用户名: 密码: 验证码:
宾川—程海二叠纪高镁火山岩的岩石地球化学及含矿性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
峨眉山玄武岩广布于扬子地块西缘,是目前地学界最为关注的地区之一。依据岩石组合、岩相学特征,将峨眉山玄武岩划分为西、中、东三大岩区。通过对构造背景及古地理环境分析,峨眉山玄武岩主要形成于地幔上涌和广泛的大陆伸展作用过程中。此外,扬子地块西缘二叠纪的大陆伸展作用类似于美国西部的盆岭区,总体表现为大陆板块陆内构造体制。
     在前人研究成果的基础上,对峨眉山玄武岩的岩石地球化学及玄武岩浆活动特征进行了系统地阐述。宾川—程海地区被认为是峨眉地幔热柱活动的最强烈地区,也是热柱轴部物质大量出露的地区。该区二叠纪的火山岩依据MgO>12%可分为两个岩石化学类型:低镁火山岩即峨眉山玄武岩;高镁火山岩。利用岩石地球化学的可示踪性,研究了高镁火山岩浆的源区特征、岩浆演化。高镁火山岩接近于原始岩浆的组成,岩浆源区与地球平均成分BSE的成分特征相近,起源深度为下地幔,为该地幔岩较高程度的部分熔融(>25%)而形成的。高镁火山岩处于地幔柱的轴部,经历了橄榄石及一定程度的辉石分异结晶,并且橄榄石显示出一定的堆晶作用。岩浆演化过程中遭受到了含水流体的影响及轻微的陆壳混染。根据以上特征对高镁火山岩的形成机制作了分析。
     从地幔柱成矿理论出发,以与大陆溢流玄武岩有关的典型硫化铜镍矿床为例,概括出该类矿床形成的基本地质条件。通过对研究区内与峨眉山玄武岩活动有关的高镁火山岩进行研究对比,发现区内与峨眉山玄武岩同期形成某些侵入岩体具有成镍矿(化)的地质条件。研究区内的昔腊坪岩体除了具有这些基本地质条件外,还显示不同程度的矿化,说明该地区作为寻找镍矿的靶区是有很大的潜力。
Emeishan basalts widely spread out in the west margin of the Yangzi block. Because of this, Geo-science circles are interested in this region. According to characteristics of petro-assemblage and petrography, Emeishan basalts can be divided into three-big rock regions- west, middle and east. These basalts are mainly formed in the course of mantle upwelling and widely continental extensionism through analyzing tectonic setting and pale-geographical setting. This extensional activity is similar to the basin-and-range province of western America, and can be thought as an intra-continental tectonic system.
    On the basis of formers' research results, the paper systemistically discuss some characteristics of Emeishan basalts' petro-geochemistry and magma activation. Emei-mantle plume's activity is very violent in Binchuan-Chenghai region,and a lot of its axis material is exposed in this region. According to the content of MgO, Emeishan basalt can de divided into high-Mg (MgO>12%) volcanic rock and lower- Mg (MgO<12%) basalt. Using the tracer ability of petro-geochemistry,the paper discusses on source characteristics and magma evolution of the high-Mg volcanic rocks. High-Mg volcanic rocks approach the primitive mantle compositions, and their magmatic source is close to the composition of BSE , derives from the lower mantle and formed by this type- mantle rocks' fractional melting highly (>25% ) .High-Mg volcanic magma , formed in the axis of the Emei mantle plume, underwent the crystallization differentiation of olivines and some pyroxenes; some olivines reflect fair cumulus crystallization. During the magma evol
    ution, this primary magma suffered effects of the containing water fluid and a small extent contaminate of continental crust.According to all of features above,the paper analyzes the formatting mechanism of high-Mg volcanic rocks.
    Beginning with the minerogenetic theory of mantle plume, the basic geological conditions of this type deposit can be summarized through studying typical copper-nickel sulfide deposits which have close bearing on continental flood basalt .In contrast with high-Mg volcanic magmatic activity,it can be found that some intrusive rock bodies have Ni-minerogenetic geology condiction.Xilaping rocks in Binchuan-Chenghai region has some basic geological condiction and reflects some extent minerogenetic.All these testify this region has very larger potentiality of finding copper-nickel sulfide deposits.
引文
[1] 白立新,朱日祥.1996.扬子地块古生代大地构造演化及古地磁学研究综述.地球物理学进展,11(3):109~116.
