nanoparticle conjugates. Journal of the AmericanChemical Society,2008,130(11):3244-3245.
    [140] Schofield C L, Field R A, Russell D A. Glyconanoparticles for the colorimetricdetection of cholera toxin. Analytical Chemistry,2007,79(4):1356-1361.
    [141] Xia F, Zuo X, Yang R, et al. Colorimetric detection of DNA, small molecules,proteins, and ions using unmodified gold nanoparticles and conjugatedpolyelectrolytes. Proceedings of the National Academy of Sciences,2010,107(24):10837-10841.
    [142] Liang R Q, Tan C Y, Ruan K C. Colorimetric detection of protein microarraysbased on nanogold probe coupled with silver enhancement. Journal ofImmunological Methods,2004,285(2):157-163.
    [143] Pavlov V, Xiao Y, Shlyahovsky B, et al. Aptamer-functionalized Aunanoparticles for the amplified optical detection of thrombin. Journal of theAmerican Chemical Society,2004,126(38):11768-11769.
    [144] Le Goff G C, Blum L J, Marquette C A. Enhanced colorimetric detection onporous microarrays using in situ substrate production. Analytical Chemistry,2011,83(9):3610-3615.
    [145] Chen S, Svedendahl M, Duyne R P V, et al. Plasmon-enhanced colorimetricELISA with single molecule sensitivity. Nano Letters,2011,11(4):1826-1830.
    [146] Lakowicz J R, Ray K, Chowdhury M, et al. Plasmon-controlled fluorescence: anew paradigm in fluorescence spectroscopy. Analyst,2008,133(10):1308-1346.
    [147] Campion A, Kambhampati P. Surface-enhanced Raman scattering. ChemicalSociety Reviews,1998,27(4):241-250.
    [148] Mahajan S, Cole R M, Speed J D, et al. Understanding the surface-enhancedRaman spectroscopy “background”. The Journal of Physical Chemistry C,2009,114(16):7242-7250.
    [149] Galloway C M, Etchegoin P G, Le Ru E C. Ultrafast nonradiative decay rateson metallic surfaces by comparing surface-enhanced Raman and fluorescencesignals of single molecules. Physical Review Letters,2009,103(6):063003.
    [150] Chowdhury M H, Ray K, Aslan K, et al. Metal-enhanced fluorescence ofphycobiliproteins from heterogeneous plasmonic nanostructures. The Journal ofPhysical Chemistry C,2007,111(51):18856-18863.
    [151] Fu Y, Zhang J, Lakowicz J R. Plasmon-enhanced fluorescence from singlefluorophores end-linked to gold nanorods. Journal of the American ChemicalSociety,2010,132(16):5540-5541.
    [152] Lakowicz J R. Plasmonics in biology and plasmon-controlled fluorescence.Plasmonics,2006,1(1):5-33.
    [153] Ray K, Badugu R, Lakowicz J R. Sulforhodamine Adsorbed langmuir-blodgettlayers on silver island films: effect of probe distance on the metal-enhancedfluorescence. The Journal of Physical Chemistry C,2007,111(19):7091-7097.
    [154] Nie S M, Emery S R. Probing single molecules and single nanoparticles bysurface-enhanced Raman scattering. Science,1997,275(5303):1102-1106.
    [155] Kneipp K, Wang Y, Kneipp H, et al. Single molecule detection usingsurface-enhanced raman scattering (SERS). Physical Review Letters,1997,78(9):1667-1670.
    [156] El-Sayed I H, Huang X, El-Sayed M A. Surface plasmon resonance scatteringand absorption of anti-EGFR antibody conjugated gold nanoparticles in cancerdiagnostics: applications in oral cancer. Nano Letters,2005,5(5):829-834.
    [157] Austin L A, Kang B, Yen C W, et al. Plasmonic imaging of human oral cancercell communities during programmed cell death by nuclear-targeting silvernanoparticles. Journal of the American Chemical Society,2011,133(44):17594-17597.
