用户名: 密码: 验证码:
多学科优化方法在汽车底盘设计中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着汽车技术的不断进步,汽车底盘系统越来越复杂,其各组成子系统之间的相互作用也日益明显,底盘系统设计涉及到多学科领域,使得底盘系统的总体设计过程十分复杂。为挖掘设计潜力,提高设计质量,本文以此为出发点,将多学科优化技术引入到底盘设计中,分析和研究了底盘复杂系统的综合优化设计理论与方法,对于底盘系统的设计具有重要的学术价值和广阔的应用前景。
     本文在对底盘设计方法和多学科设计优化方法进行分析和总结的基础上,分别在底盘集成设计、电子化设计及轻量化设计中展开了多学科设计优化应用研究。完成的主要研究工作和成果如下:
     (1)分析了MDO的设计模式,求解思路以及优化算法,定义了设计变量灵敏度耦合强度的方法和判定准则。在此基础上,设计了EPS/ASS/ABS系统的多学科设计优化模型。
     (2)搭建了ASS和EPS集成系统的多学科优化模型;采用AAO优化算法对ASS/EPS集成系统的机械参数和控制参数进行了优化设计,并通过优化后的参数与优化前的参数代入计算模型作了对比分析,结果表明,经AAO优化后,能减少系统机械结构和控制系统之间的影响和耦合因素,实现系统全局性能最优设计。最后进行了装车试验,结果验证了所建模型和优化方法的有效性和合理性。
     (3)建立了EPS/ASS/ABS系统的多学科优化模型;采用设计变量灵敏度强弱评定方法,对所有变量进行了灵敏度分析,确定以悬架系统的主要参数为全局变量。采用CO算法对底盘EPS/ASS/ABS系统进行多学科优化设计研究,并分别将CO优化后的参数与AAO优化后的参数以及优化前的参数代入计算模型作了对比分析,仿真结果表明CO优化方法优于AAO方法,既能使EPS/ASS/ABS系统整体性能最优,同时使各子系统性能也最优。
     (4)针对轻量化设计中变量存在不确定性的因素,将可靠性理论与协同优化方法相结合,提出一种基于可靠性的CO优化方法,以驱动桥为例进行了轻量化设计研究,并分别进行了理论和试验验证,结果表明,该方法在降低质量的同时,使设计变量对目标函数的灵敏性降低,提高了设计方法的鲁棒性。
With the development of automotive technology, automotive chassis systemsbecome more and more complex, interactions between the various components of itssubsystems is increasingly obvious. Design of the chassis systems involvesmulti-discipline field, making the overall design of the system chassis the process isvery complicated. To improve the mining potential and the quality of design,Multidisciplinary design optimization (MDO) idea are applied to the chassis systemsdesign. The theory and methods for the design of chassis systems are analyzed andresearched, which has important academic value and broads application prospects.
     Based on analysis and summary for the chassis design and multidisciplinarydesign optimization method, the methoed of multi-disciplinary design optimization areapplied in the chassis integrated design, electronic design and lightweight design. Themain research work and achievements accomplished as follows:
     (1) The design model, solving ideas and optimization algorithm ofmultidisciplinary design optimization are analyzed. From the effects of designvariables on the objective function, the conception and the acceptance criteria ofcoupling strength have been proposed. On this basis, a multi-disciplinary designoptimization model of EPS/ASS/ABS system is designed. Finally, road test resultsprove that the model and optimization methods are effective and reasonable.
     (2) The multidisciplinary optimization model of ASS and EPS integrated systemis established, then, mechanical and control parameters of ASS/EPS integrated systemare optimized by applying AAO optimization algorithm. Comparing the simulationresults of model used the optimized parameters and the simulation results of modelused the unoptimized parameters, The results showed that the AAO method canreduce the impact of the system and the coupling factor between the mechanicalstructure and control system and make system achieve optimal performance.
     (3) The multidisciplinary optimization model of EPS/ASS/ABS system isestablished. then, The sensitivity of all design variables were calculated,which decidethat the main parameters of the suspension system were made global variable.Comparing the simulation results of model used the optimized parameters by COalgorithm, the simulation results of model used the optimized parameters by AAOalgorithm and the simulation results of model used the unoptimized parameters,Simulation results show that CO optimization method is superior to AAO method, which make system achieve optimal overall system performance while theperformance of each subsystem is optimum.
