用户名: 密码: 验证码:
碳青霉烯类耐药肠杆菌科细菌耐药机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[目的]研究碳青霉烯类耐药肠杆菌科细菌(CRE)的耐药机制,建立获得性碳青霉烯酶流行监测体系。
     [方法]收集同济医院2007年1月至2010年6月分离的美洛培南抑菌环直径≤21mm的肠杆菌科细菌,测定抗菌药物敏感性,筛选出碳青霉烯类耐药菌株,进行酶表型和基因型筛查;对整合子插入序列和碳青霉烯酶基因附属结构进行分析;采用脉冲场凝胶电泳(PFGE)和Southern印迹杂交方法分析耐药菌质粒;采用多位点序列分型(MLST)方法对菌株进行分型及分析同源性;采用PCR和十二烷基磺酸钠-聚丙烯凝胶电泳(SDS-PAGE)方法对菌株的外膜孔道蛋白进行分析。
     [结果]收集并证实CRE 11株,主要是肺炎克雷伯菌(7/11)。抗菌药物敏感性试验显示所有菌株对大多数抗菌药物耐药,美洛培南8~64μg/ml,亚胺培南4~64μg/ml,厄他培南4~64μg/ml,对氨基糖苷类和氟喹诺酮类抗菌药物的敏感性显著不同。PCR检测耐药基因,检出IMP-4阳性菌株6株,KPC-2阳性菌株3株,其中一株肺炎克雷伯菌(Kpn6617)同时携带blaIMP-4和blaKPC-2。整合子插入序列均不含有碳青霉烯酶编码基因。对基因附属结构进行分析,结果显示blaKPC-2基因位于由Tn3转座子和Tn4401部分片段构成转座子上。PFGE显示大多数CRE含有3个或3个以上质粒。SDS-PAGE检测外膜孔道蛋白的表达,结果显示仅Kox656存在外膜孔道蛋白(OmpK35和OmpK36)双缺失。对肺炎克雷伯菌进行MLST分型,Kpn6617和Kpn6099均属于ST476型。通过接合试验证明,Kpn6617中携带blaIMP-4质粒具有转移性。进一步研究发现,不同菌株携带blaKPC-2的质粒具有同源性,而携带blaIMP-4的质粒不完全同源。
     [结论]我院CRE主要是肺炎克雷伯菌,产生碳青霉烯酶是细菌耐药的主要原因,blaIMP-4是主要的碳青霉烯酶酶型。发现一株罕见的同时携带blaKPC-2和blaIMP-4的碳青霉烯类耐药肺炎克雷伯菌,属于ST476型,其产生机制可能是由于blaIMP-4编码质粒转移至ST476型产KPC-2酶肺炎克雷伯菌中造成。肠杆菌科细菌中碳青霉烯酶基因的出现和传播对治疗和感染控制造成巨大威胁,应引起人们的警觉。
Objectives: To investigate the antimicrobial resistant mechanisms of CRE, construct monitoring system of acquired carbapenemase.
     Methods: Clinical isolates of Enterobacteriaceae in our hospital which zone diameters of meropenem were not larger than 21mm were collected from January 2007 to June 2010. Antibiotic susceptibility was performed to select CRE. Then, phenotype and gene screenings were performed. Integron insertion sequence and genetic structure of carbapenemase genes were also detected by PCR method. Pulsed-field gel electrophoresis (PFGE) and Southern blot were used to analyze the plasmids of CRE. Multilocus sequence typing (MLST) was used to determine the genotypes and homology of these isolates. In addition, out membrane proteins (OMPs) were examination by PCR and SDS-PAGE.
     Results: 11 isolates of CRE were collected and confirmed, mostly were Klebsiella pneumoniae (7/11). Susceptibility of antimicrobial agents indicated that all these strains resistant to most antimicrobials, including carbapenems (meropenem 8~64μg/ml, imipenem 4~64μg/ml, ertapenem 4~64μg/ml). However, susceptibilities of aminoglycosides and fluoroquinolones were significantly different. Using PCR method to detect resistant genes, the result showed that 6 isolates were IMP-4 positive and 3 isolates were KPC-2 positive, including one isolate carrying both blaIMP-4 and blaKPC-2 genes. Integron insertion sequences were amplified and sequenced. All of them did not include carbapenemase encoding genes. Genetic structure of carbapenemase genes was analyzed, suggesting that blaKPC-2 located in an integration structure of a Tn3-based transposon and partial Tn4401 segment. PFGE showed that most CRE contained three or more plasmids. Out membrane proteins were detected by SDS-PAGE, indicating that only one isolate, Kox656, lacked OMPs (OmpK35 and OmpK36). Kpn6617 and Kpn6099 were assigned to a novel sequence type, ST476, by MLST。Besides, blaKPC-2 encoding plasmid in Kpn6617 was transmissible. Further evidence showed the homology of blaKPC-2-harbouring plasmids among KPC-2 positive isolates. However, the probing data for blaIMP-4 suggested a diversity of blaIMP-4-harbouring plasmids.