    [158] Xiao L, Qiao Y, He Y, et al. Imaging translational and rotational diffusion ofsingle anisotropic nanoparticles with planar illumination microscopy. Journalof the American Chemical Society,2011,133(27):10638-10645.
    [159] Zhou R, Zhou H, Xiong B, et al. Pericellular matrix enhances retention andcellular uptake of nanoparticles. Journal of the American Chemical Society,2012,134(32):13404-13409.
    [160] Zhang L, Li Y, Li D-W, et al. Single gold nanoparticles as real-time opticalprobes for the detection of NADH-dependent intracellular metabolic enzymaticpathways. Angewandte Chemie International Edition,2011,123(30):6921-6924.
    [161] Aaron J, Travis K, Harrison N, et al. Dynamic imaging of molecular assembliesin live cells based on nanoparticle plasmon resonance coupling. Nano Letters,2009,9(10):3612-3618.
    [162] Huang X, El-Sayed I H, Qian W, et al. Cancer cell Imaging and photothermaltherapy in the near-infrared region by using gold nanorods. Journal of theAmerican Chemical Society,2006,128(6):2115-2120.
    [163] Chen J, Wang D, Xi J, et al. Immuno gold nanocages with tailored opticalproperties for targeted photothermal destruction of cancer cells. Nano Letters,2007,7(5):1318-1322.
    [164] Gobin A M, Lee M H, Halas N J, et al. Near-infrared resonant nanoshells forcombined optical imaging and photothermal cancer therapy. Nano Letters,2007,7(7):1929-1934.
    [165] Huschka R, Barhoumi A, Liu Q, et al. Gene silencing by gold nanoshellmediated delivery and laser-triggered release of antisense oligonucleotide andsiRNA. ACS Nano,2012,6(9):7681-7691.
    [166] Comfort K K, Maurer E I, Braydich-Stolle L K, et al. Interference of silver,gold, and iron oxide nanoparticles on epidermal growth factor signaltransduction in epithelial cells. ACS Nano,2011,5(12):10000-10008.
    [167] Zhang L, Laug L, Münchgesang W, et al. Reducing stress on cells withapoferritin-encapsulated platinum nanoparticles. Nano Letters,2009,10(1):219-223.
    [168] Jeffery G B. The motion of ellipsoidal particles immersed in a viscous fluid.Proceedings of the Royal Society of London,1922,102:161-179.
    [169] Youngren G K, Acrivos A. Stokes flow past a particle of arbitrary shape: anumerical method of solution. Journal of Fluid Mechanics,1975,69:377-403.
    [170] Zhou K, Lin J Z. Three dimensional fiber orientation distribution in twodimensional flows. Fibers and Polymers,2008,9(1):39-47.
    [171] Kasper G, Niida T, Yang M. Measurements of viscous drag on cylinders andchains of spheres with aspect ratios between2and50. Journal of AerosolScience,1985,16(6):535-556.
    [172] Kasper G. Dynamics and measurement of smokes: Size characterization ofnonspherical particles. Aerosol Science and Technology,1982,1:187-199.
    [173] Dogic Z, Philipse A P, Fraden S, et al. Concentration-dependent sedimentationof colloidal rods. Journal of Chemical Physics,2000,113(18):8368-8380.
    [174] Yu C, Irudayaraj J. Multiplex Biosensor Using Gold Nanorods. AnalyticalChemistry,2006,79(2):572-579.
    [175] Huang Y F, Chang H T, Tan W. Cancer cell targeting using multiple aptamersConjugated on Nanorods. Analytical Chemistry,2008,80(3):567-572.
    [176] Xiao L H, Qiao Y X, He Y, et al. Three dimensional orientational imaging ofnanoparticles with darkfield microscopy. Analytical Chemistry,2010,82(12):5268-5274.
    [177] Gans R. über die form ultramikroskopischer goldteilchen. Annalen der Physik,1912,342(5):881-900.
