用户名: 密码: 验证码:
原油中硫化氢脱除技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原油中硫化氢的存在不仅会引起管道、设备的腐蚀和炼油工业中催化剂的中毒,而且还严重地威胁人身安全,寻找经济、有效的硫化氢脱除技术,是国内许多油田急需解决的生产难题。
     本文结合塔河油田污水矿化度高、塔河稠油硫化氢含量高的特点,采用电解氯化钠溶液所生成的强氧化性的次氯酸钠来脱除原油中的硫化氢。通过正交试验研究了各种因素(电极材料、极距、NaCl溶液浓度、电压、温度、pH值)对有效氯值及电流效率的影响,确定了最优电解方案;通过气相中硫化氢脱除的静态电解实验进行了效果评价;在脱除气相中硫化氢实验基础上,提出了脱除原油中硫化氢的动态实验方法,通过原油与电解所得的次氯酸钠溶液的在线混合流程,研究了动态实验下静态混合器类型、流量比及温度对硫化氢脱除效果的影响。
     研究结果表明,在饱和食盐水电解的最佳条件下,静态电解到190分钟后有效氯开始降低,电流效率在电解到100分钟之前一直保持着70%以上的水平,前30分钟保持在90%以上的水平,电流密度在0.8~1.05A/cm2的范围时,直流电单耗在5.37~13.03 kWh·kg-1的范围内;在动态电解240g/L氯化钠溶液时,当电流密度为0.4A/cm2时,电解效果最好,有效氯值可达13.82g/L,直流电单耗为3.05 kWh·kg-1;在脱除气相中硫化氢的实验中,不管采用已电解生成的次氯酸钠溶液吸收硫化氢,还是采用氯化钠溶液电解吸收硫化氢的方法都有较好的硫化氢脱除效果,硫化氢脱除率最高可达99%以上;在脱除原油中硫化氢的动态实验中,静态混合器类型、流体流量与温度的变化都会对硫化氢脱除率造成影响,但是动态实验效果没有静态实验显著,最高脱除率为72.4%,远低于静态实验的脱除率96.5%。
The existence of hydrogen sulfide in crude oil will not only lead to corrosion of the equipment and pipeline, catalyst poisoning in the oil refining industry, but also a serious threat to personal safety. Therefore, the search for economical and effective hydrogen sulfide removal technology has been a production issue that must be addressed urgently for many domestic oilfields.
     According to Tahe Oilfield waste water with high salinity and Tahe heavy oil with high content of hydrogen sulfide, this paper studied sodium hypochlorite with strong oxidation generated by electrolysis of sodium chloride solution to remove hydrogen sulfide from crude oil. By electrolyzing sodium chloride solution, this paper studied the various factors (electrode material, polar distance, solution concentration, voltage, temperature, pH value) which have impact on solution concentration and current efficiency by orthogonal experiments and determine the optimal electrolysis program. According to the static electrolysis experiments of removing hydrogen sulfide from the gas, this paper evaluated the treatment effect. In this paper,the dynamic experimental method of removing hydrogen sulfide from crude oil is proposed which is based on the experiments of removing hydrogen sulfide from the gas. By online mix process with sodium hypochlorite solution and crude oil, this paper studied the influences of the static mixer type, flow ratio and temperature on the the treatment effect.
     Experimental results show that chlorine value began to decrease after 190 minutes under the best conditions in the static electrolysis of saturated salt water. The current efficiency maintained the level of 70% before 100 minutes and maintained the level of 90% before 30 minutes. The DC unit consumption was from 5.37 kWh·kg-1 to 13.03 kWh·kg-1 when the current density was from 0.8 A/cm2 to 1.05A/cm2. When the current density was 0.4A/cm2 under the dynamic electrolysis of 240g/l sodium chloride solution, chlorine value was up to 13.82g/l and DC unit consumption was 3.05 kWh·kg-1. During the experiments of removing hydrogen sulfide from the gas, it can be up to the better removal effect no matter adopting the methods that sodium hypochlorite solution generated by electrolysis absorbed hydrogen sulfide, or that electrolyzing sodium chloride solution removed hydrogen sulfide. Applying the above two methods, the highest removal rate can be up to 99%. During the dynamic experiments of removing hydrogen sulfide from crude oil, static mixer type, fluid flow and temperature will impact on the removal rate of hydrogen sulfide. But the dynamic test results are not as well as the static test results. The maximum removal rate was 72.4% in the dynamic experiments, which was much lower than the static test results by 96.5%.