     (4) Because of the uncertainty factor in the design variables, CO method based onreliability is presented by combining the reliability theory and collaborativeoptimization method. Take drive axle as an example, lightweight design, theoreticalanalysis and experimental test were carried out. All of results show that the method canreduce the quality, make the sensitivity of the design variables for the objectivefunction down, and improve the robustness of the design method.
引文
[1]陈家瑞.汽车构造[M](第四版).北京:机械工业出版社,2011.
    [2]田浩彬,林建平等.汽车车身轻量化及其相关成形技术综述[J].汽车工程,2005,3:350-354.
    [3] LUKIC S M,EMADI A.Performance analysis of automotive power systems: Effects ofpower electronic intensive loads and electrically-assisted propulsion systems[A].proceedingsof the56th Vehicular Technology Conference, September24,2002-September28,2002[C].Institute of Electrical and Electronics Engineers Inc.1835-1839.
    [4]吕威,郭孔辉,张建伟.电动助力转向综合前馈和模糊PID反馈的电流控制算法[J].农业机械学报,2010,8:10-15.
    [5]郑宏宇宗长富.基于电动助力转向的线控转向汽车路感反馈控制[J].农业机械学报,2010,8:10-15.
    [6] Choi S B,Seong M S,Ha S H. Vibration control of an MR vehicle suspension systemconsidering both hysteretic behavior and parameter variation[J].Smart Materials&Structures(S0964-1726),2009,(12):1250-1263.
    [7] Lai C Y,Liao W H. Vibration control of suspension system via a magnetorheological fluiddamper[J].SPIE (S0277-786X),2000,(73):240-251.
    [8]耿田军,贾洪平,刁研.电动车防抱死再生制动系统的实验研究[J].微电机,2013,5:40-45.
    [9]陈龙,聂佳梅,江浩斌,汪若尘,张孝良.预测步长自调整的ASS与EPS灰预测模糊集成控制[J].汽车工程,2009,02:104-107.
    [10] Lu, S.B. Li, Y.N. Choi, S.B. Zheng, L, Seong, M.S. Integrated control on MR vehiclesuspension system associated with braking and steering control. Veh. Dyn.2011,49:361–380.
    [11] Hac. A,Bodie M. Improvements in vehicle handling through integrated control of chassissystems. Int. J. Veh. Auton. Syst.2002,1,83–110.
    [12]马国宸,宋小文,王耘,胡树根.汽车电动助力转向系统、防抱死系统与主动悬架集成控制[J].机械科学与技术,2011,10:1602-1607.
    [13]牛礼民,陈龙,赵又群,汪若尘.车辆底盘集成控制系统的电动机控制[J].农业机械学报,2008,12:27-30.
    [14] Ghoneim Y, Lin W, et al. Integrated chassis control system to enhance vehicle stability [J].International Journal of Vehicle Design,2000,23(1/2):124-144.
    [15] Yoshimura T, Emoto Y. Steering and suspension system of a full car model using fuzzingreasoning based on single input rule modules [J]. Int J of Vehicle Autonomous Systems,2003,1(2):237-254.
    [16]袁传义,刘成晔,张焱.主动悬架与EPS集成控制系统道路友好性研究[J].科学技术与工程,2012,22:5551-5555.
    [17]陈龙,牛礼民,江浩斌,赵景波,陈庆樟.AMESim在悬架转向集成模型中的应用[J].浙江大学学报(工学版),2007,10:1763-1767.
    [18] ZHAO S-E,LI Y.Vehicle active chassis integrated control based on multi-model intelligenthierarchical control[A].proceedings of the2012International Conference on ManufacturingEngineering and Automation, ICMEA2012, November16,2012-November18,2012[C].Trans Tech Publications1770-1775.
    [19]王其东,秦炜华,姜武华,陈无畏.基于多体模型的汽车底盘分级式综合控制仿真研究[J].汽车工程,2010,08:693-698.
    [20]杨建森.面向主动安全的汽车底盘集成控制策略研究[D].吉林:吉林大学,2012.
    [21]冯冲,丁能根,何勇灵.汽车ABS与AFS集成控制算法[J].江苏大学学报(自然科学版),2013,02:138-142.
    [22] FRONCZAK F J,HOLMES B J,BEACHLEY N H.Hydraulic drive systems and potential usefor automobiles and airplanes[A].proceedings of the1997World Aviation Congress, October13,1997-October16,1997[C].SAE International
    [23]牛礼民,赵又群,陈龙.车辆半主动悬架与转向集成控制的研究实现[J].机械科学与技术,2009,09:1125-1129.
