用户名: 密码: 验证码:
固定化氧化亚铁硫杆菌脱除硫化氢的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的进一步发展以及环保法规日趋严格,对能源需求的进一步扩大,控制含硫物质的污染,加大环保力度,脱硫技术的开发和改进己成为国民经济及环保的迫切要求。生物脱硫由于具有很好的灵活性,很容易适应未来脱硫技术的需要和环保要求,发展迅猛。本文研究了利用氧化亚铁硫杆菌的间接氧化作用,通过固定化方法来增大细胞密度,使反应加速,实现连续化操作,从而得到较高的生产能力。构建了主要由固定床生物反应器和气体吸收塔组成的闭式循环脱硫装置,分别从菌种、反应器和吸收塔三方面进行了实验研究。
     筛选出耐低pH1.8的T.f菌菌株,经过诱变处理后其氧化活性又有了一定的提高,氧化速率最大达到0.404g/lh,比选育前提高了28.6%。确定其最佳培养条件为摇床转速150r/min,温度30℃,装液量为100ml。
     对选育出来的T.f菌用RSM法进行培养基的优化,培养基最佳浓度为(NH_4)_2SO_43.1296g/l,K_2HPO_40.5006g/l,MGSO_40.505g/l。在此培养基浓度下,进行培养得到了T.f菌生长动力学方程。
     对诱变选育出的耐低pH的T.f菌进行固定化的研究,采用聚氨酯H-2软性填料作为固定化载体,利用吸附法固定化T.f菌,在pH 1.8,温度30℃时固定化效果较好,而吸附的沉淀相对较少,有利于生物反应器稳定长期的操作。构建了固定床生物反应器,研究了通气量、稀释率及培养基中底物和产物浓度对固定化细胞的影响,并得到固定床设计方程式和反应器出口浓度与反应器停留时间的关系式。
     以鼓泡塔作为脱硫装置,考察了液气比、入口H_2S浓度和温度对H_2S脱除率的影响,得到吸收表观速率方程。研究了9K-还原液的循环利用问题,在适当调整液体pH值和适量添加9K培养基的基础上,T.f菌生长良好,还原液可以达到循环利用的目的,使其闭式循环连续化操作得以实现。
Along with the strength of environmental protection regulation and day by day requiring strictness of environmental protection,the development research of biodesulfurization technique has become the issue solved forwardly in environmental protection field. In this assignment,we use the indirect oxidation of Thiobacillus ferrooxidans(ab.T.f)We augmented the cell density and accelerated the reaction by immobilization technique,then the continuous operation was realized and the upper work capacity was obtained.In this thesis we studied parts of removing H2S in acidic industrial gas using T.f from bacterium,reactor and absorption tower.
    In this thesis the T.f conserved in our laboratory was filtered and mutagenized in lower pH1.8.The maximum oxidation rate of Fe2+ was 0.404g/lh as more as 28.6% before mutagenized.The best condition of culture of T.f was the rotate speed is 150r/min,temperature is 30℃,liquid quantum is 100ml.
    We studied the optimum concentration of culture of mutagenized T.f using RSM and the growth dynamics model. The optimum concentration of culture is (NH4)2SO4 3.1296g/l,K2HPO 40.5006 g/l,MgSO4 0.5059 g/1.
    Using mutagenized T.f, we confirmed the optimum condition of immobilization. It is pH1.8 and temperature 30℃.The bacterium of absorption in carriers is more and the oxidation rate of Fe2+ increased 32.37% than before immobilization. The precipitation was decreased and this profited the continue operation of bioreactor.
    We construced the fixed bio-reactor with H-2 soft filling as carrier and examined the influence of aeratin rate, dilution and the concentration of reactant and product in the culture medium and
    obtained the dynamics model of the fix bed bioreactor.
    We studied the removal of H2S in acidic industrial gas and studied the effects of liquid gas ratio,the concentration of H2S and temperature on the abatement efficiency of H2S.We obtained the apparent kinetic equation.We studied the adjustment of 9K reverting culture and we can realize continue and circulate operation of the bioreactor before adjusted the pH and added right 9K culture.
