用户名: 密码: 验证码:
典型城市群大气复合污染特征的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气臭氧和细颗粒物与其前体物之间存在高度非线性关系,加上垂直输送、水平输送、云雾过程、气相化学和气溶胶化学等物理化学过程的作用,使得对流层臭氧和细颗粒物的生成过程极为复杂。研究掌握大气O_3和PM_(2.5)的生成过程,诊断其主控因素,不仅是大气复合污染生成机制的核心问题,也对科学防控政策的制定十分重要。
     本论文以中国典型城市群长江三角洲为研究区域,利用气溶胶和光化学污染在线高分辨率观测手段,筛选了典型O_3和PM_(2.5)污染季节;基于活动水平数据更新了2010年长三角城市和区域大气污染物排放清单;利用MM5-CMAQ空气质量模型系统再现典型大气复合污染过程,并采用综合过程速率分析(IPR)方法研究了各种物理和化学过程对长三角典型城市不同高度层大气O_3和PM_(2.5)浓度的污染贡献;利用O_3/NO_z及H_2O_2/HNO_3指示剂法探讨了长三角区域典型城市臭氧污染的主控因素。
     长三角城市和区域大气污染物排放清单更新结果显示,2010年长三角两省一市SO_2、NO_x、PM_(10)、PM_(2.5)、VOC、NH_3和BC排放总量分别为196.45、270.25、142.98、91.18、370.50、119.72和4.46万吨。上海、苏州、无锡、宁波等城市的大气污染物排放强度相对较高,在特定气象条件下,城市内的相互影响十分突出。
     O_3/NO_z及H_2O_2/HNO_3两项臭氧敏感性指标的分析结果显示,上海城区O_3的主控因素为VOC,苏州市为NO_x,杭州和舟山市则属于NO_x和VOC协同控制区。由于前体物排放水平和排放特征的不同,城市群不同地区O_3的主控因素亦有差异,因此对O_3的控制需要因地区不同而有所区别。
     利用IPR方法对O_3开展过程分析的结果显示,在O_3最大浓度出现的时段内,污染输送(包括垂直扩散、垂直湍流和水平湍流)对于地面O_3贡献较大,对O_3生成具有正贡献的气相化学过程主要发生在300-1500米高空,通过向地面传输而使得近地层O_3浓度升高。在下风向地区,O_3通常不是局地生成,而是在早上前体物水平传输到下风向,继而发生光化学反应的结果。城区O_3生成过程略有不同,水平传输是近地层O_3上升的主要贡献过程,而气相化学则主要起到消耗作用,此外垂直扩散和干沉降也是近地层O_3的重要清除过程。在边界层高度以下,扩散过程对O_3的贡献相对较低,与其他过程相比,水平扩散过程可以忽略。垂直扩散过程则使得近地层NO对O_3的滴定作用对O_3的消耗得以弥补。在近地层,郊区的O_3峰值高于城区。
     大气PM_(2.5)生成过程分析结果显示,细颗粒物一次排放是上海、南京、杭州等大城市近地层高浓度细粒子的主要来源之一,其次为水平输送和气溶胶化学;垂直扩散和垂直传输可通过将颗粒物向上输送而降低近地层细粒子浓度;气溶胶化学过程增加细颗粒物浓度主要发生在300m以上;干沉降过程对近地层颗粒物去除效果明显,湿沉降过程可清除边界层高度以下的颗粒物。在整个长三角地区的高浓度细粒子污染事件中,二次有机气溶胶(SOA)及硝酸盐(NO_3-)浓度上升最为显著。整个模拟时段内,细颗粒物中含量最高的组分是硝酸盐(NO_3-),其次为铵盐(NH4+)、硫酸盐(SO_4~(2-))、有机碳(OC)和元素碳(EC)。高污染期间,积聚模态气溶胶的数浓度和表面积上升尤为显著。
     长三角区域性大气复合污染的形成,除了与排放源直接相关外,还受当地风向、风速和大气稳定度等气象条件的影响,对于二次污染而言,更重要的是太阳辐射、温度和相对湿度,它们是NO_x、VOC、O_3和SOA相互转化过程中最重要的外部因素。区域性大气复合污染的形成过程相当复杂,改善区域性大气污染的关键因素在于把握复合污染的主导因素,有效削减人为源产生的的关键前体污染物排放。
Due to the high non-linear relationship between ozone, fine particulate matterand their precursors, together with the functions of vertical transportation, horizontaltransportation, cloud process, gas-phase chemistry and aerosol chemistry, theproduction and cleanup processes of O_3and PM_(2.5)in the major city-clusters of Chinaare quite complicated. Therefore, to understand the production rate and analyze themain control factors of O_3and PM_(2.5)is not only a core issue of understanding theproduction mechanism of comprehensive air pollution, but also very important forpolicymakers to establish pollution control strategies.
