用户名: 密码: 验证码:
川滇地区Lg波Q值横向不均匀性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Q值是描述地球介质特性的主要参数,通过研究天然地震的地震波衰减Q值,以进一步了解地球内部介质的特性、推断其热力学状态、了解地球内部结构组成及其变化等,是地震学的主要研究方向之一。从研究方法来讲,主要有单台-单源法、多台-单源法、多台-多源法等。从研究所用的地震波资料来看,有自由振荡、体波、面波、尾波、Lg波等。由于Q值与频率有关,通常在频率域根据观测波形衰减研究介质的Q值。要特别指出的是,由于Lg波是区域范围地震波形中强度最为突出、能量最大的震相,可在大陆地壳内部长距离传播,其振幅对地壳构造及地壳物理参数的变化非常敏感。因此,Lg波的Q_(Lg)值是反映区域地壳结构特征的重要参数之一,也是研究区域范围地震波传播特征,进而进行强地面运动模拟的重要参数。随着观测资料的积累和层析技术的发展, Q_(Lg)研究由获取单个台-源路径上的平均值发展为二维成像,以更加精确地研究介质的横向不均匀性分布特征。
     川滇地区位于青藏高原东南部,欧亚板块和印度板块汇聚、消减、相互作用的边缘地带。特殊的构造部位和强烈的地壳运动,使得该地区地震频度高、强度大、分布广,成为中国大陆内部地震活动最显著的区域之一。不同走向,不同规模的断裂带纵横交错,地壳介质横向不均匀性显著,尤其是西部与东部的差异更加显著。川滇地区地壳厚度变化也非常显著,由东南部的35km变化至西北部的70km,尤其在青藏高原及其边缘,地壳厚度迅速变化。近年来,随着云南地震台网和四川地震台网的建立,积累了大量的宽频带数字化地震资料。由于上述特殊的地理位置和足够的数据记录,本论文选择川滇地区进行Lg波Q值横向不均匀性研究。
     本研究区域范围经度范围从97°到108°,纬度范围从21°到35°,从中选取了云南的22个台站和四川的14个台站,其中云南的22个台全部为宽频带台站,四川的台站有5个是宽频带台站,其他为短周期台站。为了保证参加反演的每条记录上都能记录到清晰的Lg波,采用了在反演的每一个频点Lg的谱和Pn的谱相比的方法。通过观察Lg波的传播特征,确定以2.8km/s-3.6km/s的速度窗限定Lg波,以6.5km/s-8.0km/s的速度窗限定Pn,选择在反演的每一个频点Lg的谱大于Pn的谱的记录。最终,频率在1.5Hz及以下时,利用云南的22个宽频带台和四川的5个宽频带台记录的535个地震共5146条射线进行反演;而频率在1.5Hz以上时,利用了云南的22个宽频带台和四川的14个台记录的644个地震共7468条射线进行反演。为了获得稳定的观测信号的傅立叶谱,本研究采用平移窗谱方法求取Lg波的观测位移谱,运用两段几何扩散模型,构建了反演矩阵。采用奇异值分解法反演得到了各个频点的Q_(Lg)平均值。根据分辨率测试,最终将研究区划分为0.5°×0.5°的网格。将Q_(Lg)平均值结果作为初始值反演得到了每个网格的Q_(Lg)值,进而得到了川滇地区分辨率小于100km的Q_(Lg)层析成像结果。相对于其它研究,结果具有较高的精度和分辨率。反演过程同时得到了川滇地区36个地震台站的场地效应和所用地震的震源谱参数。鉴于Q_(Lg)平均值对成像结果有一定的影响,本研究还采用了Atkinson方法计算Q_(Lg)平均值,并和本研究所得结果比较,比较结果显示二者基本一致。
     研究结果表明, Q_(Lg)~(-1)分布存在强烈的横向不均匀性。各个频点Q_(Lg)~(-1)分布图像基本一致,且由低频至高频, Q_(Lg)~(-1)的局部性变化更加显著,空间分辨率结果也表明高频信号的分辨率相对较高。2HZ时,介于150至650之间。研究区内最为显著的高衰减区是川滇菱形块体的东北和东南部边界,该高衰减区沿川滇菱形块体北部NW向的鲜水河断裂向南延伸至近NS向的安宁河-则木河-小江断裂(东川-昆明-玉溪地区),并与沿NE向穿过澜沧江断裂南段及红河断裂南段的高衰减区(澜沧—思茅—普洱区)相连接,总体上形成大尺度的弧形高衰减带。鲜水河断裂至小江断裂是云南地区最重要的6、7级强震活跃区,小江断裂南部曾发生过8级大震。南部的思茅-普洱低值区区域断裂也非常发育,NE和NW向破裂面交错出现,NW向的断裂被北东-北北东向断层横断切成数段,形成棋盘式构造,是云南地区的6级地震活跃区。云南地区的另一个Lg波高衰减区是滇西块体,此高衰减区由沿NE向的锦屏山一玉龙雪山推覆构造带、近南北向的程海断裂、北东向的丽江一剑川断裂,以及金沙江断裂南段及红河断裂北段等构成,这里也是川滇地区6、7级地震强烈活动的主体地区。其它的高衰减区还有龙门山断裂以西的松潘附近地区,巴塘周围也呈现出相对较高的衰减特征。研究区显著的Lg波低衰减区包括构造稳定的川东盆地、滇东南地区以及金沙江、怒江断裂的中段区域,2Hz时Q_(Lg)最大达650左右。金沙江、怒江断裂带的中段区域历史上几乎没有发生过6级以上大震,川东盆地及滇东块体的构造活动也相对稳定,没有强震活动。另外,位于2个显著NW向低值区中间的滇中块体内部呈现出相对较低的衰减特征。
     川滇地区Lg波高衰减区的分布与强震及其破裂区的分布、高地热活动等有关。构造活动强烈,强震活动或大震破裂造成的介质破碎、热物质上涌、低速区等可能是川滇地区低Q_(Lg)的主要成因。本文的结果与川滇菱形块体西南边界的新构造运动强度比东北边界弱的结论相吻合。川滇地区的高衰减区与构造稳定、构造活动性弱、速度正异常区域相关,反应了上述区域介质较完整,较稳定。
     本研究还得到了川滇地区台站场地响应。在1-5HZ范围,云南台站场地响应的频率依赖较为平坦,数值在2以下。位于盆地与青藏高原东边界接触部位台站的场地放大达在2HZ以上时达14,可能与盆地边缘地形地貌发生急剧变化有关。