引文
[1]马翠卿,许平,俞坚.微生物脱有机硫的研究进展.生物工程进展,2000,20(3):55~59.
    [2]Boduzynski M M. Composition of Heavy Petroleum Fractions. New York: Marcel Dekker, 1994,13~19.
    [3]汤海涛,凌珑,王龙延.含硫原油加工过程中的硫转化规律.炼油设计,1999,29(8):9~15.
    [4]李国辉,胡杰南.煤的微生物脱硫研究进展.化学进展,1997,9(1):79~89.
    [5]王遇冬,王登海.对长庆气田含硫天然气脱硫工艺技术的几点建议.石油与天然气化工,2001,30(1):28~30.
    [6]王学谦,宁平.硫化氢废气治理研究进展.环境污染治理设备与技术,2001,2(4):77~85.
    [7]刘天齐.三废处理工程技术手册.化学工业出版社,1995,284~289.
    [8]郭汉贤,苗茂谦,张允强等.我国脱硫技术发展的回顾及展望.煤化工,2003,105(2):51~54.
    [9]纪容昕.国内干法脱硫剂工业应用现状.化学工业与工程技术,2002,23(1):29~33.
    [10]王世娟.石油气净化脱硫技术的开发和应用.化工进展,2002,21(2):140~142.
    [11]王国兴,张传学.常温精脱硫新技术的特点及其2000年的进展.煤化工,2001,3(7):64~67.
    [12]桥本健治.化学工学(日),1997,61(6):18~20.
    [13]沈春红,夏道宏.国内外脱硫技术进展.石化技术,1999,6(1):44~47.
    [14]聂丽君.烟气干法脱硫技术.重庆环境科学,2003,25(2):51~58.
    [15]王乃华,高翔等.浆液组分添加剂对喷雾干燥烟气脱硫性能影响的研究.动力工程,2001,21(3):1280~1284.
    [16]刘天齐.三废处理工程技术手册.化学工业出版社,1995,284~289.
    [17]王军民,房少华.催化裂化汽油溶剂萃取脱硫工艺的研究.炼油设计,2000,30(10):32~34.
    [18]阎观亮,崔洪星.液化天然气工厂的原料气处理.石油与天然气化工,2000,29(4):188~190.
    [19]Ico van den Born, Jay Rajani,王威.壳牌公司的天然气、炼厂气和液体的处理技术.石油与天然气化工,2003,32(3):158~162.
    [20]黄子衍.栲胶法脱硫在化肥厂应用的概述.化肥工业,2002,29(4):22~25.
    [21]潘柳萍,范盛标.半水煤气脱硫装置的工艺设计.广西大学学报(自然科学版),2000,25(2):112~116.
    [22]曹宏伟,董梵烟.气脱硫添加剂的研究现状.节能技术,2003,21(2):10~12.
    [23]陈健,密建国.MDEA-H_2O-CO_2-H_2S体系的气体溶解度的计算.天然气化工,2001,26(3):57~58.
    [24]王鸿宇,付敬强.脱硫溶液污染原因分析.石油与天然气化工,2000,29(4):186~187.
    [25]朱世勇编.环境与工业气体净化技术.北京:化学工业出版社环境科学与工程出版中心,2001,19~45
    
    
    [26]王妹文.新型脱硫剂的制备及应用.河北化工,2002,34(3):32~34.
    [27]梁兴禄,汪晓梅,胡忠彬.湿式氧化法脱硫堵塔和888脱硫催化剂的应用.煤化工,2001,(2):35~38.
    [28]庞锡涛,庞捷.MSQ-2型脱硫催化剂的性能及应用.化学工业与工程技术,2001,22(1):34~36.
    [29]王睿,石冈,魏伟胜等.工业气体中H2S的脱除方法—发展现状与展望.天然气工业,1999,19(3):84-90.