     Conclusions: The most common carbapenemase-resistant Enterobacteriaceae was K.pneumoniae in our hospital. Producing carbapenemases, which type mostly IMP-4, was the most reason that bacteria resistant to carbapenem. A novel carbapenemase-resistant K.pneumoniae encoding both blaKPC-2 and blaIMP-4 was detected, probalbly due to transmission of the blaIMP-4-harbouring plasmid into KPC-2-producing K.pneumoniae (ST476). The concomitant presence of these genes is alarming and poses therapeutic as well as infection control problems.
引文
[1] Clinical and Laboratory Standards Institute. 2010 Performance Standards for Antimicrobial Susceptibility Testing (M100-S20).
    [2] Radice M, Power P, Gutkind G, et al. First class a carbapenemase isolated from enterobacteriaceae in Argentina. Antimicrob Agents Chemother, 2004, 48(3):1068-1069.
    [3] Aubron C, Poirel L, Ash RJ, et al. Carbapenemase-producing Enterobacteriaceae, U.S. rivers. Emerg Infect Dis, 2005, 11(2):260-264.
    [4] Queenan AM, Torres-Viera C, Gold HS, et al. SME-type carbapenem-hydrolyzing class A beta-lactamases from geographically diverse Serratia marcescens strains. Antimicrob Agents Chemother, 2000, 44(11):3035-3039.
    [5] Cole JM, Schuetz AN, Hill CE, et al. Development and evaluation of a real-time PCR assay for detection of Klebsiella pneumoniae carbapenemase genes. J Clin Microbiol, 2009, 47(2):322-326.
    [6] Bradford PA, Bratu S, Urban C, et al. Emergence of carbapenem-resistant Klebsiella species possessing the class A carbapenem-hydrolyzing KPC-2 and inhibitor-resistant TEM-30 beta-lactamases in New York City. Clin Infect Dis, 2004, 39(1):55-60.
    [7] Dallenne C, Da CA, Decre D, et al. Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. J Antimicrob Chemother, 2010, 65(3):490-495.
    [8] Zhao WH, Chen G, Ito R, et al. Relevance of resistance levels to carbapenems and integron-borne blaIMP-1, blaIMP-7, blaIMP-10 and blaVIM-2 in clinical isolates of Pseudomonas aeruginosa. J Med Microbiol, 2009, 58(Pt 8):1080-1085.
    [9] Toleman MA, Biedenbach D, Bennett D, et al. Genetic characterization of a novel metallo-beta-lactamase gene, blaIMP-13, harboured by a novel Tn5051-type transposon disseminating carbapenemase genes in Europe: report from the SENTRY worldwide antimicrobial surveillance programme. J Antimicrob Chemother, 2003, 52(4):583-590.
    [10]孙自镛,程黎明,朱旭慧等.超广谱β-内酰胺酶基因型分析.华中科技大学学报(医学版), 2006, 35(6):819-821.
    [11] Levesque C, Piche L, Larose C, et al. PCR mapping of integrons reveals several novel combinations of resistance genes. Antimicrob Agents Chemother,1995, 39(1):185-191.
    [12] Naas T, Cuzon G, Villegas MV, et al. Genetic structures at the origin of acquisition of the beta-lactamase blaKPC gene. Antimicrob Agents Chemother, 2008, 52(4):1257-1263.
    [13] Shen P, Wei Z, Jiang Y, et al. Novel genetic environment of the carbapenem-hydrolyzing beta-lactamase KPC-2 among Enterobacteriaceae in China. Antimicrob Agents Chemother, 2009, 53(10):4333-4338.
    [14] Hunter SB, Vauterin P, Lambert-Fair MA, et al. Establishment of a universal size standard strain for use with the PulseNet standardized pulsed-field gel electrophoresis protocols: converting the national databases to the new size standard. J Clin Microbiol, 2005, 43:1045-1050.