    [24]汪少华,陈龙,袁传义.车辆半主动悬架与助力转向集成控制的仿真研究[J].汽车工程,2009,11:1066-1069.
    [25]王其东,姜武华,陈无畏,赵君卿.主动悬架和电动助力转向系统机械与控制参数集成优化[J].机械工程学报,2008,08:67-72.
    [26] Junjie He, David A. Crolla, Martin C, et al. Integrated active steering and variable torquedistribution control for improving vehicle handling and stability[J]. SAE2004-01-1071,2004.
    [27]丁能根,许璘.基于ABS制动过程特征参数的路面附着识别[J].燕山大学学报年,2013,2:164-169.
    [28]亓文果.基于ECE R66法规的客车侧翻碰撞安全性能的仿真与优化[J].汽车工程,2010,12:1042-1046.
    [29]袁泉,胡孟夏.基于真实事故数据的人车碰撞事故场景设计与驾驶模拟实验[J].汽车安全与节能学报,2012,1:19-25.
    [30]谭耀武,杨济匡,王四文.轿车B柱耐撞性与轻量化优化设计研究[J].中国机械工程2010,12(上):2886-2891.
    [31]李铁柱,李光耀,顾纪超,董立强.汽车乘员舱安全性与舒适性多学科设计优化[J].机械工程学报,2012,2:138-145.
    [32]王平,郑松林.基于协同优化和多目标遗传算法的车身结构多学科优化设计[J].机械工程学报,2010,08:231-236.
    [33] LAN F, CHEN J, LIN J. Comparative analysis for bus side structures and lightweightoptimization[J]. Proceedings of the Institution of Mechanical Engineers Part D-Journal ofAutomobile Engineering,2004,218(D10):1067-1075.
    [34]苏瑞意,桂良进,王旭等.燃料电池城市客车结构有限元分析与轻量化设计[J].汽车工程,2008,30(12):1099-1102.
    [35]孙信,王青春,桂良进等.大客车翻滚安全性有限元分析[J].汽车技术,2007(8):34-36.
    [36] Fangyi Li, Zhen Luo. An uncertain multidisciplinary design optimization method usinginterval convex models[J]. Engineering Optimization Volume45, Issue6,2013,697-718
    [37]万志强、杨超.混合遗传算法在气动弹性多学科优化中的应用[J].北京航空航天大学学报,2005,12,1142-1146.
    [38] Michael W. A generic multibody vehicle model for simulating handling and braking [J].Vehicel System Dynamics,1996, Supplement25:599-613.
    [39] Luca Cavagna, Sergio Ricci. An integrated tool for structural sizing, aeroelastic analysis andMDO at conceptual design level[J]. Progress in Aerospace Sciences Volume47, Issue8,November2011,621–635.
    [40] Harrison M. Kim; Wei Chen. Lagrangian Coordination for Enhancing the Convergence ofAnalytical Target Cascading[J]. AIAA Journal,2006,44(10):2197-2207.
    [41] srinivas kodiylalam,Multidisciplinary design optimisation-some formal methods, frameworkrequirements, and application to vehicle design[J]. International Journal of Vehicle Design.Volume25, Numbers1-2/2001,Pages3-22.
    [42] Eek Joong Park, Jun Hee Lee, MDO of Automotive Vehicle for Crashworthiness and NVHUsing Response Surface Methods [J]. Volume140, Issue2,22January2010, Pages197–208.
    [43]张勇李光耀等.多学科设计优化在整车轻量化设计中的应用研究[J].中国机械工程,2008,7,877-881.
    [44] SOBIESKI J S, KODIYALAM S, YANG R Y. Optimization of car body under constraints ofnoise, vibration, and harshness (NVH), and crash[J]. Structural and MultidisciplinaryOptimization,2001,22(4):295-306.
    [45]张维刚,廖兴涛,钟志华.基于逐步回归模型的汽车碰撞安全性多目标优化[J].机械工程学报,2007,43(8):142-147.
    [46]王宏雁,徐少英.车门的轻量化设计[J].汽车工程,2004,3:350-354.
    [47]郭孔辉.汽车操纵动力学[M],长春:吉林科学技术出版社,1991.
    [48]姜武华.汽车电动助力转向系统结构/控制参数的集成优化[D].合肥:合肥工业大学,2004.
    [49]初长宝.汽车底盘分层式协调控制[D].合肥:合肥工业大学,2008.
    [50]夏光,秦炜华,唐希雯.汽车EPS试验台液压控制系统设计[J].汽车电器,2008(2):59-63.