    [30]魏雄辉,刘新起,王祥云等.DDS催化剂脱硫技术的理论研究和工业应用.煤气与热力,2002,22(1):3~7.
    [31]黄子衍.栲胶法脱硫在化肥厂应用的概述.化肥工业,2002,23(4):31~32.
    [32]杨建平,李海涛,肖九高等.络合铁法脱除酸气中硫化物的试验研究.化学工业与工程技术,2002,23(2):23~24.
    [33]张家忠,易红宏,宁平等.硫化氢吸收净化技术研究进展.环境污染治理技术与设备,2002,3(6):47~52.
    [34]梁锋,徐丙根,施小红.湿式氧化法脱硫的技术进展.现代化工,2003,23(5):21~24.
    [35]Colmer A R, et al. The role of microorganisms in acid mining drainage, a preliminary report. Science, 1947, 106 (2751): 253~256.
    [36]Leathen W W, Mcintyre L D, Braley S A.A Medium for the Study of Bacterial Oxidation of Ferrous Iron. Science, 1951, 144: 280~281.
    [37]Silverman M P, Lundgren D G. Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans. J. Bacteriol, 1959, 77: 642~647.
    [38]Kargi F. Microbiological coal desufurization. Biotechnol. Bioeng., 1982, 24 (3): 749~752.
    [39]Chandra D, Roy P, Mishra A K, et al. Fuel, 1979, 58 (7): 549~550.
    [40]Gokcay C F, Yurteri R N. Fuel, 1983, 62: 1223.
    [41]Isbister J D, Kobylinski E A. Treatment for removal of munition chemicals from coal. Coal Sci. Technol., 1985, 9: 627~641.
    [42]Kilbane J J Ⅱ, Woodstock Ⅲ. Mutant microorganisms useful for cleavage of organic C-S bonds., U.S. PatentS, 104, 801., Jan. 5, 1990.
    [43]Izumi Y, Ohshiro T, Ogino H, et al. Selective desulfuration of Dibenzothiophene by Rhodococcus erythropolis D-1. Appl. Environ. Microbiol., 1994, 60(1): 223~226.
    [44]Omori T, Monna L, Saiki Y, et al. Desulfuration of Dibenzothiophene by Corynebacterium sp. Strain SY1. Appl. Environ.Microbiol., 1992, 58 (3): 911~915.
    [45]Folsom B R, Scjoeche D R, Digrazia P M, et al. Appl Environ Microbiol, 1999, 65: 4967~4972.
    [46]Maghsoudi S, KheirolomoomA, Vossoughi M, et al. Biochemical Engineering Journal, 2000,
    
    5:11~16.
    [47]黄彦君,浦跃武,叶代启等.生物脱硫的研究新进展.微生物学通报,2003,30(2):89~92.
    [48]Darzins A, Xi L, Childs J. DSZ gene expression in Pseudomonas hosts. US Patent, 1999,No 5952208.
    [49]Setti L, Labzarubu G, Pifferi P G. Pro Biochem, 1995, 30: 721.
    [50]Izumi Y, Ogsguri T.J Molecular Catalysis B: Enzymatic, 2001, 11: 1061~1064.
    [51]Daniel J M. Current Opinion in Biotechnology, 2000, 11: 540~546.
    [52]Denome S A, Olson E S, Young K D. Identification and Cloning of Genes Involved in Specific Desulfurization of Dibenzothiophene by Rhodococcus sp-Strain IGTS8. Appl. Environ. Microbiol.1994, 59 (9): 2837~2843.
    [53]佟明友,方向晨,马挺等。基因工程技术在石油生物脱硫中的应用.生物工程学报,2001,17(6):617~618.
    [54]唐军,葛蕙.矿物生物技术在煤炭脱硫中的应用.矿业科学技术,1998,1:42~45.
    [55]Tributsch H, Bennett J C. J. Chem. Technol. giotechnol., 1981, 31 (10): 627~635.
    [56]Kodama K, Nakatani K, Umehara K, et al. Identification of Microbial Products from Dibenzothiophene and Its Proposed Oxidation Pathway. Agric. Biol. Chem., 1973, 37 (1):45~50.