    [178] Cheng J, Liu Y, Cheng X, et al. Real time observation of chemical reactions ofindividual metal nanoparticles with high-throughput single molecule spectralmicroscopy. Analytical Chemistry,2010,82(20):8744-8749.
    [179] Mulvaney P. Surface plasmon spectroscopy of nanosized metal particles.Langmuir,1996,12(3):788-800.
    [180] Pannipitiya A, Rukhlenko I D, Premaratne M, et al. Improved transmissionmodel for metal-dielectric-metal plasmonic waveguides with stub structure.Optics Express,2010,18(6):6191-6204.
    [181] Beauchamp R O, Bus J S, Popp J A, et al. A critical review of the literature onhydrogen sulfide toxicity. Critical Reviews in Toxicology,1984,13(1):25-97.
    [182] Hisham M W M, Grosjean D. Sulfur dioxide, hydrogen sulfide, total reducedsulfur, chlorinated hydrocarbons and photochemical oxidants in southernCalifornia museums. Atmospheric Environment. Part A. General Topics,1991,25(8):1497-1505.
    [183] Radford K J, Cutter G A. Determination of carbonyl sulfide and hydrogensulfide species in natural waters using specialized collection procedures andgas chromatography with flame photometric detection. Analytical Chemistry,1993,65(8):976-982.
    [184] Tayan M. An assessment of spatial and temporal variation of sulfur dioxidelevels over Istanbul, Turkey. Environmental Pollution,2000,107(1):61-69.
    [185] Kampa M, Castanas E. Human health effects of air pollution. EnvironmentalPollution,2008,151(2):362-367.
    [186] Li H, Tian Y, Deng Z, et al. An in situ photoelectrochemical determination ofhydrogen sulfide through generation of CdS nanoclusters onto TiO2nanotubes.Analyst,2012,137(19):4605-4609.
    [187] Jiménez D, Martínez M R, Sancenón F, et al. A new chromo-chemodosimeterselective for sulfide anion. Journal of the American Chemical Society,2003,125(30):9000-9001.
    [188] Schiavon G, Zotti G, Toniolo R, et al. Electrochemical detection of tracehydrogen sulfide in gaseous samples by porous silver electrodes supported onion-exchange membranes (solid polymer electrolytes). Analytical Chemistry,1995,67(2):318-323.
    [189] Xiao L, Wei L, He Y, et al. Single molecule biosensing using color codedplasmon resonant metal nanoparticles. Analytical Chemistry,2010,82(14):6308-6314.
    [190] Zeng J, Tao J, Su D, et al. Selective sulfuration at the corner sites of a silvernanocrystal and its use in stabilization of the shape. Nano Letters,2011,11(7):3010-3015.
    [191] Lilienfeld S, White C E. A study of the reaction between hydrogen sulfide andsilver Journal of the American Chemical Society,1930,52(3):885-892.
    [192] Johnson P B, Christy R W. Optical constants of the noble metals. PhysicalReview B,1972,6(12):4370-4379.
    [193] Bennett J M, Stanford J L, Ashley E J. Optical constants of silver sulfidetarnish films. The Journal of the Optical Society of America,1970,60(2):224-231.
    [194] Jain P K, Huang X, El-Sayed I H, et al. Noble metals on the nanoscale: opticaland photothermal properties and some applications in imaging, sensing, biology,and medicine. Accounts of Chemical Research,2008,41(12):1578-1586.
    [195] Jain P K, Lee K S, El-Sayed I H, et al. Calculated absorption and scatteringproperties of gold nanoparticles of different size, shape, and composition:applications in biological imaging and biomedicine. The Journal of PhysicalChemistry B,2006,110(14):7238-7248.
    [196] Coletta C, Papapetropoulos A, Erdelyi K, et al. Hydrogen sulfide and nitricoxide are mutually dependent in the regulation of angiogenesis andendothelium-dependent vasorelaxation. Proceedings of the National Academyof Sciences,2012,109(23):9161-9166.