    [15] Kaczmarek FM, Dib-Hajj F, Shang W, et al. High-level carbapenem resistance in a Klebsiella pneumoniae clinical isolate is due to the combination of bla(ACT-1) beta-lactamase production, porin OmpK35/36 insertional inactivation, and down-regulation of the phosphate transport porin phoe. Antimicrob Agents Chemother, 2006, 50(10):3396-3406.
    [16] Yong D, Toleman MA, Giske CG, et al. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother, 2009, 53(12):5046-5054.
    [17] Kumarasamy KK, Toleman MA, Walsh TR, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis, 2010, 10(9):597-602.
    [18] Queenan AM, Bush K. Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev 2007,20(3):440-458.
    [19] Calfee D, Jenkins SG. Use of active surveillance cultures to detect asymptomatic colonization with carbapenem-resistant Klebsiella pneumoniae in intensive care unit patients. Infect Control Hosp Epidemiol, 2008, 29(10):966-968.
    [20] Nordmann P, Cuzon G, Naas T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis, 2009, 9:228–236.
    [21] Qi Y, Wei Z, Ji S, et al. ST11, the dominant clone of KPC-producing Klebsiella pneumoniae in China. J Antimicrob Chemother, 2010. [Epub ahead of print].
    [22] Kitchel B, Rasheed JK, Patel JB, et al. Molecular epidemiology of KPC producing Klebsiella pneumoniae isolates in the United States: clonal expansion of multilocus sequence type 258. Antimicrob Agents Chemother, 2009, 53:3365–3370.
    [23] Centers for Disease Control and Prevention (CDC). Guidance for control of infections with carbapenem-resistant or carbapenemase-producing Enterobacteriaceae in acute care facilities. MMWR Morb Mortal Wkly Rep, 2009, 58(10):256-260.
    [24] Chang HJ, Hsu PC, Yang CC, et al. Risk factors and outcomes of carbapenem-nonsusceptible Escherichia coli bacteremia: A matched case-control study. J Microbiol Immunol Infect, 2011, 44(2):125-130.
    [25] Souli M, Galani I, Antoniadou A, et al. An outbreak of infection due to betalactamase Klebsiella pneumoniae carbapenemase 2-producing K. pneumoniae in a Greek University Hospital: molecular characterization, epidemiology, and outcomes. Clin Infect Dis, 2010, 50:364-373.
    [26] Borer A, Saidel-Odes L, Riesenberg K, et al. Attributable mortality rate for carbapenem-resistant Klebsiella pneumoniae bacteremia. Infect Control Hosp Epidemiol, 2009, 30:972-976.
    [27] Sidjabat HE, Silveira FP, Potoski BA, et al. Interspecies spread of Klebsiella pneumoniae carbapenemase gene in a single patient. Clin Infect Dis, 2009, 49:1736-1738.
    [28] Jacoby GA, Mills DM, Chow N. Role of beta-lactamases and porins in resistance to ertapenem and other beta-lactams in Klebsiella pneumoniae. Antimicrob Agents Chemother, 2004, 48(8):3203-3206.
    [29] Nelson EC, Segal H, Elisha BG. Outer membrane protein alterations and blaTEM-1 variants: their role in beta-lactam resistance in Klebsiella pneumoniae. J Antimicrob Chemother, 2003, 52(6):899-903.
    [30] Crowley B, Benedi VJ, Domenech-Sanchez A. Expression of SHV-2 beta-lactamase and of reduced amounts of OmpK36 porin in Klebsiella pneumoniae results in increased resistance to cephalosporins and carbapenems. Antimicrob Agents Chemother, 2002, 46(11):3679-3682.
    [31] Domenech-Sanchez A, Martinez-Martinez L, Hernandez-Alles S, et al. Role of Klebsiella pneumoniae OmpK35 porin in antimicrobial resistance. Antimicrob Agents Chemother, 2003, 47(10):3332-3335.
    [32] Queenan AM, Bush K. Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev, 2007, 20:440-458.
    [33] Meletis G, Tzampaz E, Protonotariou E, et al. Emergence of Klebsiella pneumoniae carrying bla(VIM) and bla(KPC) genes. Hippokratia, 2010, 14(2):139-140.
    [34] Fisher JF, Meroueh SO, Mobashery S. Bacterial resistance to beta-lactam antibiotics: compelling opportunism, compelling opportunity. Chem Rev, 2005, 105(2):395-424.