     In this thesis, the O_3and PM_(2.5)pollution episodes in the typical city-cluster ofChina–the Yangtze River Delta (YRD) in2010are selected based on the onlineaerosol and photochemical observational data. The regional emission inventory in theYRD is updated to2010based on the latest activity data. The MM5-CMAQ modelingsystem is then applied to reproduce the typical air pollution episodes, and to study thepollution level and characteristics in the YRD region. In addition, the IntegratedProcess Rate Analysis (IPR) method coupled in the CMAQ model is applied to studythe contributions of various physical and chemical processes to atmospheric O_3andPM_(2.5)in typical cities at different heights, and the indicators including O_3/NO_zandH_2O_2/HNO_3are used to analyze the major control factors of O_3in different areas.
     Results of the2010regional emission inventory update show that the totalemissions of SO_2、NO_x、PM_(10)、PM_(2.5)、VOC、NH_3and BC in the YRD are1964.5、2702.5、1429.8、911.8、3705.0、1197.2和44.6kilo tons. The emission intensities inShanghai, Suzhou, Wuxi, Ningbo etc are relatively high, which will make regional airpollution transportation very significant under specific meteorological conditions.
     Results of the indicator analysis (including O_3/NO_zand H_2O_2/HNO_3) show thatthe urban Shanghai area belongs to VOC control region, while Suzhou belongs to NO_xcontrol area. In contrast, Hangzhou and Zhoushan belong to transition area. Thus,themajor control factors of O_3differs with region due to the emission characteristics.Therefore, the control of O_3should be different with area and time.
     The O_3process analysis studied based on IPR method indicates that themaximum concentration of photochemical pollutants occurs due to transportphenomena, including vertical diffusion, vertical advection and horizontal advection.The gas-phase chemistry producing O_3mainly occurs at the height of300-1500m,making a strong vertical O_3transportation from upper level to the surface layer. In thedownwind area, the high surface O_3levels come from horizontally advected flowsduring the morning and gas-phase chemical contributions occurring aloft. The urbandomain behavior slightly differs: the horizontal advection is also the main contributor to the surface concentrations of O_3. The gas-phase chemistry is an important sink forO_3in the lowest layer, coupled with vertical diffusion flows and dry deposition. Thecontributions of diffusive processes to net O_3concentrations under the planetaryboundary layer (PBL) are relatively low, and in particular the horizontal diffusion isnegligible compared to other atmospheric processes. Vertical diffusion compensatesthe loss of O_3in surface layers due to NO titration, contributing positively to net O_3concentrations in urban areas. At the surface layer, the maximum O_3concentration inthe suburban area is higher than in the urban region.
     The PM_(2.5)process analysis indicates that the emission of fine particles is the oneof the major sources of high PM_(2.5)concentrations in the cities of the YRD likeShanghai, Nanjing, Hangzhou, etc, following horizontal transportation and aerosolchemistry. The PM_(2.5)concentration could be reduced due to the vertical advection anddiffusion from lower level to upper air. The aerosol chemistry producing PM_(2.5)mainlyoccurs in the height of upper300m; dry deposition can significantly reduce theparticulates in the lower level, and wet deposition can reduce particles below the PBL.In the whole YRD region, during the high PM_(2.5)pollution episode, the concentrationsof secondary organic aerosol (SOA) and nitrate increase. In the whole simulationperiod, the major components of PM_(2.5)including nitrate (NO_3-), ammonia (NH4+),sulfate (SO_4~(2-)) organic carbon (OC) and element carbon (EC). During the highpollution episode, the number and surface area of accumulation-mode particlesincrease significantly.
     The formation of regional comprehensive air pollution in the YRD is not onlyrelated to air pollutant emissions, but also is significantly influenced by the localmetrological conditions like wind direction, wind speed and atmospheric stability. Thesolar radiation, temperature and humidity are more important to the secondarypollution, and they are the most significant external factors affecting the chemicalreactions among NO_x, VOC, O_3and SOA. The formation mechanism of regional airpollution is quite complicated. The most important point to improve regional airpollution is to grasp the key control factors, so as to effectively reduce anthropogenicprecursor emissions.