    [2] 陈浩琉,吴水波,等.著.镍矿床.北京:地质出版社.
    [3] 陈智梁,陈世瑜,等.著.1987.扬子地块西缘地质构造演化.四川:重庆出版社,104~120.
    [4] 从柏林.主编.1988.攀西古裂谷的形成与演化.北京:科学出版社,217~250.
    [5] 韩吟文,陈北岳,等.1999.扬子陆块西缘晚古生代玄武岩的性质和演化——玄武岩、辉绿玢岩稀土元素、微量元素地球化学研究.地球科学—中国地质大学学报,24(3):234~239.
    [6] 侯增谦,卢记仁,等.1999.峨眉火成岩省:结构、成因与特色.地质论评,45(增刊):885~890.
    [7] 侯增谦,汪云亮,等.1999.峨眉火成岩省地幔热柱的主要元素及地球化学特征.地质论评,45(8):880~883.
    [8] 黄开年,杨瑞英,等.1988.峨眉山玄武岩微量元素地球化学的初步研究.岩石学报,(4):49~59.
    [9] 李红阳,卢记仁,等.2002.峨眉地幔柱与超大型.矿床矿床地质,21(增刊):148~151.
    [10] 李巨初,汪云亮.1989.试论峨眉山玄武岩喷发构造环境—微量元素地球化学证据.成都地质学院学报,16(3):81~87.
    [11] 刘秉光,黄开年,邵海辉.1982.峨眉山玄武岩与裂谷作用.RESEARCH ON GEOLOGYIGAS:208~212.
    [12] 刘朝基,曾绪伟,等.著.1988康滇地区基性超基性岩.四川:重庆出版社,227~231.
    [13] 柳贺昌.1995.峨眉山玄武岩与铅锌成矿.地质与勘探,31(4):1~6.
    [14] 卢记仁.1996.峨眉地幔柱的动力学特征.地球学报,17(4):424~438.
    [15] 牛树银,孙爱群,等.著.2001.地幔热柱多极演化及其成矿作用——以华北矿聚区为列.北京:地震出版社.
    [16] 潘杏南,赵济湘,等.著.1987.康滇构造与裂谷作用.四川:重庆出版社,214~224.
    [17] 秦德先,燕永锋,等.1999.程海断裂带玄武岩及其成矿.有色金属矿产与勘探,8(6):373~377.
    [18] 邱家骧,林景仟.著.1991.岩石化学.北京:地质出版社.
    [19] 沈发奎.1989.攀西裂谷火山岩系某些成因特点的地球化学证据.地球化学,(2):158~165.
    [20] 宋谢炎,侯增谦.等.2001.峨眉大火成岩省的岩石地球化学特征及时限.地质学报,75(4).498~505.
    [21] 宋谢炎,侯增谦,等.1999.峨眉火成岩省地幔热柱稀土元素标志.地质论评,45(8):872~875.
    [22] 宋谢炎,侯增谦.等.1999.晚古生代—早中生代扬子板块西缘的构造-岩浆活动.地质论评,45(增刊):868~871.
    [23] 宋谢炎,侯增谦.等.2002.峨眉山玄武岩的地幔热柱成因.矿物岩石,22(4):27~32.
    [24] 宋谢炎,王玉兰.等.1998.峨眉山玄武岩、峨眉地裂运动与慢热柱.地质地球比学,(1):47~52.
    [25] 膝吉文.著.1994.康滇构造带岩石圈物理与动力学.北京:科学出版社,16~26.
    [26] 汪云亮.S.S.Hughes,等.1987.峨眉山玄武岩地球化学和大陆地幔演化.成都地质学院学报,14(3):59~72.
    
    
    [27]汪云亮,李巨初.1994.峨眉山玄武岩地幔源成分及其变化的微量元素标志.成都理工学院学报,21(4):45~51.
    [28]汪云亮,李巨初,等.1993.幔源岩浆岩源区成分判别原理及峨眉山玄武岩地幔源区性质.地质学报,67(1):52~62.
    [29]汪云亮,李巨初,王旺章.1989.微量元素丰度模式与峨眉山玄武岩成因.矿物岩石,9(4):100~105.
    [30]王旺章,汪云亮,等.1996.峨眉山玄武岩母岩浆的性质及其成因类型.矿物岩石,16(1):17~23.