Q value is one of the main parameters in describing the medium characteristics of the Earth’s interior. By the way of studying on the attenuation characteristics from natural earthquakes to understand the earth interior material characteristics and the thermodynamic state, and then further reveal the earth interior constitutions and its variations, is one of the most important research fields of seismology. The way of doing research on crustal Q value by natural seismic wave mainly includes single station ?source, multi-stations and single source, multi-stations and multi-sources method, and due to that Q value dependent on the frequency, studying on attenuation using observed seismic wave in frequency domain is the main method at present.
     The seismic data to be used include free oscillation data, body wave, surface wave, coda wave, Lg wave and seismic intensity data, etc. Because that Lg wave is the most prominent phase and carry much more energy than other local seismic phases, and that it can transfer for a long distance in the continental crust interior and its’amplitude is very sensitive to the variation of crust structure and the crust physical parameters, therefore QLg is an important parameter revealing the characteristics of crust structure, an important parameter in studying on seismic wave propagation at regional distances, as well as in doing strong ground motion simulation.
     With the accumulation of observed digital seismic waveform data and the development of tomography technology, the research method on QLg has been developed from getting the average value of a single station-source path to 2D tomography that could describe the heterogeneous feature of the crustal medium more exactly.
     Sichuan-Yunnan region locates on the southeast boundary of Tibet plateau, where Eurasia plate converges and co-forces with India plate. Special tectonic location and strong crust movement make it to be one of the most remarkable seismic active regions with high frequent and strong seismic activities in China mainland. Since so many faults with different strikes and scales intercept with each other, there are remarkable heterogeneities existing in the crust, especially the variance between the western area and eastern area. The crust depth in Sichuan-Yunnan region also varies rapidly, especially on the edge of Tibet plateau. The crust depth is 35km in the southeast area, but it turns to be 70km in the northwest area. With the operation of the Sichuan and Yunnan seismic station network, a great lot of digital broad brand seismic data have been accumulated through these years. Special location and sufficient data are the main reasons that Sichuan-Yunnan region is selected as the objective region on the research of heterogeneity distribution of QLg in this thesis.