    [197] Szabo C. Hydrogen sulphide and its therapeutic potential. Nature Review DrugDiscovery,2007,6(11):917-935.
    [198] owicka E, Be towski J. Hydrogen sulfide (H2S)-the third gas of interest forpharmacologists. Pharmacological reports: PR,2007,59(1):4-24.
    [199] Wang R. Two’s company, three’s a crowd: can H2S be the third endogenousgaseous transmitter? The FASEB Journal,2002,16(13):1792-1798.
    [200] Papapetropoulos A, Pyriochou A, Altaany Z, et al. Hydrogen sulfide is anendogenous stimulator of angiogenesis. Proceedings of the National Academyof Sciences,2009,106(51):21972-21977.
    [201] Yang G, Wu L, Jiang B, et al. H2S as a physiologic vasorelaxant: hypertensionin mice with deletion of cystathionine γ-lyase. Science,2008,322(5901):587-590.
    [202] Leffler C W, Parfenova H, Jaggar J H, et al. Carbon monoxide and hydrogen sulfide: gaseous messengers in cerebrovascular circulation. Journal of AppliedPhysiology,2006,100(3):1065-1076.
    [203] Abe K, Kimura H. The possible role of hydrogen sulfide as an endogenousneuromodulator. The Journal of Neuroscience,1996,16(3):1066-1071.
    [204] Kimura H. Hydrogen sulfide as a neuromodulator. Molecular Neurobiology,2002,26(1):13-19.
    [205] Kaneko Y, Kimura Y, Kimura H, et al. l-Cysteine inhibits insulin release fromthe pancreatic β-cell. Diabetes,2006,55(5):1391-1397.
    [206] Elrod J W, Calvert J W, Morrison J, et al. Hydrogen sulfide attenuatesmyocardial ischemia-reperfusion injury by preservation of mitochondrialfunction. Proceedings of the National Academy of Sciences,2007,104(39):15560-15565.
    [207] Peng Y J, Nanduri J, Raghuraman G, et al. H2S mediates O2sensing in thecarotid body. Proceedings of the National Academy of Sciences,2010,107(23):10719-10724.
    [208] Yang G, Sun X, Wang R. Hydrogen sulfide-induced apoptosis of human aortasmooth muscle cells via the activation of mitogen-activated protein kinases andcaspase-3. The FASEB Journal,2004,18(14):1782-1784.
    [209] Li L, Bhatia M, Zhu Y Z, et al. Hydrogen sulfide is a novel mediator oflipopolysaccharide-induced inflammation in the mouse. The FASEB Journal,2005,19(9):1196-1198.
    [210] Kamoun P, Belardinelli M, Cristina, Chabli A, et al. Endogenous hydrogensulfide overproduction in Down syndrome. American Journal of MedicalGenetics Part A,2003,116A(3):310-311.
    [211] Jha S, Calvert J W, Duranski M R, et al. Hydrogen sulfide attenuates hepaticischemia-reperfusion injury: role of antioxidant and antiapoptotic signaling.American Journal of Physiology-Heart and Circulatory Physiology,2008,295(2): H801-H806.
    [212] McGeer E G, McGeer P L. Neuroinflammation in Alzheimer's disease and mildcognitive impairment: a field in its infancy. Journal of Alzheimer's Disease,2010,19(1):355-361.
    [213] Suzuki K, Olah G, Modis K, et al. Hydrogen sulfide replacement therapyprotects the vascular endothelium in hyperglycemia by preservingmitochondrial function. Proceedings of the National Academy of Sciences,2011,108(33):13829-13834.
    [214] Lippert A R, New E J, Chang C J. Reaction-based fluorescent probes forselective imaging of hydrogen sulfide in living cells. Journal of the AmericanChemical Society,2011,133(26):10078-10080.
    [215] Peng H, Cheng Y, Dai C, et al. A fluorescent probe for fast and quantitativedetection of hydrogen sulfide in blood. Angewandte Chemie InternationalEdition,2011,50(41):9672-9675.