    [51] DU Haiping, ZHANG Nong. H∞control of active vehicle suspensions with actuatortime-delay [J]. Journal of Sound and Vibration,2006,301(2007):236-252.
    [52] Vahidi A, Eskandarian A. Predictive time-delay control of active suspension [J]. Journal ofVibration and Control,7(2001):1195-1211.
    [53] Jalili N, Esmailzadeh E. Optimum active vehicle suspension with actuator timedelay[J].Journal of Dynamic System, Measurement and Control,123(2001):54-61.
    [54] Sato Y, Ejiri A, Iida Y, et al. Micro-G Emulation system using constant tension suspensionfor a space manipulator [C]. Proceedings of the1991IEEE International Conference onRobotics and Automation Sacramento. California,1991.
    [55]姚燕生,梅涛.悬架模块的动力学建模与仿真[J].机械工程学报,2006,42(7):30-34.
    [56] Liao Y G, Du H I. Modeling and analysis of electric power steering system and its effect onvehicle dynamic behavior [J]. International Journal of Vehicle Autonomous Systems,2003,1(3):351-362.
    [57] Ikenaga S, Lewis F L, Campos J, et al. Active suspension control of ground vehicle based ona full vehicle model [C]. Proceedings of the American Control Conference Chicago, IllinoisJune,2000.
    [58] Byung Ryong Lee, Kyu Hyun Sin. Slip-ratio control of ABS using sliding mode control [J].School of Mechanical and Automotive Engineering University of Ulsan,1993,1(2):72-77.
    [59] Segawa M, Nakano S, Nishibara O, et al. Vehicle stability control strategy for steer by wiresystem [J]. JSAE Review,2001,22(4):383-388.
    [60] Segel L. An overview of developments in road vehicle dynamics: past, present and future [C].Proceedings of Imech E Conference on Vehicle Ride and Handling,1993.
    [61]冯金芝,喻凡.车辆防抱死制动系统与主动悬架联合控制[J].农业机械学报,2002,33(2):15-19.
    [62] Zhengqi G, Yufeng L. The performance of a vehicle with four-wheel steering control incrosswind [J]. International Journal of Vehicle Autonomous Systems,2003,1(2):256-269.
    [63]卢少波.汽车底盘关键子系统及其综合控制策略研究[D].重庆:重庆大学,2009.
    [64]王其东,王霞,陈无畏.汽车主动前轮转向和防抱死制动协调控制[J].农业机械学报,2008,39(3):1-4.
    [65] Chu T W, Jones R P. Analysis and simulation of nonlinear handling characteristics of automotivevehicles with focus on lateral load transfer [J]. Vehicle System Dynamics,2008,46(Supplement):17-31.
    [66]赵君卿.汽车主动悬架与电动助力转向结构/控制集成优化研究[D].合肥工业大学硕士学位论文,2005.
    [67]姚燕安,查建中.机构与控制的协同设计[J].机械工程学报,2004,140(10):1-5.
    [68]陈军.MSC.ADAMS技术与工程分析实例[M].北京:中国水利水电出版社,2008.
    [69]徐建平,何仁,苗立东,等.电动助力转向系统回正控制算法研究[J].汽车工程,2004,26(5):557-559.
    [70]陈无畏,王妍,王启瑞,等.汽车电动助力转向系统的自适应LQG控制[J].机械工程学报,2005,41(12):167-172.
    [71]胡建军,卢娟,秦大同,等.电动助力转向系统的建模和仿真分析[J].重庆大学学报(自然科学版),2007,30(8):10-13.
    [72]李士勇.模糊控制和智能控制理论与应用[M].哈尔滨:哈尔滨工业大学出版社,1990.
    [73]崔胜民,肖利寿.汽车操纵动力学十八自由度模型仿真研究[J].汽车工程,1998,20(4):212-219.
    [74]祝辉.基于磁流变减振器的汽车底盘集成控制研究[D].安徽:合肥工业大学,2009.
    [75]陈萌三,余强.汽车动力学[M].北京:清华大学出版社,2009.
    [76]杨谋存.半主动悬架系统设计与车辆性能协调研究[D].镇江:江苏大学,2004.
    [77] Trachtler A. Integrated vehicle dynamics control using active brake, steering and suspensionsystem [J]. International Journal of Vehicle Design,2004,36(1):1-12.
    [78] Karbalaei R, Ghaffari A, Kazemi R, et al. A new intelligent strategy to integrated control ofAFS/DYC based on fuzzy logic [J]. International Journal of Mathematical, Physical andEngineering Sciences,2007,1(1):47-52.