     The longitude of our research region extends from 97。E to 108。E and the latitude extends from 21。N to 35。N. 22 broadband stations in Yunnan seismic station network, 14 broadband stations and 5 short period seismographs in Sichuan seismic station network are selected. To ensure that every data used in the inversion has clear Lg wave, the spectrum ratio of Lg wave to Pn wave at every frequency point was calculated. Through investigating the propagation characteristic of Lg wave, a velocity range of 2.8km/s-3.6km/s was defined as the Lg wave window to be used, and a velocity range of 6.5km/s-8.0km/s was used as Pn wave window. Only records with the spectrum of Lg wave greater than Pn wave was chose to join the inversion. Finally, we got 535 events with 5146 paths recorded by 22 broad brand stations of Yunnan and 5 broad brand stations of Sichuan to invert QLg below 1.5Hz, while 644 events with 7468 paths recorded by 22 broad brand stations of Yunnan and 14 stations of Sichuan above 2Hz. A lag-window spectral technique was applied to obtain stable estimates of the Fourier spectrum, and geometric spreading model was dealt with 2-segments model. The average QLg at all frequency points were obtained by singular value decomposition algorithm prior to the tomography inversion. According to the resolution test first, the studied region was divided into evenly spaced grid-cells with the dimension of 0.5°×0.5°, then the average QLg value was used as the initial value, and finally the QLg at each grid-cell was inversed for all frequency points. The spatial resolution of our result is less than 100km. Compared with previous work, the spatial resolution and precision of this work are relatively higher. The site effects of 36 seismic stations in Sichuan-Yunnan region and the source spectral parameters of all events were estimated simultaneously. In addition, considering the average QLg value is important to the results, the average QLg were calculated by using the method of Atkinson in the thesis, and the results show fairly small difference between them.
     The tomography patterns at each frequency are almost consistent, and the variation of QL?g1 in some regions is very remarkable. The spatial resolution results indicate that the resolution get better with the frequency increasing. The Q_(Lg) tomography results demonstrate that there exist strong lateral Q_(Lg)~(-1) heterogeneities with large difference between the highest and the lowest Q value. Q_(Lg) is in the range of 150 to 650 at 2Hz. The prominently high attenuation area includes the southeast boundary of Sichuan-Yunnan rhombic block, which extends from Xianshuihe fault zone to Anninghe fault zone southward, it connected with the high attenuation area which goes through the southern segments of the Lancangjiang faults and Honghe faults in NW direction (Lancang—Kunming–Yuxi), and forming a arc like high attenuation zone on the whole. Along Xiangshuihe faults to Xiaojiang faults is the most seismic active region, one Ms8 earthquake occurred on the southern part of Xiaojiang faults. In the Simao-Pu’er region, there are also abound with regional ruptures striking to NE and NW which intercepts together, and faults striking to NW are cut into segments by the faults striking to NE-NNE and form the crisscross structure. This region is the magnitude of Ms6 seismic active zone.
     Another high attenuation region is Dianxi block, which consists of Jinpingshan–Yulong overriding structure belt, near NS of Chenghai rupture, Lijiang-jianchuan rupture, as well as the southern part of Jinshajiang faults and the northern part of Honghe faults. These regions are also the main regions with strong seismic activities. The other high attenuation regions include area nearby Songpan, west of Longmenshan. There is also relatively high attenuation near the Batang strong earthquake rupture region.
     Obvious low attenuation areas of Lg wave include the stable eastern Sichuan basin, southeastern Yunnan and Middle of Jinshajiang and Nujiang with the maximum value of Q_(Lg) reaching 650 at 2.0Hz. There are scarcely earthquakes above 6 occurred on the Middle part of Jinshajiang and Nujiang faults in history. Seismic activities in Sichuan east basin and the southeastern block are also quite rare and they are very stable blocks. Besides, the interior of Dianzhong block locating on the center of the two obvious low Q_(Lg) values shows relatively low attenuation feature.