    [57]Isbiter J D, Wyza R E, Lippold J, et al. Bioprocessina of coal. In: Omenn G S, Colwell R R. Proc. Conf. Reducing Risk Envirn. Chem. Biotech. New York: Plenum Press, 1988, 281~293.
    [58]邱建辉,邸进申,李英杰.生物脱硫的研究进展.微生物学报,2001,41(5):650~653.
    [59]郑士民,庄国强,吴志红.细菌脱硫.环境保护,1990,10:14~15.
    [60]吴根,陈旭尔,夏涛.微生物脱硫技术得现状及发展前景.环境保护,2001,1:21~22.
    [61]Loi G, Nura A, Russi G. Fuel Process. Technol., 1994, 40: 261~268.
    [62]徐毅,钟慧芳.蔡文六.微生物法脱除煤炭中黄铁矿硫.微生物学报.1990,30(2):134~140.
    [63]zbas, Tijen. Biodesulfurization of Turkish Lignites: Optimization of the Growth Parameters of Rhodococcus rhodochrous, a Sulfur Removing Bacterium. Fuel, 1996, 75: 1596~1600.
    [64]吴玥,杜成磊.生物技术在石油工业中的应用.当代石油石化,2003,11(2):37~40.
    [65]Linguist L, Pacheco M.Oil Gas, 1999, 97: 45~48.
    [66]杜长海,马智,贺岩峰等.生物催化石油脱硫技术进展.化工进展,2002,21(8):569~578.
    [67]张东晨.绿色化学与煤炭生物脱硫.中国煤炭,2003,29(3):48~50.
    [68]刘鸿元.THIOPAQ生物脱硫技术.中氮肥,2002,5:53~57.
    [69]郑士民,庄国强,吴志红.酸性工业气体的细菌脱硫.微生物学报,1993,33(3):192~198.
    [70]王玮,屠传经,胡亚才.微生物烟气脱硫技术的展望.环境污染与防治,1997,19(2):28~30.
    [71]Claudio Pagella, Patrizia Perego, Mario Zilli. Biotechnology H_2S gas treatment with Thiobacillus.s ferrooxidans. Chem. Eng. Technol., 1996, 19: 79~88.
    
    
    [72]H Halfmeier, W Schfer Treffenfeldt, M. Reuss. Potential of Thiobacillus ferrooxidans for waste gas purification. Part 2. Increase in continuous ferrous iron oxidation kinetics using immobilized cells. Appl Microbiol Biotechnol, 1993, 40: 582~587.
    [73]戴人利译.细菌脱硫.石油炼制译丛.1989,2:20~22.
    [74]H Satoh, J Yoshlzawa, S Kametanl. Bacteria help desulfurize gas. Hydrocarbon Processing,1998, 5: 76D~76F.
    [75]何忠效,静国忠,许佐良.现代生物技术概论.北京:北京师范大学出版社,第一版,1999,223~226.
    [76]Hattori T, Furusaka J.J. Biochem., 1959, 48: 831~842.
    [77]李继珩.生物工程.中国医药科技出版社,1998,139~140.
    [78]邓晓泉.吸附法固定微生物细胞的研究进展.生物工程进展,1993,13(4):7~10
    [79]Kennedy J F, Melo E H. Immobilized enzymes and cells. Chemical Engineering Progress, 1990,7: 81~89.
    [80]沈宏宇,胡永红.生物催化剂固定化技术的研究进展.化工进展,2003,22(1):18~21.
    [81]顾其丰.生物化工原理,上海科学技术出版社,1997,7,第一版:20~23.
    [82]杨玉玲.酶固定化技术及载体材料研究新进展.粮油食品,2001,9(5):22~25.
    [83]郭勇.酶工程.北京:中国轻工业出版社,1994,151~155.
    [84]姚汝华.微生物工程工艺原理.广州:华南理工大学出版社,1989.368~369.