    [35] Winokur PL, Canton R, Casellas JM, et al. Variations in the prevalence of strains expressing an extended-spectrum beta-lactamase phenotype and characterization of isolates from Europe, the Americas, and the Western Pacific region. Clin Infect Dis, 2001, 32 Suppl 2:S94-103.
    [36] Philippon A, Arlet G, Jacoby GA. Plasmid-determined AmpC-type beta-lactamases. Antimicrob Agents Chemother, 2002, 46(1):1-11.
    [37] Nordmann P, Poirel L. Emerging carbapenemases in Gram-negative aerobes. Clin Microbiol Infect, 2002, 8(6):321-331.
    [38] Philippon A, Arlet G, Jacoby GA. Plasmid-determined AmpC-type beta-lactamases. Antimicrob Agents Chemother, 2002, 46(1):1-11.
    [39] Poirel L, Heritier C, Tolun V, et al. Emergence of oxacillinase-mediatedresistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother, 2004, 48(1):15-22.
    [40] Wei ZQ, Du XX, Yu YS, et al. Plasmid-mediated KPC-2 in a Klebsiella pneumoniae isolate from China. Antimicrob Agents Chemother, 2007, 51:763-765.
    [41] Pfeifer Y, Cullik A, Witte W. Resistance to cephalosporins and carbapenems in Gram-negative bacterial pathogens. Int J Med Microbiol, 2010, 300:371-379.
    [42] Bush K. Alarming beta-lactamase-mediated resistance in multidrug-resistant Enterobacteriaceae. Curr Opin Microbiol, 2010, 13:558-564.
    [43] Hawkey PM, Xiong J, Ye H, et al. Occurrence of a new metallo-beta-lactamase IMP-4 carried on a conjugative plasmid in Citrobacter youngae from the People's Republic of China. FEMS Microbiol Lett, 2001, 194:53-57.
    [44] Yang Q, Wang H, Sun H, et al. Phenotypic and genotypic characterization of Enterobacteriaceae with decreased susceptibility to carbapenems: results from large hospital-based surveillance studies in China. Antimicrob Agents Chemother, 2010, 54:573-577.
    [1] Naas T, Cuzon G, Villegas MV, et al. Genetic structures at the origin of acquisition of the beta-lactamase blaKPC gene. Antimicrob Agents Chemother, 2008, 52(4):1257-1263.
    [2] Queenan AM, Bush K. Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev, 2007, 20(3):440-458.
    [3] Juan NC, Oliver A. Carbapenemases in Pseudomonas spp. Enferm Infecc Microbiol Clin, 2010, 28 Suppl 1:19-28.
    [4] Nordmann P. Gram-negative bacteriae with resistance to carbapenems. Med Sci (Paris), 2010, 26(11):950-959.
    [5] Nordmann P, Cuzon G, Naas T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis, 2009, 9:228-236.
    [6] Brown S, Amyes S. OXA (beta)-lactamases in Acinetobacter: the story so far. J Antimicrob Chemother, 2006, 57(1):1-3.
    [7] Dallenne C, Da CA, Decre D, et al. Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. J Antimicrob Chemother, 2010, 65(3):490-495.
    [8] Landman D, Bratu S, Quale J. Contribution of OmpK36 to carbapenems susceptibility in KPC-producing Klebsiella pneumoniae. J Med Microbiol, 2009, 58:1303-1308.
    [9] Smith Moland E, Hanson ND, Herrera VL, et al. Plasmid-mediated, carbapenem-hydrolysing beta-lactamase, KPC-2, in Klebsiella pneumoniae. J Antimicrob Chemother, 2003, 51:711-714.
    [10] Ikonomidis A, Ntokou E, Maniatis AN, et al. Hidden VIM-1 metallo-beta-lactamase phenotypes among Acinetobacter baumannii clinical isolates. J Clin Microbiol, 2008, 46(1):346-349.
    [11] Heritier C, Poirel L, Lambert T, et al. Contribution of acquired carbapenem-hydrolyzing oxacillinases to carbapenem resistance in Acinetobacter baumannii. Antimicrob Agents Chemother, 2005, 49(8):3198-3202.
    [12] Martins AF, Zavascki AP, Gaspareto PB, et al. Dissemination of Pseudomonas aeruginosa producing SPM-1-like and IMP-1-like metallobeta-lactamases in hospitals from southern Brazil. Infection, 2007, 35:457-460.