    [31]汪云亮,侯增谦,等.1999.蛾眉火成岩省地幔柱热异常初探.地质论评,45(8):876~879.
    [32]熊舜华,李建林.1984.峨眉山区晚二叠世大陆裂谷边缘玄武岩系的特征.成都地质学院学报,(3):43~58.
    [33]徐义刚,钟孙霖.2001.峨眉大火成岩省:地幔柱活动的证据及其熔融条件.地球化学,30(1):1~8.
    [34]杨学明,杨晓勇,陈双喜.译.Hugh R.Rollison.著.2000.岩石地球化学.安徽:中国科学技术大学出版社.
    [35]喻安光,郭建强.1998.扬子地台西缘构造格局.中国区域地质,17(3):255~261.
    [36]云南省地震局.1990.滇西北地区活动断裂.北京:地震出版社,27~28.
    [37]云南省地质矿产局.1990.云南省区域地质志.北京:地质出版社.
    [38]曾绪伟,金久堂,等.著.1988.康滇地区含钒钛磁铁矿基性超基性岩岩体类型及其成因的研究报告.四川:重庆出版社,3~14.
    [39]张成江,汪云亮,侯增谦.1999.峨眉山玄武岩系的Th、Ta、Hf特征及岩浆源区大地构造环境探讨.地质论评,45(8):854~860.
    [40]张鸿翔,徐志方,等.2001.大陆溢流玄武岩的地球化学特征及起源.地球科学—中国地质大学学报,26(3):261~268.
    [41]张旗,钱青,等.1999.扬子地块西南缘晚古生代基性岩浆岩的性质与古特提斯洋的演化.岩石学报,15(4):576~583.
    [42]张树明,王方正.2002.玄武岩在研究岩石圈深部过程及构造背景中的应用.地球科学进展,17(5):685~692.
    [43]张招崇,王福生,等.2001.峨眉山玄武岩研究中的一些问题的讨论.岩石矿物学杂志,20(3),239~245.
    [44]张招崇,王福生,等.2002.峨眉山大火成岩省中发现二叠纪苦橄质熔岩.地质论评,48(4):448.
    [45]张招崇,王福生,等.2002.峨眉山玄武岩区两类玄武岩的地球化学:地幔柱—岩石圈相互作用的证据.地质学报,76(2).
    [46]赵海玲,狄永军,等.2001.大火成岩省及地幔动力学.岩石矿物学杂志,20(3):307~312.
    [47]Hanski E.J.and Srnolkin V.E.1995.Iron-and LREE-enriched mantle source for early Proterozoic intraplate magmatism as exemplified by the Pechenga ferropicrities, Kola vPeninsula,Russia.Lithos,34:107~125.
    [48]Kerr A.C.,Tarney J.,et al..2000.LIP reading:Recognizing oceanic plateau in the geological record.Journal of Petrogy,41:1041~1056.
    [49]Langmuir C.H. and Hanson G.N..1980.An evaluation of major element heterogeneity in the mantle
    
    source of basalts, Phil. Trans.R.Soc.London,Ser.A.,297:383~404.
    [50] Le Bas,M.J..2000.IUGS reclassification of the high-Mg and picritic volcanic rocks.Journal of Petrology,41(10) 1467~1470.
    [51] Le Majtre R.W.1991.火成岩分类及术语词典.王碧香,等.译.北京:地质出版社.
    [52] Mckenzie D.and Bickle M.J.. 1988.The volume and composition of the melt generated by extension of the lithosphere.
    [53] Ohtami E..1990.Majorite fractionation and genesis of komatites in the deep mantle.Precambrian Research,48:195~202.
    [54] O kamuka S.. 1987.Intectonic controls on magma chemistry,Weaver,S.D.et al..Elsevier, Amster dam,p.13~34.
    [55] Saunders A.D.,Tarney J.,et al..1996.The formation and fate of large oceanic igneous provinces.Lithos,37:81~95.
    [56] Sp th A.,Roex A.E,et al..2001.Plume-lithosphere interaction and the origin of continental rift-related alualine volcanism- the Chyulu Hills Volcanic Province,Southern Kenya. Journal of Petrology,42:765~787.
    [57] Tomlinson K.Y.,Hughes D.J.,et al.. 1999.Plume magmatism and crustal growth at 2.9 to 3.0 Ga in the Steep Rock and Lumby lake area,Western Superior Province.Lithos,46:103~136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700