引文
[1] Appel B R. Berkeley visibility as related to atmospheric aerosol constituents[J].Atmospheric Environment.1983,19(9):1525-1534.
    [2] Bardouki H, Liakakou H, Economou C, et al. Chemical composition of size-resolvedatmospheric aerosols in the eastern Mediterranean during summer and winter[J].Atmospheric Environment.2003,37(2):195-208.
    [3] Bessagnet B, Hodzic A, Vautard R, et al. Aerosol modeling with CHIMERE-preliminaryevaluation at the continental scale[J]. Atmospheric Environment.2004,38(18):2803-2817.
    [4] Borge R, López J, Lumbreras J, et al. Influence of boundary conditions on CMAQsimulations over the Iberian Peninsula[J]. Atmospheric Environment.2010,44(23):2681-2695.
    [5] Boudriesa H, Canagaratna M R, Jayne J T, et al. Chemical and physical processescontrolling the distribution of aerosols in the Lower Fraser Valley, Canada, during thePacific2001field campaign[J]. Atmospheric Environment.2004,38(34):5759-5774.
    [6] Brasseur G P, Prinn R G, Pszenny A P. Atmospheric Chemistry in a Changing World[M].2003,The IGBP Series.
    [7] Byun D W, Ching J K S. Science Algorithms of the EPA Models-3Community MultiscaleAir Quality (CMAQ) Modeling System[M],1999, EPA/6--/R-99/030.
    [8] Byun D and Schere K L. Review of the governing equations, computational algorithms, andother components of the Models-3Community Multiscale Air Quality (CMAQ) modelingsystem[J], Applied Mechanics Reviews,2006,59(3):51-77.
    [9] Chan Y C, Simpson R W, Mctainsh G H, et al. Source apportionment of visibilitydegradation problems in Brisbae (Australia) using the multiple linear regression techniques.Atmospheric Environment.1999,33(19):3237-3250
    [10] Chan Y C, Simpson R W, Mctainsh G H, et al. Characterisation of chemical species inPM2.5and PM10aerosols in Brisbane, Australia[J]. Atmospheric Environment.1997,31(22):3773-3785.
    [11] Chang J S, Brost R A, Isaksen I S A, et al. A Three-Dimensional Eulerian Acid DepositionModel: Physical Concepts and Formulation. Journal of Geophysical Research,1987,92(14):681-700.
    [12] Chen J C M. Aerosol and ozone sensitivity analysis with the community multi-scale airquality (CMAQ) model for the Pacific Northwest. Master thesis.2002. Washington StateUniversity, USA.
    [13] Chen X L, Feng Y R, Li J N, et al. Numerical Simulations on the Effect of Sea-LandBreezes on Atmospheric Haze over the Pearl River Delta Region. Environmental Modelingand Assessment.2009,14(3):351-363.
    [14] Cheng Z L, Lam K S, Chan L Y, et al. Chemical characteristics of aerosols at coastalstation in Hong Kong. I. Seasonal variation of major ions, halogens and mineral dustsbetween1995and1996[J]. Atmospheric Environment.2000,34(17):2771-2783.
    [15] Chow J C, Watson J G, Edgerton S A, et al. Chemical composition of PM2.5and PM10inMexico City during winter1997[J]. Science of The Total Environment.2002,287(3):177-201.
    [16] Chu S, Paisie J W, Jang B W L. PM data analysis-a comparison of two urban areas: Fresnoand Atlanta[J]. Atmospheric Environment.2004,38(20):3155-3164.
    [17] Colville C J, Griffin R J. The roles of individual oxidants in secondary organic aerosolformation from Delta(3)-carene:1. gas-phase chemical mechanism. AtmosphericEnvironment.2004,38(24):4001-4012.
    [18] Craig L, Brook J R, Chiotti Q, et al. Air pollution and public health: a guidance documentfor risk managers. Journal of Toxicology and Environmental Health-Part A: Current Issues,2008,71(9-10):588-698.
    [19] Dennis R L, Byun D W, Novak J H, et al. The next generation of integrated air qualitymodeling: EPA's models-3[J]. Atmospheric Environment.1996,30(12):1925-1938.
    [20] Dzubay T G. Visibility and aerosol composition in Houston, Texas. Environmental Scienceand Technology,1982,16(8):514-524.
    [21] Ehhalt D H. Photooxidation of trace gases in the troposphere. Phys. Chem. Chem. Phys.,1999,1(24):5401-5408.