    [13] Cornaglia G, Akova M, Amicosante G, et al. Metallo-beta-lactamases as emerging resistance determinants in Gram-negative pathogens: open issues. Int J Antimicrob Agents, 2007, 29:380-388.
    [14] Nordmann P, Cuzon G, Naas T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis, 2009, 9(4):228-236.
    [15] Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing: 19th informational supplement. CLSI document M100-S19. Wayne, PA: CLSI, 2009.
    [16] Pasteran F, Mendez T, Guerriero L, et al. Sensitive screening tests for suspected class A carbapenemase production in species of Enterobacteriaceae. J Clin Microbiol, 2009, 47:1631-1639.
    [17] Tenover FC, Kalsi RK, Williams PP, et al. Carbapenem resistance in Klebsiella pneumoniae not detected by automated susceptibility testing. Emerg Infect Dis, 2006, 12:1209-1213.
    [18] Samuelsen O, Buaro L, Giske CG, et al. Evaluation of phenotypic tests for the detection of metallo-beta-lactamase-producing Pseudomonas aeruginosa in a low prevalence country. J Antimicrob Chemother, 2008, 61(4):827-830.
    [19] Pasteran F, Mendez T, Guerriero L, et al. Sensitive screening tests for suspected class A carbapenemase production in species of Enterobacteriaceae. J Clin Microbiol, 2009, 47(6):1631-1639.
    [20] Lee K, Lim YS, Yong D, et al. Evaluation of the Hodge test and the imipenem-EDTA double-disk synergy test for differentiating metallobeta-lactamase-producing isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol, 2003, 41:4623-4629.
    [21] Giakkoupi P, Vourli S, Polemis M, et al. Supplementation of growth media with Zn2+ facilitates detection of VIM-2-producing Pseudomonas aeruginosa. J ClinMicrobiol, 2008, 46:1568-1569.
    [22] Yan JJ, Wu JJ, Tsai SH, et al. Comparison of the double-disk, combined disk, and Etest methods for detecting metallo-beta-lactamases in gram-negative bacilli. Diagn Microbiol Infect Dis, 2004, 49(1):5-11.
    [23] Chu YW, Cheung TK, Ngan JY, et al. EDTA susceptibility leading to false detection of metallo-beta-lactamase in Pseudomonas aeruginosa by Etest and an imipenem-EDTA disk method. Int J Antimicrob Agents, 2005, 26:340-341.
    [24] Ratkai C, Quinteira S, Grosso F, et al. Controlling for false positives: interpreting MBL Etest and MBL combined disc test for the detection of metallo-beta-lactamases. J Antimicrob Chemother, 2009, 64:657-658.
    [25] Picao RC, Andrade SS, Nicoletti AG, et al. Metallo-beta-lactamase detection: comparative evaluation of double-disk synergy versus combined disk tests for IMP-, GIM-, SIM-, SPM-, or VIM-producing isolates. J Clin Microbiol, 2008, 46(6):2028-2037.
    [26] Tsakris A, Kristo I, Poulou A, et al. Evaluation of boronic acid disk tests for differentiating KPC-possessing Klebsiella pneumoniae isolates in the clinical laboratory. J Clin Microbiol, 2009, 47:362-367.
    [27] Buzzoni V, Blazquez J, Ferrari S, et al. Aza-boronic acids as non-beta-lactam inhibitors of AmpC-beta-lactamase. Bioorg Med Chem Lett, 2004, 14(15):3979-3983.
    [28] Giakkoupi P, Pappa O, Polemis M, et al. Emerging Klebsiella pneumoniae isolates coproducing KPC-2 and VIM-1 carbapenemases. Antimicrob Agents Chemother, 2009, 53:4048-4050.
    [29] Montero A, Ariza J, Corbella X, et al. Antibiotic combinations for serious infections caused by carbapenem-resistant Acinetobacter baumannii in a mouse pneumonia model. J Antimicrob Chemother, 2004, 54:1085-1091.
    [30] Tripodi MF, Durante-Mangoni E, Fortunato R, et al. Comparative activities of colistin, rifampicin, imipenem and sulbactam/ampicillin alone or in combination against epidemic multidrug-resistant Acinetobacter baumannii isolates producing OXA-58 carbapenemases. Int J Antimicrob Agents, 2007, 30(6):537-540.