    [85]胡岳华,康白珍.氧化亚铁硫杆菌的细菌学描述.湿法冶金,1996,4:36~40.
    [86]Schrenk M O, Edwards K J. Distribution of Thiobacillus Ferrooxidans: Implication for Generation of Acid Mine Orainage. Science, 1998, 278 (5356): 1519~1522.
    [87]张在海,王淀佐,胡岳华.氧化亚铁硫杆菌遗传选育方法探讨.湿法冶金,1999,72(4):28~31.
    [88]Tuorinern O H, Kelly D P. Studies on the growth of Thiobacillus Ferrooxidans(I). Use of Membrane Filtera and Ferrous Iron Agar to Determine Viable Numbers and Comparison with ~(14)CO_2-Fixation and Iron Oxidation as Measures of growth. Arch Microbiol, 1973, 88: 285~298.
    [89]Khalid A M, Bhatti T. Ani improverd Solid Medium for Isolation, Enumeration and Genetic Investigations of Autotrophic Iron and Sulphur Oxidixing Bacteria. Appl Microbiol Biotechnol, 1993, 39: 259~263.
    [90]Visca P, Biamchi E, Polidoro M.A New Solid Medium for Isolation and Enumeration of Thiobacillus Ferrooxidans. J Gen Appl Microbiol, 1989, 35: 71~81.
    [91]Manning H L. New Medium for Isolating Ironoxidiaing and Heterotrophic Acidophilic Bacteria from Acid Mine Drainage. Microbiology, 1975, 30 (6): 1010~1016.
    [92]Garcia O, Mukai J K, Andrade C B. Growth of Thiobacillus Ferrooxidans on Solid Medium: Effects of Some Surface Active Agents on Colony Formation. J Gen Appl Microbiol, 1992.
    
    30:279~282.
    [93]张在海,邱冠周,胡岳华.氧化亚铁硫杆菌的菌落分离研究.矿产综合利用,2001,1:19~22.
    [94]周顺桂,王世梅,余素萍.污泥中氧化亚铁硫杆菌的分离及其应用效果.环境科学,2003,24(3):56~60.
    [95]刘晶,张灼,韩秀芳.硫杆菌的分离培养及其生长特性的研究.云南大学学报,1996,18(2):118~121.
    [96]邱冠周,柳建设,王淀佐.氧化亚铁硫杆菌生长过程铁的行为.中南工业大学学报,1998,29(3):226~228.
    [97]张传福,闵小波,柴立元.氧化亚铁硫杆菌生长迟缓期的影响因素.中南工业大学学报,1999,30(5):489~492.
    [98]P K沙尔姆,徐晓东.氧化亚铁硫杆菌与硫化矿物的反应和从黄铁矿中优先浮选黄铜.矿国外金属矿选矿,2002,39(4):16~23.
    [99]余润兰,佐藤和彦.细菌在低温低pH值条件下的活性研究.衡阳师范学院学报(自然科学),1999,20(6):48~51.
    [100]何良菊,李秀艳等.Fe~(2+),NH_4~+对氧化亚铁硫杆菌氧化黄铁矿的影响.黄金学报,1999,1(14):278~280.
    [101]袁欣,袁楚雄.非金属矿物的微生物加工技术研究(1)—氧化亚铁硫杆菌及其生长规律研究.中国非金属矿工业导刊,2000,15(3):12~14.
    [102]李洪枚,柯家骏.Ni~(2+)和Co~(2+)对氧化亚铁硫杆菌活性的影响.有色金属,2000,52(1):49~54.
    [103]李洪枚,柯家骏.Cu~(2+)对氧化亚铁硫杆菌生长活性的影响.黄金,2000,21(6):27~29.
    [104]李洪枚.柯家骏.Mg~(2+)对氧化亚铁硫杆菌生长活性的影响.中国有色金属学报,2000,10(4):576~578.
    [105]孙先锋,郭爱莲.氧化亚铁硫杆菌的分离及其生长条件的研究.西北大学学报(自然科学版),2000,30(2):143~146.