    [22] Emery C A, Tai E, Yarwood G. Enhanced Meteorological Modeling and PerformanceEvaluation for Two Texas Ozone Episodes. Prepared for the Texas Natural ResourceConservation Commission, by ENVIRON International Corp, Novato, CA.2001.
    [23] Feng Y, Wang A, Wu D, et al. The influence of tropical cyclone Melor on PM10concentrations during an aerosol episode over the Pearl River Delta region of China:Numerical modeling versus observational analysis[J]. Atmospheric Environment.2007,41(21):4349-4365.
    [24] Foley K M, Roselle S J, Appel K W, et al. Incremental testing of the community multiscaleair quality (CMAQ) modeling system version4.7[J]. Geoscientific Model DevelopmentDiscussions.2010,3(1),1245-1297.
    [25] Fu J S, Jang C C, Streets D G, et al. MICS-Asia II: Evaluating Gaseous Pollutants in EastAsia Us ing An Advanced Modeling System: Models-3/CMAQ System. AtmosphericEnvironment.2008,42(15):3571-3583.
    [26] Geng F H, Tie X X, Xu J M, et al. Characterizations of ozone, NOx and VOC measured inShanghai, China[J]. Atmospheric Environment.2008,42(29):6873-6883.
    [27] Geng F H, Zhao C S, Tang X, et al. Analysis of ozone and VOC measured in Shanghai: Acase study[J]. Atmospheric Environment.2007,41(5):989-1001.
    [28] Han Z W, Hiromasa UEDA, Kazuhide M. Model study of the impact of biogenic emissionon regional ozone and the effectiveness of emission reduction scenarios over easternChina[J]. Tellus B,2005,57(1):12-27.
    [29] Hatfield M L, Huff Hartz K E. Secondary organic aerosol from biogenic volatile organiccompound mixtures[J]. Atmospheric Environment.2011,45(13):2211-2219.
    [30] He Z, Kim Y J, Ogunjobi K O, et al. Characteristics of PM2.5species and long-rangetransport of air masses at Taean background station, South Korea[J]. AtmosphericEnvironment.2003,37(2):219-230.
    [31] Henning S, Weingartner E, Schwikowski M, et al. Seasonal variation of water-soluble ionsof the aerosol at the high-alpine site Jungfraujoch. Journal of Geophysical Research,2003,108(D1): Art. No.4030.
    [32] Hofzumahaus A., Rohrer F., Lu K.. et al. Amplified Trace Gas Removal in the Troposphere.Science,2009,324(5935):1702-1704.
    [33] Hogo, H. and M.W. Gery, User's guide for Executing OZIPM-4with CB-IVor OptionalMechanisms, Vol.1. Description of the Ozone Isopleth Plotting Package-Version4.1988.U.S.EPA/600/8-88/073a, USEPA, RTP, NC.
    [34] Hu M, He L, Zhang Y, et al. Seasonal variation of ionic species in fine particles at Qingdao,China[J]. Atmospheric Environment.2002,36(38):5853-5859.
    [35] Huang C, Chen C H, Li L, et al. Emission inventory of anthropogenic air pollutants andVOC species in the Yangtze River Delta region, China[J]. Atmospheric Chemistry andPhysics.2011,11(9):4105-4120.
    [36] Huang J P, Fung J C H, Lau A K H. Integrated processes analysis and systematicmeteorological classification of ozone episodes in Hong Kong[J]. Journal of GeophysicalResearch.2006,111(D20): DOI:10.1029/2005JD007012.
    [37] Jiménez P, Parra R, Baldasano J M. Influence of initial and boundary conditions for ozonemodeling in very complex terrains: A case study in the northeastern Iberian Peninsula[J].Environmental Modelling&Software.2007,22(9):1294-1306.
    [38] Kan S F, Tanner P A. Inter-Relationships and Seasonal Variations of Inorganic Componentsof PM10in a Western Pacific Coastal City[J]. Water, Air,&Soil Pollution,2005,165(1-4):113-130.
    [39] Khiem M, Ooka R, Hayami H, et al. Process analysis of ozone formation under differentweather conditions over the Kanto region of Japan using the MM5/CMAQ modellingsystem[J]. Atmospheric Environment.2010,44(35):4463-4473.
    [40] Kim J Y, Song C H, Ghim Y S, et al. An investigation on NH3emissions and particulateNH4+-NO3? formation in East Asia[J]. Atmospheric Environment.2006,40(12):2139-2150.
    [41] Kuhlbusch T A J, John A C, Fissan H. Diurnal variations of aerosol characteristics at a ruralmeasuring site close to the Ruhr-Area, Germany[J]. Atmospheric Environment.2001,35,Supplement1: S13-S21.