    [31] Bratu S, Tolaney P, Karumudi U, et al. Carbapenemase-producing Klebsiella pneumoniae in Brooklyn, NY: molecular epidemiology and in vitro activity of polymyxin B and other agents. J Antimicrob Chemother, 2005, 56:128-132.
    [32] Van Gasse N, Vermeiren S, Jeurissen A. Comparison of the in vitro activity of meropenem and doripenem against Pseudomonas aeruginosa and multidrug-resistant Enterobacteriaceae. Acta Clin Belg, 2010, 65(6):451.
    [33] Tam VH, Chang KT, LaRocco MT, et al. Prevalence, mechanisms, and risk factors of carbapenem resistance in bloodstream isolates of Pseudomonas aeruginosa. Diagn Microbiol Infect Dis, 2007, 58:309-314.
    [34] Zavascki AP, Barth AL, Goncalves AL, et al. The influence of metallo-beta-lactamase production on mortality in nosocomial Pseudomonas aeruginosa infections. J Antimicrob Chemother, 2006, 58(2):387-392.
    [35] Marra AR, Pereira CA, Gales AC, et al. Bloodstream infections with metallo-beta-lactamase-producing Pseudomonas aeruginosa: epidemiology, microbiology, and clinical outcomes. Antimicrob Agents Chemother, 2006, 50:388-390.
    [36] Patel G, Huprikar S, Factor SH, et al. Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies. Infect Control Hosp Epidemiol, 2008, 29:1099-1106.
    [37] Woodford N, Tierno PM Jr, Young K, et al. Outbreak of Klebsiella pneumoniae producing a new carbapenem-hydrolyzing class A betalactamase, KPC-3, in a New York medical center. Antimicrob Agents Chemother, 2004, 48:4793-4799.
    [38] Tan CH, Li J, Nation RL. Activity of colistin against heteroresistant Acinetobacter baumannii and emergence of resistance in an in vitro pharmacokinetic/pharmacodynamic model. Antimicrob Agents Chemother, 2007, 51:3413-3415.
    [39] Kelesidis T, Karageorgopoulos DE, Kelesidis I, et al. Tigecycline for the treatment of multidrug-resistant Enterobacteriaceae: a systematic review of the evidence from microbiological and clinical studies. J Antimicrob Chemother, 2008,62:895-904.
    [40] Daikos GL, Petrikkos P, Psichogiou M, et al. Prospective observational study of the impact of VIM-1 metallo-beta-lactamase on the outcome of patients with Klebsiella pneumoniae bloodstream infections. Antimicrob Agents Chemother, 2009, 53:1868-1873.
    [41] Daikos GL, Petrikkos P, Psichogiou M, et al. Prospective observational study of the impact of VIM-1 metallo-beta-lactamase on the outcome of patients with Klebsiella pneumoniae bloodstream infections. Antimicrob Agents Chemother, 2009, 53:1868-1873.
    [42] Galani I, Rekatsina PD, Hatzaki D, et al. Evaluation of different laboratory tests for the detection of metallo-beta-lactamase production in Enterobacteriaceae. J Antimicrob Chemother, 2008, 61:548-553.
    [43] Kitchel B, Rasheed JK, Patel JB, et al. Molecular epidemiology of KPC producing Klebsiella pneumoniae isolates in the United States: clonal expansion of multilocus sequence type 258. Antimicrob Agents Chemother, 2009, 53:3365-3370.
    [44] Machado E, Coque TM, Canton R, et al. Leakage into Portuguese aquatic environments of extended-spectrum-beta-lactamase-producing Enterobacteriaceae. J Antimicrob Chemother, 2009, 63(3):616-618.
    [45] Patel G, Huprikar S, Factor SH, et al. Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies. Infect Control Hosp Epidemiol, 2008, 29:1099-1106.
    [46] Calfee D, Jenkins SG. Use of active surveillance cultures to detect asymptomatic colonization with carbapenem-resistant Klebsiella pneumoniae in intensive care unit patients. Infect Control Hosp Epidemiol, 2008, 29:966-968.
    [47] Kochar S, Sheard T, Sharma R, et al. Success of an infection control program to reduce the spread of carbapenem-resistant Klebsiella pneumoniae. Infect Control Hosp Epidemiol, 2009, 30:447-452.
    [48] Siegel JD, Rhinehart E, Jackson M, et al. Management of multidrug-resistant organisms in health care settings, 2006. Am J Infect Control, 2007, 35(10 Suppl2):S165-193.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700