     The high attenuation distribution of Lg wave in Sichuan-Yunnan region correlated with seismic activities, distribution of rupture zones and high terrestrial heat activities. It reveals that strong tectonic activity, broken medium caused by large earthquakes, and heat flow upwelling along active faults may be the main reasons of low Q_(Lg) in Sichuan-Yunnan region, whereas low attenuation regions correspond to the characteristic of stable tectonic block, weak tectonic activity and high velocity.
     From 1 to 5Hz, the site effects of Yunnan stations are quite flat and below 2, whereas at sites between the boundary of Sichuan basin and the eastern Tibet plateau, it reaches to 14. This phenomenon may be due to the strong variance of the tomography and terrain and relief of basin’s edge.
引文
啜永清,苏燕,贾建喜等,2004,山西地区非弹性衰减系数、场地响应和几种震源参数的研究,地震学报,2004,26(4), 369~378。
    高立新,郑斯华,丁风和,2004,内蒙古中西部地区中小地震震源参数反演和相互关系探讨,地震研究,27(4),296~300。
    韩渭宾,蒋国芳,2004,川滇地区强震活动分布特征及其与地壳块体构造背景关系的研究,26(2),211~222,地震学报。
    洪学海,朱介寿,曹家敏等,2003,中国大陆地壳上地幔 S 波品质因子三维层析成像,地球物理学报,46(5),642~651。
    胡家富,丛连理,苏有锦等,2003,云南及周边地区 Lg 尾波Q 值的分布特征,地球物理学报,46(5),800~813。
    黄汲清,任纪舜,姜春发等. 中国大地构造及演化. 北京: 科学出版社, 1980.
    黄玉龙,郑斯华,刘杰等,2003,广东地区地震动衰减和场地响应的研究,地球物理学报,46(1),54~61。
    阚荣举、张四昌、晏凤桐等,1977,我国西南地区现代构造应力场与现代构造活动特征的探讨,地理物理学报,29(2),96~l08。
    兰从欣,刘杰,郑斯华等,2005,北京地区中小地震震源参数反演,地震学报,27(5),498~507。
    赖晓玲,张先康,李松林,2003,伽师近场地震资料处理—三维速度成像,中国科学院研究生院学报,20 (1),50~55。
    李白基,秦嘉政,叶建庆等,2000,腾冲火山区剪切波和尾波衰减初步研究,地震研究,23(2),136~142。
    李白基,秦嘉政,钱晓东等,2004,云南姚安地区的尾波衰减,地震学报,26(1),47~52。
    李光品,徐果明,高尔根等,2000,中国东部地壳、上地幔横波品质因子的三维层析成像,地震学报,22(1),73~81。
    李祖宁,周峥嵘,林树等,2005,利用数字地震台网资料联合反演福建地区Q 值、场地响应和震源参数,地震地质,27(3),437~445。
    刘红桂,缪发军,吴晶,2004,场地响应、震源参数与介质衰减的同时反演,地震,24(4),27~36。
    刘红桂,啜永清,陈书清等,2005,鄂尔多斯地块地壳内 S 波衰减特征的研究,地震学报,27(5), 488~497。
    刘杰,郑斯华,黄玉龙,2003,利用遗传算法反演非弹性衰减系数、震源系数和场地响应,地震学报,25(2),211218。
    刘建华,刘福田,阎晓蔚等,2004,华北地区 Lg 尾波衰减研究— Lg 尾波Q 的测量,地球物理学报,47(5),822~831。
    刘丽芳,苏有锦,刘杰等,2007,利用云南数字地震台网资料反演台站场地响应[J],地震研究, 30(1),34~40
    刘万琴,韦士忠,辛书义等,1990,北京地区尾波衰减的研究,地震学报,12(2),442~447。
    马宏生,汪素云,裴顺平等,2007,川滇及周边地区地壳横波衰减的成像研究,地球物理学报,50(2):465~471.