    [42] Lamb R G. A Regional-Scale (1000Km) Model of Photochemical Air Pollution: Part I.Theoretical Formulation[M]. U.S. EPA,1982, EPA/600/3-85-035, Research Triangle Park,NC.
    [43] Lelieveld J. ATMOSPHERIC CHEMISTRY A missing sink for radicals[J]. Nature,2010,466(7309):925-926.
    [44] Li L, Chen C H, Fu J S, et al. Air quality and emissions in the Yangtze River Delta, China[J].Atmospheric Chemistry and Physics.2011,11(4):1621-1639.
    [45] Liu X, Zhang Y, Xing J, et al. Understanding of regional air pollution over China usingCMAQ, part II. Process analysis and sensitivity of ozone and particulate matter to precursoremissions[J]. Atmospheric Environment.2010,44(30):3719-3727.
    [46] Lu C H and Chang J S. On the indicator-based approach to assess ozone sensitivities andemissions features[J]. Journal of Geophysical Research Atmosphere.2012,103(D3):3453-3462.
    [47] Lun X, Zhang X, Mu Y, et al. Size fractionated speciation of sulfate and nitrate in airborneparticulates in Beijing, China[J]. Atmospheric Environment.2003,37(19):2581-2588.
    [48] Milford J B, Gao D F. Sillman S. Total reactive nitrogen (NOy) as an indicator of thesensitivity of ozone to reductions in hydrocarbon and NOx emissions. Journal ofGeophysical Research.1994,99:3533-3542.
    [49] Modey W K, Eatough D J. Trends in PM2.5composition at the Department of Energy OSTNETL fine particle characterization site in Pittsburgh, PA, USA[J]. Advances inEnvironmental Research.2003,7(4):859-869.
    [50] Novakov T., Ramanathan V., Hansen J. E., et al. Large historical changes of fossil-fuelblack carbon aerosols[J]. Geophysical Research Letters.2003,30(6,1324). Doi:10.1029/2002GL016345.
    [51] Pathak RK, Wu WS, Wang T, et al. Summertime PM2.5ionic species in four major cities ofChina: Nitrate formation in an ammonia-deficient atmosphere[J]. Atmospheric Chemistryand Physics.2009,9(5):1711-1722.
    [52] Quan J, Zhang X. Assessing the role of ammonia in sulfur transformation and deposition inChina[J]. Atmospheric Research.2008,88(1):78-88.
    [53] Querol X, Alastuey A, Rodriguez S, et al. PM10and PM2.5source apportionment in theBarcelona Metropolitan area, Catalonia, Spain[J]. Atmospheric Environment.2001,35(36):6407-6419.
    [54] Ran L, Zhao C S, Xu W Y, et al. VOC reactivity and its effect on ozone production duringthe HaChi summer Campaign[J]. Atmospheric Chemistry and Physics.2011,11(10):8595-8623.
    [55] Scheffe R D, Morris R E. A review of the development and application of the UrbanAirshed model[J]. Atmospheric Environment. Part B. Urban Atmosphere.1993,27(1):23-39.
    [56] Seinfeld J H, Pandis S N, Atmospheric Chemistry and Physics: From Air Pollution toClimate Change[M]. John Wiley and Sons, Inc.,2006. pp1203.
    [57] Sillman S. The use of NOy, H2O2and HNO3as indicators for O3-NOx-ROG sensitivity inurban locations. Journal of Geophysical Research.1995,100(D7):14175-14188.
    [58] Sillman S. The relation between ozone, NOx, and hydrocarbons in urban and polluted ruralenvironments[J]. Atmospheric Environment.1999,33(12):1821-1845.
    [59] Sillman S and He D Y, Pippin M R, et al. Model correlations for ozone, reactive nitrogenand peroxides for Nashville in comparison with measurements: Implications for VOC-NOxsensitivity[J]. Journal of Geophysical Research.1998,103:22629-22644.
    [60] Sillman S and He D Y. Some theoretical results concerning O3-NOx-VOC chemistry andNOx-VOC indicators [J]. Journal of Geophysical Research.2002,107(D22),doi:10.1029/2001JD001123.
    [61] Sillman S, Logan J A, Wofsy S C. The sensitivity of ozone to nitrogen oxides andhydrocarbons in regional ozone episodes[J]. Journal of Geophysical Research.1990,95(D2):1837-1852.
