用户名: 密码: 验证码:
掺杂二氧化钛光催化粉体的制备及分散研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化钛因其具有优良的光催化活性、价格低廉、无毒无害和稳定性强等优点,受到人们广泛的关注。然而,二氧化钛的光催化作用只能在紫外光的条件下受到激发,而紫外光仅占太阳光能量的5%,这在一定程度上限制了二氧化钛的应用范围。为了提高二氧化钛的活性,本文通过分析不同制备方法制备出不同碳掺杂量的二氧化钛粉体对甲基橙的光催化降解作用,探求其最佳的碳掺杂量,并对光催化活性好的粉体进行分散性研究。
     以钛酸丁酯和无水乙醇为前驱、四丁基氢氧化铵为碳源,加入不同量的四丁基氢氧化铵,采用溶胶—凝胶法制备了碳掺杂改性的二氧化钛;以硫酸钛和去离子水为前驱、葡萄糖为碳源,分别加入不同的葡萄糖量,采用水热法制备碳掺杂改性的二氧化钛;以硫酸钛和尿素为前驱、葡萄糖为碳源,分别加入不同的葡萄糖量,采用均匀沉淀—水热法制备碳掺杂改性的二氧化钛粉体。
     对制备出的粉体进行光催化降解甲基橙实验,在汞灯(模拟紫外光)条件下,粉体具有较强的降解有机物能力,符合二氧化钛的光催化特性;在氙灯(模拟太阳光)条件下反应6小时,粉体降解了一定量的甲基橙溶液,其中均匀沉淀—水热法制备的粉体光催化效果最好,当葡萄糖的掺杂量为0.0006mol时光催化活性最高,降解了32%的甲基橙溶液。
     采用单一变量法对均匀沉淀—水热法制备的碳掺杂二氧化钛粉体的分散性进行研究,对不同分散剂及添加量、不同超声时间和不同pH值对分散效果的影响进行分析。当六偏磷酸钠和改性二氧化钛粉体和水的质量比为1:50:100、超声时间为15min、溶液pH=10时,碳掺杂的二氧化钛水溶液分散效果最佳。
Due to its excellent photocatalytic activity, low cost,non-toxicity and good stability, etc., the titanium dioxide has received extensive attention. However, the photocatalysis of titanium dioxide can only be activated by ultraviolet light. The ultraviolet light, however, constitutes only about 5 percent of the total energy emitted from the sun, thus to some extent restricting the applications of titanium dioxide. Aiming to enhance the activity of titanium dioxide, this thesis analyzed the photocatalytic degradation effect on methyl orange of titanium dioxide powders prepared by different methods and with different carbon doping amount, sought to determine the optimum carbon doping amount and studied the dispersion of those powders with good photocatalytic activity.
     The sol-gel method was used to prepare titanium dioxide with modified carbon doping: different amount of tetrabutyl ammonium hydroxide as carbon source was added into butyl titanate and anhydrous alcohol which were used as precursors, and titanium dioxide with modified carbon doping was then prepared by the hydrothermal method; different amount of glucose as carbon source was added into titanium sulfate and deionized water which were used as precursors, and titanium dioxide with modified doping was then prepared by homogenous precipitation-hydrothermal method; different amount of glucose as carbon source was also added into titanium sulfate and urea which were used as precursors, and a series of titanium dioxide powders with different carbon doping were prepared.
     The prepared powders were then subjected to methyl orange photocatalytic degradation experiment. Under the illumination of mercury lamp (which was used to produce simulated ultraviolet light), the powders were found to have a strong ability to degrade organic matters, which is in line with the photocatalytic characteristic of titanium dioxide; under the illumination of xenon lamp (which was used to produce simulated sun light) for reactions over 6 hours, a portion of the methyl orange solution was degraded by the powders. The powder prepared by homogenous precipitation-hydrothermal method was found to have produced the best photo-catalytic effect, having reached its peak photo-catalytic performance and degraded 32% of the methyl orange solution, when 0.006mol of glucose was added.
     Using the single-variable method, the thesis tested and studied the dispersion of carbon-doped titanium dioxide powder prepared by homogenous precipitation- hydrothermal method, and analyzed the respective effect of different dispersant and in different amount, different ultrasonic time, and different pH value on the dispersion. The carbon-doped titanium dioxide aqueous solution was found to have the optimum dispersion when the mass ratio of sodium hexametaphosphate to modified titanium dioxide powder to water is 1:50:100, the ultrasonic time is 15min, and the pH value of the solution is 10.