引文
[1]Gas Processes’98.Hydrocarbon Processing ,1998 ,77(4):89-103.
    [2]张剑锋.液相氧化法脱硫工艺的现状与发展[J].石油与天然气化工,1992,21(3):142-149.
    [3]Dalrymple D A et al.An overview of liquid redox sulfur recovery[J].Chem Eng Prog,1989,85(3):43.
    [4]黄子衎.栲胶法脱硫在化肥厂应用的概述[J].化肥工业,2002,29(4):22-25.
    [5]梁锋,徐丙根,施小红等.湿式氧化法脱硫的技术进展[J].现代化工,2003,23(5):21-24.
    [6]毛晓青,刘继红,杨树卿.PDS脱硫技术-液相催化氧化法脱硫的最新发展[J].石油与天然气化工,1993,2.
    [7]Cabodi A J,Van H R,Hardison L C.First commercial test is successful for catalytic hydrogen sulfide oxidation process[J].Oil &Gas,1982,80(27):107.
    [8]仝明,陈昕.Lo-Cat硫回收工艺及其评价[J].石油化工环境保护,2000,(1):29-33.
    [9]Steijins M, Berks F, Verloop A, Mars Po.The mechanism of the catalytic oxidation of hydrogen sulfide [J].J Catal, 1976 , 42:872951.
    [10]Kohl AL,Riesenfeld F C.Gas Purification (Fourth Edition).Gulf Publishing Company, Houston,Texas,1985.
    [11]朱世勇.环境与工业气体净化技术[M].北京:化学工业出版社,2001,5:15-2861.
    [12]马坚,夏文章,孙小玲.氧化锌脱硫剂的研制[J].精细石油化工文摘,1999,13(2):681.
    [13]王睿,石冈,魏伟胜等.工业气体中H2 S的脱除方法-发展现状与展望[J].天然气工业,1999,19(3):P 84-90.
    [14]Wilson B M, Nawell R D. H2 S removal by stretford process[J].Chem Eng Prog,1984,80(10):40-471.
    [15]邵立明,何品晶.固定化微生物处理含H2 S气体的试验研究[J].环境科学,1999,20(1):19-22.
    [16]Anatassla Kotronarou.Oxidation of hydrogen sulfide in aqueous solution by ultrasonic irradiation[J].Environ Sci.Technol,1992,26(2):2420-2470.
    [17]吴剑明.高效原油硫化氢脱除剂研究[J].油气田地面工程,2008,27(8):6-8.
    [18]杨思明,王春升.海上油田防硫化氢腐蚀问题[J].中国海上油气工程,2000,12(1):15-18.
    [19]冯玉杰,李晓岩等.电化学技术在环境工程中的应用[M].北京:化学工业出版社,2002:50-164.
    [20]郑士远.电化学—化学过程处理硫氢化铵废水研究[J].无机盐工业,1992,(5):31-32.
    [21]于万波,孙长军.次氯酸钠发生器的研制[J].环境污染治理技术与设备,2003,4(3):90-91.
    [22]黄运涛,彭乔.温度的变化对海水电解阳极过程的影响[J].辽宁化工,2006,35(4):191-193.
    [23]苏秀霞,李仲谨.电解海水制氯技术在火电厂的应用[J].陕西科技大学学报,2006,24(5):45-47.
    [24]戴金星.中国含硫化氢的天然气分布特征、分类及其成因探讨[J].沉积学报,1985,(4):109-120.
    [25]马淳安.有机电化学合成导论[M].北京:科学出版社,2002:7-8.
    [26]张晓,崔凯军等.电化学反应器去除硫化氢废气实验研究[J].沉积学报,2008,36(5):539-542.
    [27]张招贤,赵国鹏等.应用电极学[M].北京:冶金工业出版社,2005:135-140.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700