    毛燕,徐彦,王彬等,2005,四川及邻区 Lg 尾波Q 值分布特征,地震研究,28(1),38~42。
    乔慧珍,张永久,程万正等,2006,川西北地区介质衰减特征研究,地震地磁观测与研究,27(4),1~7。
    秦嘉政,李白基,钱晓东等,2001,云南武定地区余震近场尾波衰减的区域特征,地震学报,23(1), 87~ 97。
    沈小七,刘杰,陈宇卫等,2005,安徽地区地震波衰减、场地响应及震源新参数的测定,地震地磁观测与研究,26(3),1~10。
    苏有锦,秦嘉政,2001,川滇地区强地震活动与区域新构造运动的关系,17(1),24~34,中国地震。
    苏有锦,刘杰,郑斯华等,2006,云南地区 S 波非弹性衰减Q 值研究,地震学报,28(2),206~212。
    苏伟,吴建平,明跃红等,2006, Lg 尾波 Q0 值与中国大陆及邻区的地质构造关系,地震学报,28(2),132~140。
    腾吉文,1994,康滇构造带岩石圈物理与动力学.北京:科学出版社。
    王椿镛,W. D. Mooney 王溪莉等,2002,川滇地区地壳上地幔三维速度结构研究,地震学报,24,1~16。
    王勤彩,高景春,郑斯华等,2004,华北中北部地面运动衰减研究,防灾减灾工程学报,24(3),313~319。
    王勤彩,刘杰,郑斯华等,2005,云南地区与频率有关的 P 波、S 波衰减研究,地震学报,27(6),588~597。
    王伟君,陈凌,陈棋福等,2006,2003 年大姚地震震中区的速度和衰减结构,地球物理学报,50(3),770~ 779。
    吴建平,曾融生,1996,青藏高原Q 值结构反演,地震学报,16(2),208~214。
    向宏发,张晓霞,虢顺民等,1999,新生地震破裂带的识别类型划分及其构造意义,中国地震,15(3),257~267。
    徐彦,毛燕,胡家富等,2005,新疆及周边地区 Lg 尾波的Q 值分布,地震学报,27(2),155~162。
    赵翠萍,张智强,夏爱国等,2004,利用数字地震波资料研究新疆天山中东段地区的介质衰减特征,防灾减灾工程学报,24(3),300~305。
    赵卫明,杨明芝,金延龙等,2000,宁夏中北部区域尾波Q 值特征研究,地震学报,22(3),249~256。
    邹振轩,2005,浙江地区地震波衰减和场地响应研究,地震地磁观测与研究,26(6),9~16。
    朱荣欢,苏有锦,2007,云南区域数字地震台网台站场地响应研究,云南大学学报(自然科学版),29(4),364~370
    Aki K, Chouet B, 1975, Origin of coda waves, source, attenuation, and scattering effects, J Geophys Res, 80, 3322~3342.
    Atkinson G M, Mereu R F, 1992, The shape of ground motion attenuation curves in southeastern Canada, Bull Seism Soc Amer,82(5), 2014~2031.
    Barmin M P, Ritzwoller M H, Levshin A L, 2001, A fast and reliable method for surface wave tomography, Pure Appl. Geophys., 1351~1375.
    Bassin C, Laske G, Masters G, 2000, The Current Limits of Resolution for Surface Wave Tomography in North America, EOS Trans AGU, 81, F897.
    Baumgardt D R,1990,Investigation of teleseismic Lg blockage and scattering using regional arrays, Bull Seism Soc Amer,80, 2261~2281.
    Boore D M, Boatwright J, Average body-wave radiation coefficient, Bull. Seismol. Soc. Amer., 74, 1651~1621, 1984.
    Bostoc M G, Kennett B L N, 1990, The effect of three-dimension; structure on Lg propagation patterns, Geophys. J. Int., 101,355-365.
    Capillo M, 1987, Lg wave propagation in laterally varying crust and the distribution of the apparently quality factor in Central France, J Geophys Res,92,12604~12614.
    Catherine R D, 1990,Woodgolg,Estimation of Q in eastern Canada using coda waves, Bull Seism Soc Amer, 80(2), 411~429.
    Celebi M C, Dietel J, Prince, et al., 1987,Site amplification in Mexico city, Ground Motion and Engineering Seismology, 44, 141~145
    Chael E, 1977, Spectral scaling of earthquakes in the Miramichi region of New Brunswick. Bull. Seism. Soc. Am., 77(2), 347~365.
    Chun K Y, West G F, Koloski R J et al, 1987, A novel technique for measuring Lg attenuation results from Eastern Canada between 1to 10Hz, Bull Seism Soc Amer, 77(2), 398~419.