    [216] Qian Y, Karpus J, Kabil O, et al. Selective fluorescent probes for live-cellmonitoring of sulphide. Nature Communications,2011,2:495.
    [217] Sasakura K, Hanaoka K, Shibuya N, et al. Development of a highly selectivefluorescence probe for hydrogen sulfide. Journal of the American ChemicalSociety,2011,133(45):18003-18005.
    [218] Chen S, Chen Z j, Ren W, et al. Reaction-based genetically encoded fluorescenthydrogen sulfide sensors. Journal of the American Chemical Society,2012,134(23):9589-9592.
    [219] Xuan W, Sheng C, Cao Y, et al. Fluorescent probes for the detection ofhydrogen sulfide in biological systems. Angewandte Chemie InternationalEdition,2012,51(10):2282-2284.
    [220] Vitvitsky V, Kabil O, Banerjee R. High turnover rates for hydrogen sulfideallow for rapid regulation of its tissue concentrations. Antioxidants&RedoxSignaling,2012,17(1):22-31.
    [221] Ratnam S, Maclean K N, Jacobs R L, et al. Hormonal regulation ofcystathionine β-synthase expression in liver. Journal of Biological Chemistry,2002,277(45):42912-42918.
    [222] Zou C G, Banerjee R. Tumor necrosis factor-α-induced targeted proteolysis ofcystathionine β-synthase modulates redox homeostasis. Journal of BiologicalChemistry,2003,278(19):16802-16808.
    [223] Prudova A, Bauman Z, Braun A, et al. S-adenosylmethionine stabilizescystathionine β-synthase and modulates redox capacity. Proceedings of theNational Academy of Sciences,2006,103(17):6489-6494.
    [224] Singh S, Padovani D, Leslie R A, et al. Relative contributions of cystathionineβ-synthase and γ-cystathionase to H2S biogenesis via alternativetrans-sulfuration reactions. Journal of Biological Chemistry,2009,284(33):22457-22466.
    [225] Dickinson D A, Forman H J. Cellular glutathione and thiols metabolism.Biochemical Pharmacology,2002,64(5):1019-1026.
    [226] Stipanuk M H, Dominy J E, Lee J-I, et al. Mammalian cysteine metabolism:new insights into regulation of cysteine metabolism. The Journal of Nutrition,2006,136(6):1652S-1659S.
    [227] Jung L S, Campbell C T, Chinowsky T M, et al. Quantitative interpretation ofthe response of surface plasmon resonance sensors to adsorbed films. Langmuir,1998,14(19):5636-5648.
    [228] Freundlich H Colloid and capillary chemistry: Methuen, London,1926.
    [229] Hill T L. Statistical mechanics of multimolecular adsorption. IV. the statisticalanalog of the BET constant a1b2/b1a2. hindered rotation of a symmetricaldiatomic molecule near a surface. The Journal of Chemical Physics,1948,16(3):181-189.
    [230] Seo D, Park G, Song H. Plasmonic monitoring of catalytic hydrogen generationby a single nanoparticle probe. Journal of the American Chemical Society,2011,134(2):1221-1227.
    [231] Yoon S Y, Kim K C.3D particle position and3D velocity field measurement ina microvolume via the defocusing concept. Measurement Science&Technology,2006,17(11):2897-2905.
    [232] Cang H, Wong C M, Xu C S, et al. Confocal three dimensional tracking of asingle nanoparticle with concurrent spectroscopic readouts. Applied PhysicsLetters,2006,88(22):223901-223903.
    [233] Toprak E, Balci H, Blehm B H, et al. Three-dimensional particle tracking viabifocal imaging. Nano Letters,2007,7(7):2043-2045.
    [234] Temple P A. Total internal reflection microscopy: a surface inspectiontechnique. Applied Optics,1981,20(15):2656-2664.