    [62] Sillman S and Samson P J. Impact of temperature on oxidant photochemistry in urban,polluted rural and remote environments. Journal of Geophysical Research.1995,100(D6):11497-11508.
    [63] Song C H, Park M E, Lee K H, et al. An investigation into seasonal and regional aerosolcharacteristics in East Asia using model-predicted and remotely-sensed aerosol properties[J].Atmospheric Chemistry and Physics.2008,8(22):6627-6654.
    [64] Streets D G, Fu J S, Jang C J, et al. Air quality during the2008Beijing Olympic Games[J].Atmospheric Environment.2007,41(3):480-492.
    [65] Tonnesen G S and Dennis R L. Analysis of radical propagation efficiency to assess ozonesensitivity to hydrocarbons and NOx1. Local indicators of instantaneous odd oxygenproduction sensitivity. Journal of Geophysical Research.2000,106(D7):9213-9225
    [66] Tie X, Cao J. Aerosol pollution in China: Present and future impact on environment[J].Particuology.2009,7(6):426-431.
    [67] Tie X X, Wu D. Brasseur G. Lung cancer mortality and exposure to atmospheric aerosolparticles in Guangzhou, China. Atmospheric Environment.2009b,43(14):2375-2377.
    [68] Tonse S R, Brown N J, Harley R A, et al. A process-analysis based study of the ozoneweekend effect[J]. Atmospheric Environment.2008,42(33):7728-7736.
    [69] Varutbangkul V, Brechtel F J, Bahreini R. et al. Hygroscopicity of secondary organicaerosols formed by oxidation of cycloalkenes, monoterpenes, sesquiterpenes, and relatedcompounds. Atmospheric Chemistry and Physics.2006,6(9):2367-2388.
    [70] Vingarzan R, Thomson B. Temporal variation in daily concentrations of ozone andacid-related substances at Saturna Island, British Columbia[J]. Journal of the Air&WasteManagement Association,2004,54(4):459-472.
    [71] Wang L, Jang C, Zhang Y, et al. Assessment of air quality benefits from national airpollution control policies in China. Part II: Evaluation of air quality predictions and airquality benefits assessment[J]. Atmospheric Environment.2010,44(28):3449-3457.
    [72] Wang F, Chen D S, Cheng S Y, et al. Identification of regional atmospheric PM10transportpathways using HYSPLIT, MM5-CMAQ and synoptic pressure pattern analysis[J].Environmental Modelling&Software.2010,25(8):927-934.
    [73] Wang X S, Song Y, Zhang Y H, et al. CMAQ modeling of near-ground ozone pollutionduring the CAREBeijing-2006campaign in Beijing, China.2010b,12, EGU2010-10660.
    [74] Whitey K T. The physical characteristics of sulfur aerosols[J]. Atmospheric Environment.1978,12(1-3):135-159.
    [75] Xu J, Zhang Y, Fu J S, et al. Process analysis of typical summertime ozone episodes overthe Beijing area[J]. Science of The Total Environment.2008,399(1-3):147-157.
    [76] Xu X B, Lin W L, Wang T, et. al. Long-term Trend of Tropospheric Ozone over the YangtzeDelta Region of China. Advanced Climate Change Research.2007,3(Suppl.):60-65
    [77] Yarwood G, Roa S, Yocke M, Whitten G, Updates to the Carbon Bond Chemical Mechanism:CB05[M]. Final report to the US EPA, RT-0400675. Available at: http://www.camx.com.2005.
    [78] Ye B, Ji X, Yang H, et al. Concentration and chemical composition of PM2.5in Shanghaifor a1-year period[J]. Atmospheric Environment.2003,37(4):499-510.
    [79] Yu S, Mathur R, Kang D, et al. A study of the ozone formation by ensemble backtrajectory-process analysis using the Eta-CMAQ forecast model over the northeastern U.S.during the2004ICARTT period[J]. Atmospheric Environment.2009,43(2):355-363.
    [80] Zhang Y, Liu P, Queen A, et al. A comprehensive performance evaluation of MM5-CMAQfor the Summer1999Southern Oxidants Study episode-Part II: Gas and aerosolpredictions[J]. Atmospheric Environment.2006,40(26):4839-4855.
    [81] Zhang Y, Vijayaraghavan K, Wen X Y, et al. Probing into regional O3and PM pollution inthe U.S., part I. A1-year CMAQ simulation and evaluation using surface and satelliteData[J]. Journal of Geophysical Research.2009a,114(D22304).