    [106]罗林,康瑞娟.氧化亚铁硫杆菌在气升式反应器中培养条件对其生长特性的影响.过程工程学报,2001,1(14):365~368.
    [107]张俊,范伟平.底物对亚铁硫杆菌生物氧化过程的影响.南京化工大学学报,2001,23(6):7~41.
    [108]田克立,林建群,张长铠.氧化亚铁硫杆菌铁氧化系统分子生物学研究进展.2002,29(1):85~88
    [109]Lundgren D G, Reed R, et al. Biotechnol. Bioeng. Symp. 1986, 16: 35~44.
    [110]张在海,胡岳华,邱冠周.从细菌学角度探讨硫化矿物的细卤浸出.2000,20(2):15~18.
    [111]Yamanaka T, Yano T, Kai M, et al. The Electron Transfer System in An Acidophilic Iron Oxidizing Bacterium. In: Mutohata Yed. New Area of Bioenergetics. Tokyo: Academic Press,1991, 223~246.
    
    
    [112]何正国.李雅琴.周培瑾.氧化亚铁硫杆菌的铁和硫氧化系统及分子遗传学.2000.40(5):563~566.
    [113]Aleem M.I.H..Palnt and Soil, 1975, 587.
    [114]颜望明.浸矿细菌的遗传工程.微生物学通报,1989,16(3):173~175.
    [115]林建群,彭基斌.颜望明.氧化亚铁硫杆菌基因转移系统研究进展.应用与环境生物学报,2001,7(2):193~196.
    [116]韩涛.颜望明.氧化亚铁硫杆菌启动子片段的克隆及酶切分析.山东大学学报,1993,28(4):474~481.
    [117]刘振盈,颜望明.氧化亚铁硫杆菌T.f55基因文库的构建.山东大学学报,1993,28(3):358~364.
    [118]徐海岩,颜望明,刘振盈.抗砷载体的构建及在氧化亚铁硫杆菌中的表达.应用与环境生物学报,1995,1(3):238~243.
    [119]Trupti Das, Gautam Roy Chaudhury, Subbanna Ayyappan. Use of Thiobacillus ferrooxidans for Iron Oxidation and Precipitation. BioMetals, 1998, 11: 125~129.
    [120]Norio W, Kunihiro E, Kenichi M, et al.J. Gen. Appl.Microbiol., 1994, 40: 349~358.
    [121]熊英,胡建平.林滨兰等.氧化亚铁硫杆菌的驯化与诱变选育.矿产综合利用,2001,6:27~31.
    [122]M Nemati, C Webb. Effect of Ferrous Iron Concentration on the Catalytic Activity of Immobilized Cells of Thiobacillus ferrooxidans. Appl Microbiol Biotechnol, 1996, 46: 250~255.
    [123]Mehdi Nemati,Colin Webb. Does Immobilization of Thiobacillus ferrooxidans really Decrease the Effect of Temperature on its Activity?Biotechnology Letters, 1997, 19 (1): 39~43.
    [124]M Nematil, C Webb. Inhibition Effect of Ferric Iron on the Kinetics of Ferrous Iron.Biotechnology Letters, 1998, 20 (9): 873~877.
    [125]Mehdi Nemati, C Webb. Combined Biological and Chemical Oxidation of Ferrous Sulfate Using Immohilised T.ferrooxidans. Journal of Chenical Technology and Biotechnology, 1999, 74:562~570.
    [126]J M Gomez, D Cantero, C Webb. Immobilisation of T. ferrooxidans Cell on Nickel Alloy Fibre for Ferrous Sulfate Oxidation. Appl Microbiol Biotechnol, 2000, 541 335~340.
    [127]A Mazuelos, I Palencia, R Romero et al. Ferric Iron Production in Packed Bed Bioreactors:Influence of pH, Temperature, Particle size, Bacterial Support Material and Type of Air Distributor. Minerals Engineering, 2001, 14 (5): 507~514.