    Chung T W, Sato H, 2001, Attenuation of high frequency P and S waves in the crust of South-eastern Korea, Bull Seism Soc Amer, 91(6), 1867~1874.
    Clawson S R, Smith R B, Bend H M, 1989, P wave attenuation of the Yellowstone caldera from three-dimension inversion of spectral decay using explosion source seismic data, J Geophys Res, 94(B6), 7 205-7 222.
    Dutta U, Martirosyan A, Biswas A, et al., 2001, Estimation of S-Wave Site Response in Anchorage, Alaska, from Weak-Motion Data Using Generalized Inversion Method, Bull Seism Soc Amer, 91(2), 335-346.
    Evans J R, Zucca J J, 1988, Active high-resolution seismic tomography of compressional wave velocity and attenuation structure at Medicine Lake volcano, northern California Cascade Range, J Geophys Res, 93, 15016-15036.
    Furumura T, Singh S K, 2002, Regional Wave Propagation from Mexican Subduction Zone Earthquakes: The Attenuation Functions for Interpolate and Inslab Events. Bull Seism Soc Amer, 92(6) : 2110–2125.
    Ghassan I A and Michael E W, 2006, QL g Distribution in the Basin and Range Province of the Western United States, Bull Seism Soc Amer, 96(1), 348~354.
    Gori D, Chiarabba P C, Patane D, 2005, QP structure of Mount Etna: Constrains for the physics of the plumbing system. J Geophys Res, 110, B05303, doi:10.1029/2003JB002875
    Hauksson E, Shearer P M, 2006, Attenuation model ( QP and QS ) in three dimensions of the southern California crust: Inferred fluid saturation at seismogenic depths Ho-Liu, P,H Kanamori, R W Clayton,1988 ,Applications of attenuation tomography to Imperial Valley and Coso-Indian Wells Region, southern California, J Geophys Res,93,10,501-10,521.
    Hwang H J, Brian J Mitchel1, 1987, Shear velocities, Qβ ,and the frequency dependence of Qβ in stable and tectonically active regions from surface observations. J Geophys Res, 90, 575~613.
    Jose A, Canas,1988, Seismic attenuation in southern Mexico using the coda Q method, Bull Seism Soc Amer, 78(5), 1807~1817.
    Kanamori H, 1977, The energy release in great earthquakes, J. Geophys. Res, 82, 1981~1987.
    Kennett B L N, 1986, Lg waves and structural boundaries, Bull Seism Soc Amer, 77, 1133~1141.
    Laske G, Masters G, 1997, A Global Digital Map of Sediment Thickness, EOS Trans, AGU, 78, F483.
    Lees J M , Lindley G T, 1994, Three dimensional attenuation tomography at Loma Priete, Inversion of for Q ,J Geophys Res, 99(134), 6 843~6 863.
    Leveque J, Rivera L, Wittlinger G, 1993. On the use of the checkerboard test to assess the resolution of tomographic inversion, Geophys J Int, 115, 313-318.
    Mendi D C, Ruud B O, Husebye E S, 1997. The North Sea Lg -blockage puzzle. Geophys J Int, 130, 669~680.
    Menke W, 1989, Geophysical Data Analysis: Discrete Inverse Theory, Int. Geophys. Ser., vol. 45, 289, Academic, San Diego, Calif.
    Mitchell B J, Pan Y, Xie J, et al, 1997, Lg coda Q variation across Eurasia and its relation to evolution, J Geophys Res, 102, 22 767~22 777.
    Mitchell B J, Bager S, Akinci A, et al,1998, Lg coda Q in Australia and its relation to crustal structure and evolution, Pure and Appl Geophys, 153, 639~657.
    Nuttli O W, 1980, The excitation and attenuation of seismic crustal phases in Iran, Bull Seism Soc Amer, 70, 469~485.
    Nuttli O W, 1981, On the attenuation of Lg waves in western and central Asia and their use as a discrimination between earthquake and explosions, Bull Seism Soc Amer, 71(1), 249~261.
    Ojeda A, Ottemo ller L, 2002, QL g tomography in Colombia, Physics of the Earth and Planetary Interiors, 130, 253~270.
    Ottemo ller L, 2002, Lg wave Q tomography in Central America, Geophys J Int,150,295~302.