引文
[1]李洪斌,刘滔,李云苍.太阳能光催化污水处理研究现状[J] .云南师范大学学报, 2002, 22 : 23-28
    [2] Fujishima A,Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature,1972,238(5358): 37-38
    [3] Frank S N,Bard A J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder[J]. Am Chem Soc, 1977, 99: 303-304
    [4] Vogel R. Quantum sized PbS, CdS, Ag2S, Sb2S3 and Bi2S3 particles as sensitizers for various nanoporous wide band gap semiconductors[J]. Phys Chem, 1994, 98: 3183-3188
    [5]程萍,顾明元,金燕苹. TiO_2光催化剂可见光化研究进展[J].化学进展,2007,17(1): 8-14
    [6] W Y Choi, A Termin, M R Hoffmann. The role of metal ion dopants in quantum-sized TiO_2:correlation between photoreactivity and charge carrier recombination dynamics[J]. Journal of Physical Chemistry, 1994, 98(51): 13669-13679
    [7] Bessekhouad Y, Robert D, Weber J V, Chaoui N. Effect of alkaline-doped TiO_2 on photocatalytic efficiency[J].J Photochem Photobiol A, 2004, 167(1): 49-57
    [8] Cao, et a1. Structural, Optical and Photoelectrochemical Properties of M-Ti02 Model Thin Film Photocatalysts[J]. J Phys Chem B, 2004, 108(45): 17466-17476
    [9] S Sato. Photocatalytic of NOX-doped Ti02 in the visible light region[J]. Chemical Physics Letters, 1986, 123(1-2): 126-128
    [10] Asahi R, Morikawa T, Ohwaki T, et a1. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293: 269-271
    [11] Khan S U, M Al-Shahry. Efficient Photochemical Water Splitting by a Chemically Modified n-Ti02[J]. Science, 2002, 297(5590): 2243-2245
    [12] Asahi R, Morikawa T, Ohwaki T, et a1. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293: 269-271
    [13] Irie H, Washizuka S, Yoshino N, et al. Visible-light induced hydrophilicity on nitrogen-substituted titanium dioxide films[J]. Chem Commun, 2003, 11: 1298-1299
    [14] Di Valentin C, Pacchioni G, Selloni A. Origin of the different photoactivity of N-doped anatase and ruble Ti02[J]. Phy Rev B, 2004, 108: 10617-10620
    [15] Lee T Y, Park T, et al. Electronic properties of N-doped and C-doped Ti02[J]. Appl Phys Lett,2005, 87: 011904-011906
    [16] Sakthivel S, Kisch H. Photocatalytic and Photoelectrochemical Properties of Nitrogen-Doped Titanium Dioxide[J]. CHEMPHYSCHEM, 2003, 4: 487-490
    [17] Di Valentin C, Pacchioni G, Selloni A, et al. Characterization of Phramagnetic Species in N-Doped Ti02 Powders by EPR Spectroscopy and DFT Calculations[J]. J Phys Chem B, 2005, 109: 11414-11419
    [18] Wei Zhao, Ma W, Chen C, et al. Efficient degradation of toxic organic pollution with Ni2O3/TiO_2-Bx under visible irradiation [J]. J Am Chem Soc, 2004, 126: 4782-4783
    [19]于爱敏,武光军,严晶晶.水热法合成可见光响应的B掺杂TiO_2及其光催化活性[J].催化学报,2009,30(2):137
    [20] Gomez R, Lopez T, Ortiz-Islas E, et al. Effect of sulfation on the photoactivity ofTi02 sol-gel derived catalysts[J]. J Mot Catal A: Chem, 2003, 193: 217-226
    [21] Ohno T, Mitsui T, Matsumura M. Photocatalytie activity of S-doped Ti02 photocatalyst under visible light[J]. Chem Lett, 2003, 32: 364-365
    [22]高廉,郑珊,张青红.纳米氧化钦光催化材料及应用,北京:化学工业出版,2002
    [23]张立德,牟季美.纳米材料和纳米结构,北京:科学出版社,2002
    [24]龙海云.纳米二氧化钛粉体的制备及其在水相介质中的分散性研究[D].长沙:中南大学,2007
    [25]陈朝华,刘长河.钛白粉生产及应用技术.北京:化学工业出版社,2005.8
    [26]吴子豹,黄妙良,杨媛媛等.负载型TiO_2复合材料对甲基橙的吸附行为及光催化降解动力学[J].精细化工,2007, 24(1): 21—26
    [27]胡杰,陈维国.水体系中纳米二氧化钛的分散性能[J].现代纺织技术, 2008, O61214: 1
    [28]徐金宝,李荣,王永红,钟国伦.纳米TiO_2在介质中分散性研究进展[J]. 2009, 25(6): 2
    [29]王全杰,朱飞,王改芝,高晶,鹿晓斌.声波对纳米二氧化钛粉体分散性的影响[J].皮革科学与工程, 2007, 17(2): 1-2
    [30]董震,杨建忠,郭晓玲.纳米TiO_2粒子的分散研究.陕西省教育厅专项科研计划项目[J]. 2005, 43(3): 1-3
    [31]曾玉燕,沈培康,童叶翔.纳米二氧化钛粉体的分散研究[J].中山大学学报, 2004, 43(3): 2-3
    [32]王红军,李启厚,刘志宏,艾侃,张多默.超细粉体在液相中的分散性研究[J].中国科技论文在线. TF123.72: 1-3
    [33]董震,杨建忠,郭晓玲.纳米TiO_2粒子的分散研究[J].西安工程科技学院, 2005, 22(9): 2-3
    [34]孙飞,许海育.纳米二氧化钛在整理液中的分散稳定性研究[J].东华大学化工学院, 2006, 23(10): 1-3
    [35]王红军,李启厚,刘志宏,艾侃,张多默.超细粉体在液相中的分散性研究[J].中国科技论文在线, TF123.72: 2-4
    [36]胡杰,陈维国.水体系中纳米二氧化钛的分散性能[J].浙江理工大学材料与纺织学院, 2008, O61214: 1-2
    [37]武爱莲,郭婷,孙彦平.光源对TiO_2光催化剂性能的影响[J].太原理工大学学报, 2003, 34(3): 93-99
    [38]陈云,冯其明,陈远道,张国范.超细二氧化钛在水溶液中分散性研究[J].中国粉体技术, 2004, TB383: 2
    [39]徐金宝,李荣,王永红,钟国伦.纳米TiO_2在介质中分散性研究进展[J].科技通报, 2009, 25(6): 1-4
    [40]张卫华,李晓彤,徐松等.二氧化钛光催化效率影响因素的研究[J].吉林化工学院学报,2009, 26(2): 79-83
    [41]昝菱,钟家怪,罗其荣等.纳米TiO_2制备过程中的若干影响因素.无机材料学报, 1999, 14(2): 265-270

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700