    [82] Zhang Y, Wen X Y, Wang K, et al. Probing into regional O3and PM pollution in the U. S.,part II. An examination of formation mechanisms through a process analysis technique andsensitivity study[J]. Journal of Geophysical Research.2009b,114(D22305).
    [83] Zhang Z, Friedlander S K. A Comparative Study of Chemical Databases for Fine ParticleChinese Aerosols[J]. Environmental Science and Technology,2000,34(22):4687-4694.
    [84] Wang G, Wang H, Yu Y, et al. Chemical characterization of water-soluble components ofPM10and PM2.5atmospheric aerosols in five locations of Nanjing, China[J]. AtmosphericEnvironment.2003,37(21):2893-2902.
    [85] Xiaoxiu L, Xiaoshan Z, Yujing M, et al. Size fractionated speciation of sulfate and nitrate inairborne particulates in Beijing, China[J]. Atmospheric Environment.2003,37(19):2581-2588.
    [86]陈训来,冯业荣,王安宇, et al..珠江三角洲城市群灰霾天气主要污染物的数值模拟[J].中山大学学报(自然科学版)[J].2007,46(4):103-107.
    [87]程真,陈长虹,黄成, et al.长三角区域城市间一次污染跨界影响[J].环境科学学报.2011,31(4):686-694.
    [88]邓雪娇,周秀骥,吴兑, et al.珠江三角洲大气气溶胶对地面臭氧变化的影响[J].中国科学:地球科学.2011,41(1):93-102.
    [89]吴兑.大城市区域霾与雾的区别和灰霾天气预警信号发布[J].环境科学与技术.2008,31(9):1-7.
    [90]吴兑.再论相对湿度对区别都市霾与雾(轻雾)的意义[J].广东气象.2006,2(1):9-14.
    [91]吴兑,毕雪岩,邓雪娇, et al.珠江三角洲大气灰霾导致能见度下降问题研究[J].气象学报.2006,64(4):510-517.
    [92]吴兑,毛节泰,邓雪娇, et al.珠江三角洲黑碳气溶胶及其辐射特性的观测研究[J].中国科学(D辑:地球科学).2009,39(11):1542-1553.
    [93]冯业荣.珠江三角洲气溶胶污染的机理分析及数值模拟研究[D].中山大学,2006.
    [94]胡敏,邓志强,王轶, et al.膜采样离线分析与在线测定大气细粒子中元素碳和有机碳的比较[J].环境科学.2008,29(12):3297-3303.
    [95]胡敏,何凌燕,黄晓锋, et al.北京大气细粒子和超细粒子理化特征、来源及形成机制[M].北京:科学出版社.2009.
    [96]蒋维楣,蔡晨霞,李昕.城市低层大气臭氧生成的模拟研究[J].气象科学.2001,21(2):154-161.
    [97]康娜,高庆先,周锁铨, et al.区域大气污染数值模拟方法研究[J].环境科学研究.2006,19(6):20-26.
    [98]李莉,陈长虹,黄成, et al.长江三角洲地区大气O_3和PM_(10)的区域污染特征模拟[J].环境科学.2008,29(1):237-245.
    [99]刘晨书.北京大气气溶胶及干沉降中有机酸的来源特征研究[D].首都师范大学,2009.
    [100]刘新民,邵敏,曾立民, et al.珠江三角洲地区气溶胶中含碳物质的研究[J].环境科学.2002,(S1):54-59.
    [101]刘煜,李维亮,周秀骥.夏季华北地区二次气溶胶的模拟研究[J].中国科学(D辑:地球科学).2005,35(S1):156-166.
    [102]李放,吕达仁.北京地区气溶胶光学厚度中长期变化特征[J].大气科学.1996,20(4):385-394.
    [103]陆克定,张远航,苏杭, et al.珠江三角洲夏季臭氧区域污染及其控制因素分析[J].中国科学:化学.2010,40(4):407-420.
    [104]罗云峰,李维亮,周秀骥.20世纪80年代中国地区大气气溶胶光学厚度的平均状况分析[J].气象学报.2001,59(1):77-87.
    [105]马锋敏,高庆先,康娜.北京及周边地区一次大气污染过程的数值模拟[J].气象与减灾研究.2008,31(2):24-28.
    [106]孟伟,高庆先,张志刚, et al.北京及周边地区大气污染数值模拟研究[J].环境科学研究.2006,19(5):11-18.
    [107]屈玉,安俊岭.人为源和生物源排放对臭氧的贡献-以春夏季东亚地区为例[J].中国环境科学.2009,29(4):337-344.