    [128]T A Wood, K R Murray, J G Burgess. Ferrous Sulphate Oxidation Using Fhiobacillus ferrooxidans Cells Immobilised on Sand for the Purpose of Treating Acid Mine Drainage. Appl Microbiol Biotechnol, 2001, 56: 560~565.
    [129]Jose Manuel Gomez, Domingo Cantero. Kinetic Study of Biological Ferrous Sulphate Oxidation
    
    by Iron Oxidising Bacteria in Continuous Stirred Tank and Packed Bed Bioreactors. Process Biochemistry, 2003, 38: 867~875.
    [130] S Malhotra, A S Tankhiwale, A S Rajvaidya, et al. Optimal Conditions for Biooxidation of Ferrous Ions to Ferric Ions Using Thiobacillus ferrooxidans. Bioresource Technology,2002, 85: 225~234.
    [131] L Nikolov, D Karamanev, V Mamatarkova, et al. Properties of the Biofilm of Thiobacillus ferrooxidans Formed in Rotating Biological Contactor. Biochemical Engineering Journal,2002, 12: 43~48.
    [132] C Poliani, E Donati. Immobilisation of Thiobacillus ferrooxidans: importance of jarosite precipitation. Process Biochemistry, 2000, 35: 997~1004.
    [133] 赵春霞.酸性工业气体生物脱硫中细菌固定化技术的研究.[硕士学位论文].天津:河北工业大学,2001.
    [134] 邱建辉.氧化亚铁硫杆菌在酸性工业气体生物脱硫中的固定化及其氧化Fe~(2+)动力学的研究.[硕士学位论文].天津:河北工业大学,2002.
    [135] 张在海,王淀佐,邱冠周等.氧化亚铁硫杆菌亚铁氧化活性诱变育种理论探讨.铜业工程,2001,1:12~15.
    [136] 郭爱莲,孙先锋,朱宏莉.He-Ne激光、紫外线诱变氧化亚铁硫杆菌及耐砷菌株的选育.光子学报,1999,28(3):718~721.
    [137] 李生琳.分析化学实验.天津:南开大学出版社,1987,73~77.
    [138] D C Montgomery. Design and Analysis of Experiments.第三版.北京:中国统计出版社,1998,589~643.
    [139] 胡众红,沈材宝,欧阳平凯.响应面分析法用于微生物培养基浓度的优化.工业微生物,2002,32(1):9~12.
    [140] Pesic B, Oliver D J, Wichlacz P. An electrochemical Method of Measuring the Oxidation Rate of Ferrous to Ferric Iron with Oxygen In the Presence of Thiobacillus ferrooxidans. Biotechnology and Bioengineering, 1989, 33: 428~439.
    [141] Kumar R S, Candhi K S. Modelling of Fe~(2+) Oxidation by rhiobacillusferrooxidan~ Appl. Microbiol. Biothchnol, 1990, 33: 524~528.
    [142] 闵小波,柴立元,钟海云等.氧化亚铁硫杆菌生长动力学参数.中国有色金属学报,2000,10(3):440~443.
    [143] J N Gomez, I Caro. Kinetic Equation for Growth of Thiobacillus ferrooxidans in Submerged Culture Over Aqueous Ferrous Sulphate Solutions. Journal of Biotechnology, 1996, 48: 147~152.
    [144] M M Mesa. Biological Iron Oxidation by Acidichiobacillus Ferrooxidans in A packed-Bed Bioreactor. Chem Biochem Eng Q, 2002, 16 (2): 69~73.
    
    
    [145] 赵新巧.生物法脱除酸性工业气体中硫化氢的研究.[硕士学位论文].天津:河北工业大学,2003.
    [146] R M Corless, G H Gonnet, E G Hare. On the Lambert W Function, Advances in Computational Mathematics, volume 5, 1996, 329~359.
    [147] 鄂利海,雒怀庆,栾耕时.Fe~(3+)盐溶液吸收法处理H_2S气体的研究.抚顺石油学院学报,2001,21(1):12~16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700