    [235] Ueno H, Nishikawa S, Iino R, et al. Simple dark-field microscopy withnanometer spatial precision and microsecond temporal resolution. BiophysicalJournal,2010,98(9):2014-2023.
    [236] Mock J J, Hill R T, Degiron A, et al. Distance-dependent plasmon resonantcoupling between a gold nanoparticle and gold film. Nano Letters,2008,8(8):2245-2252.
    [237] Watson J V. Dual laser beam focussing for flow cytometry through a singlecrossed cylindrical lens pair. Cytometry,1981,2(1):14-19.
    [238] Beijersbergen M W, Allen L, Veen V D, et al. Astigmatic laser modeconverters and transfer of orbital angular momentum. Optics Communications,1993,96(1–3):123-132.
    [239] Huang B, Wang W, Bates M, et al. Three-dimensional super-resolution imagingby stochastic optical reconstruction microscopy. Science,2008,319(5864):810-813.
    [240] Dr ge W. Free radicals in the physiological control of cell function.Physiological Reviews,2002,82(1):47-95.
    [241] Aruoma O. Free radicals, oxidative stress, and antioxidants in human healthand disease. Journal of the American Oil Chemists Society,1998,75(2):199-212.
    [242] Hensley K, Robinson K A, Gabbita S P, et al. Reactive oxygen species, cellsignaling, and cell injury. Free Radical Biology and Medicine,2000,28(10):1456-1462.
    [243] Lin M T, Beal M F. Mitochondrial dysfunction and oxidative stress inneurodegenerative diseases. Nature,2006,443(7113):787-795.
    [244] Dhalla N S, Temsah R M, Netticadan T. Role of oxidative stress incardiovascular diseases. Journal of Hypertension,2000,18(6):655-673.
    [245] Baynes J W. Role of oxidative stress in development of complications indiabetes. Diabetes,1991,40(4):405-412.
    [246] Valko M, Rhodes C J, Moncol J, et al. Free radicals, metals and antioxidants inoxidative stress-induced cancer. Chemico-Biological Interactions,2006,160(1):1-40.
    [247] Scharffetter K K, Wlaschek M, Brenneisen P, et al. UV-induced reactiveoxygen species in photocarcinogenesis and photoaging. Biological chemistry,1997,378(11):1247-1257.
    [248] Lee W M. Drug-induced hepatotoxicity. New England Journal of Medicine,2003,349(5):474-485.
    [249] Liu X, Wei W, Yuan Q, et al. Apoferritin-CeO2nano-truffle that has excellentartificial redox enzyme activity. Chemical Communications,2012,48(26):3155-3157.
    [250] Yin J J, Lao F, Fu P P, et al. The scavenging of reactive oxygen species and thepotential for cell protection by functionalized fullerene materials. Biomaterials,2009,30(4):611-621.
    [251] Kochevar K E. Phototoxicity mechanisms: chlorpromazine photosensitizeddamage to DNA and cell membranes. The Journal of investigative dermatology,1981,77(1):59-64.
    [252] Lavi R, Shainberg A, Shneyvays V, et al. Detailed analysis of reactive oxygenspecies induced by visible light in various cell types. Lasers in Surgery andMedicine,2010,42(6):473-480.
    [253] Vigderman L, Manna P, Zubarev E R. Quantitative replacement of cetyltrimethylammonium bromide by cationic thiol ligands on the surface of goldnanorods and their extremely large uptake by cancer cells. Angewandte Chemie,2012,124(3):660-665.
    [254] Wang Y, Qu G, Li H, et al. Enhanced salt tolerance of transgenic poplar plantsexpressing a manganese superoxide dismutase from Tamarix androssowii.Molecular Biology Reports,2010,37(2):1119-1124.
    [255] Eruslanov E, Kusmartsev S. Identification of ROS using oxidized DCFDA andflow-cytometry, Advanced Protocols in Oxidative Stress II, Armstrong, D, Ed.,Humana Press,2010,594:57-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700