    [108]任信荣,王会祥,邵可声, et al.广州城市大气HOx化学过程初步研究[J].环境科学.2004,25(4):28-31.
    [109]单文坡,殷永泉,杜世勇, et al.夏季城市大气O_3浓度影响因素及其相关关系[J].环境科学.2006,27(7):1276-1281.
    [110]宿兴涛,王汉杰.中国黑碳气溶胶分布特征与辐射强迫的模拟研究[J].大气科学学报.2009,32(6):798-806.
    [111]孙娟.气溶胶光学厚度的高光谱遥感反演及其环境效应[D].华东师范大学,2006.
    [112]唐孝炎,张远航,邵敏.大气环境化学(第二版)[M].北京:高等教育出版社.2006.
    [113]谭吉华.广州灰霾期间气溶胶物化特性及其对能见度影响的初步研究[D].中国科学院研究生院(广州地球化学研究所),2007.
    [114]王俏巧.北京市大气细颗粒有机物的化学组成及源解析研究[D].北京大学.2008.
    [115]王静,杨复沫,王鼎益, et al.北京市MODIS气溶胶光学厚度和PM_(2.5)质量浓度的特征及其相关性[J].中国科学院研究生院学报.2010,27(1):10-16.
    [116]王淑兰,张远航,钟流举, et al.珠江三角洲城市间空气污染的相互影响[J].中国环境科学.2005,25(2):133-137.
    [117]王雪松,李金龙.北京地区臭氧源识别个例研究[J].北京大学学报(自然科学版).2003,39(2):244-253.
    [118]王艳,柴发合,刘厚凤, et al.长江三角洲地区大气污染物水平输送场特征分析[J].环境科学研究.2008,21(1):22-29.
    [119]王瑛.中国气溶胶的离子化学[D].北京师范大学.2006.
    [120]王自发,李丽娜,吴其重, et al.区域输送对北京夏季臭氧浓度影响的数值模拟研究[J].自然杂志.2008,30(4):194-198.
    [121]解鑫,邵敏,刘莹, et al.大气挥发性有机物的日变化特征及在臭氧生成中的作用-以广州夏季为例[J].环境科学学报.2009,29(1):54-62.
    [122]徐峻,张远航.北京市区夏季臭氧生成过程分析[J].环境科学学报.2006,26(6):973-980.
    [123]徐晓斌,林伟立,王韬, et al.长江三角洲地区对流层臭氧的变化趋势[J].气候变化研究进展.2006,2(5):211-216.
    [124]殷永泉,李昌梅,马桂霞, et al.城市臭氧浓度分布特征[J].环境科学.2004,25(6):16-20.
    [125]银燕,崔振雷,张华, et al.2006年中国地区大气气溶胶浓度分布特征的模拟研究[J].大气科学学报.2009,32(5):595-603.
    [126]于娜.北京市大气细粒子有机碳污染特征及来源解析[D].北京大学.2008.
    [127]袁慧.中国气溶胶的理化特性及其来源的研究[D].北京师范大学.2005.
    [128]张军华,刘莉,毛节泰.地基多波段遥感西藏当雄地区气溶胶光学特性[J].大气科学.2000,24(4):549-558.
    [129]张小曳.中国大气气溶胶及其气候效应的研究[J].地球科学进展.2007,22(1):12-16.
    [130]张远航,邵可声,唐孝炎, et al.中国城市光化学烟雾污染研究[J].北京大学学报(自然科学版).1998,34(Z1):260-268.
    [131]张志刚,高庆先,韩雪琴, et al.中国华北区域城市间污染物输送研究[J].环境科学研究.2004,17(1):14-20.
    [132]中国统计年鉴2011[M].北京:中国统计出版社.2011.
    [133]中国能源统计年鉴2011[M].北京:中国统计出版社.2011.
    [134]周敏,陈长虹,王红丽, et al.上海市秋季典型大气高污染过程中颗粒物的化学组成变化特征[J].环境科学学报.2012,32(1):81-92.
    [135]朱帅,马建中,王堰, et al..长江三角地区春季臭氧异常高值的数值模拟研究[J].环境科学研究.2006,19(6):1-8.
    [136]宗雪梅,邱金桓,王普才.近10年中国16个台站大气气溶胶光学厚度的变化特征分析[J].气候与环境研究.2005,10(2):201-208.
    [137]宗雪梅,王庚辰,陈洪滨, et al.北京地区边界层大气臭氧浓度变化特征分析[J].环境科学.2007,28(11):2615-2619.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700