    Ottemo ller L, Nikolai M, 2002, Shapiro et al, Lateral Variation of Lg Wave Propagation in Southern Mexico, J Geophys Res, 107(B1), ESE3-1-3-13.
    Pratt T L, Brocher T M, 2006, Site Response and Attenuation in the Puget Lowland, Washington State, Bull Seism Soc Amer, 96(2), 536~552, doi: 10.1785/0120040200.
    Press W H, Flannery B P, Teukolsky S A, et al., 1986 Numerical continental margins, Geophys. J. Int., 98, 107~130.
    Rodgers A J, and Schwartz S Y , 1998. Lithospheric structure of the Qiangtang Terrane, northern Tibetan Plateau, from complete regional waveform modeling: evidence for partial melt, J Geophys Res, 103, 7137~7152.
    Ruzaikin A I, Nersesov I L, Molnar P, 1977, Propagation of Lg and lateral variations of crustal structure of Asia, J Geophys Res, 82, 307~316.
    Sato H, 1977, Energy propagation including scattering effects, single isotropic scattering approximation, J Geophys Res, 25, 27~41.
    Scherbaum F, Wyss M, 1990, Distribution of attenuation in the Kaoiki, Hawaii, Source volume estimated by inversion of P wave spectra, J Geophys Res,95(B8), 12439~12448.
    Shin T C, Herrmann R B,1987,Lg attenuation and source studies using 1982 Miramichi data, Bull Seism Soc Amer, 77, 384~397.
    Singh D D,1990, Q -structure beneath the north and central Indian Ocean from the inversion of observed Love and Rayleigh wave attenuation data, Phys Earth Planet Inter, 59, 243~258.
    Singh S, Herrmann R B, 1983, Regionalization of crustal coda Q in the continental United States, J Geophys Res, 88, 527~538.
    Solomon, 1970, Lateral variation of attenuation of P and S waves beneath the United States, Bull Seism Soc Amer, 60(3), 819~838.
    Steidl J H, 2000, Site Response in Southern California for Probabilistic Seismic Hazard Analysis, Bull Seism Soc Amer, 90(6B), S149~S169.
    Steven R, Taylor,Yang X N, et al., 2003, Scott Phillips. Bayesian Lg Attenuation Tomography Applied to Eastern Asia, Bull Seism Soc Amer, 93(2), 795~803.
    Wald D J, Robert W G, 1998, The Seismic Response of the Los Angeles Basin, California, Bull Seism Soc Amer, 88(2), 337~356.
    Xie J, Nuttli O W, 1988,Interpretation of high-frequency coda at large distances, stochastic modeling and method of inversion, Geophys J Int, 95(2), 579~595.
    Xie J, 1990, Mitchell B J. A back projection method for imaging large-scale lateral variation of Lg coda Q with application to continental Africa, Geophys J Int, 100(1), 161~181.
    Xie J, 2002, QL gin the eastern Tibetan plateau, Bull Seism Soc Amer, 92(2), 871~876.
    Xie J, Gok R J N, Aoki Y, 2004. Lateral variations of crustal seismic attenuation along the in-depth Profiles in Tibet from QL g inversion, J Geophys Res, 109, B10308, doi:10.1029/2004JB002988.
    Xie J, Wu Z, Liu R, et al.,2006, Tomographic regionalization of crustal Lg Q in eastern Eurasia Geophy. Reserch. Letters, VOL. 33, L03315, doi:10.1029/2005GL024410.
    Yoshimoto K, Sato H, Yoshihisa, et al.,1993, Frequency-dependent attenuation of P and S waves in the Kanto area, Japan, based on the coda-normalization method, Geophys J Int, 114, 165~174.
    Yoshimoto K, Sato H, Yoshihisa, et al.,1998,Frequency-dependent attenuation of high-Frequency P and S waves in the upper crust in western Nagano, Japan, Pure Appl Geophys, 153, 489~502.
    Young C, Ward R W, 1980, Three-dimensional Q?1 model of the Coso hot springs known geothermal resource area, J Geophys Res, 85, 2459~2470.
    Zhao C P, Kennett L N B, Furumura T, 2003, Contrasts in regional seismic wave propagation to station WMQ in central Asia, Geophys J Int, 2003, Vol.155, 44-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700