    [79]戴先中.多变量非线性系统的神经网络逆控制方法[M].北京:科学出版社,2005.
    [80]陈无畏,周惠会,刘翔宇.汽车ESP与ASS分层协调控制研究[J].机械工程学报,2009,45(8):190-196.
    [81] Steinbrunn M,Moerkotte G, Kemper A. Heuristic and Ran2domized Optimizationfor the Join Ordering Problem[J]. The VLDB Journal,1997,6(3):8-17.
    [82] Jeonghoon Song, Kwangsunk Boo. Performance evalution of traction control systems usinga vehicle dynamic model [J]. Automobile Engineering,2005,38(7):1132-1143.
    [83] Roppenecker G, Wallenowitz H. Integration of chassis and traction control systems [J].Vehicle System Dynamics,1993,22(3):283-298.
    [84] Masao Nagai, Motoki Shino, Feng Gao. Study on integrated control of active front steerangle and direct yaw moment [J]. JSAE Review2002,12(23):309-315.
    [85] Masao Nagai, Yutaka Hirano, Sachiko Yamanaka. Integrated control of active rear wheelsteering and direct yaw moment [J]. Vehicle System Dynamic,1999,23(27):357-370.
    [86] Wei-En Ting, Jung-Shan Lin. Nonlinear control design of anti-lock braking systemscombined with active suspensions [C]. The5thAsian Control Conference,2004:611-616.
    [87] Gaspar P, Szaszi I, Bokor J. The design of a combined control structure to prevent the rollerof heavy vehicles [J]. European Journal of Control,2003,10(2):1-15.
    [88] Yager R R. Implementing fuzzy logic controller using a neural network [J]. Fuzzy Sets andSystems,1992,48(1):53-64.
    [89] Hunt K J, Sbarbaro D, Zbikowski R, et al. Neural networks for control systems-a survey [J].Automatica,1992,28(10):1083-1112.
    [90] Tanak K, Sugeno M. Stability analysis and design of fuzzy control systems [J]. Fuzzy Setsand Systems,1992,45(2):135-156.
    [91] Lightbody G, Irwin G W. Direct neural model reference adaptive control [J]. Control TheoryApplications,1995,142(1):31-43.
    [92] Hunt K J, Sbarbaro D. Neural networks for nonlinear internal model control [J]. ControlTheory Applications,1991,138(5):431-438.
    [93]何丹,戴先中,王勤.神经网络广义逆系统控制[J].控制理论与应用,2002,19(1):34-40.
    [94] Zhang Jinzhu, Zhang Hongtian.Vehicle stability control based on adaptive PID control withsingle neuron network [C].20102ndInternational Asia Conference on Informatics in Control,Automation and Robotics. Wuhan,2010:434-437.
    [95] Eslaminasab N, Golnaraghi M F.The effect of time delay of the semi-active dampers on theperformance of on-off control schemes [C]. ASME Proceedings,2008,9:1911-1918.
    [96] Koo J H, Goncalves F D, Ahmadian M. A comprehensive analysis of the response time ofMR dampers [J]. Smart Materials and Structures,2006,15(2):351-358.
    [97]靳立强,宋传学,彭彦宏.基于回正性与轻便性的前轮定位参数优化设计[J].农业机械学报,2006,37(11):20-23.
    [98]余志生等.汽车理论(第三版)[M].北京:机械工业出版社,2000.
    [99]何仁,耿国庆,苗立东,等.电动助力转向系统的曲线型助力特性设计及分析[J].中国机械工程学报,2007,18(20):2515-2518.
    [100]石岩.磁流变阻尼减振结构的时滞与补偿[D].哈尔滨:哈尔滨工业大学,2005.
    [101]史明光,陈无畏.基于博弈论的H2/H∞混合控制及其在汽车主动悬架中的应用[J].控制理论与应用,2005,22(6):882-887.
    [102]张志勇,文桂林,钟志华.车辆主动悬架的混合H2/H∞最优保性能控制[J].汽车程,2007,29(7):606-610.
    [103] KIM J H. Robust mixed H2/H∞control of time-varying delay systems [J]. InternationalJoural of Systems Science,2001,32(11):1345-1351.
    [104] Johan Nilsson, Bo Bernhardsson, Bj rb Wittenmark. Stochastic analysis and control ofreal-time systems with random time delays [J]. Automatica,1998,34(1):57-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700