用户名: 密码: 验证码:
高功率固体激光器热管理新技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热效应严重限制了高功率、高光束质量固体激光器的进一步发展。发展适用于重频、大能量激光器的新型热管理技术显得十分必要。
     本论文首先改进了已有的光热耦合的热效应分析理论,然后在此基础上,采用低温技术、相变冷却技术和径向偏振光技术,对Nd:glass、Yb:YAG固体激光器热管理进行了研究。主要内容包括以下四个方面:
     1.光热耦合的热效应分析理论
     (1)对传统热效应分析模型的改进和补充采用光线追迹方法,以二极管的微激射元为基本单位,设计高功率激光二极管阵列的端面泵浦耦合系统,并将光线追迹的结果作为介质热分析的生热源。建立了三维、瞬态的有限元模型求解介质的温度场、热应力分布,并提出了一种基于实测泵浦光斑求解热致波前畸变的方法,讨论了泵浦不均匀性的影响。实验上测量泵浦光斑,验证了泵浦耦合系统设计模型;使用热像仪测量钕玻璃介质的温度分布,校验了有限元方法的热传输计算模型。相比于传统模型,微激射元作为基本单位、实测泵浦光斑作为载荷等方法使模型更接近实际情况。
     (2)基于统计学的热致断裂概率分析模型及介质泵浦极限研究研究了热致断裂应力的评判标准和临界值概念,建立了一种统计学的热致断裂概率分析模型,分析了介质尺寸、应力、断裂概率三者的对应关系。分别研究了钕玻璃、Yb:YAG两种介质的断裂极限功率和吸收极限功率,指出不同重复频率下的泵浦极限机制不同。对17 kW,1 Hz泵浦的钕玻璃介质进行了断裂实验。
     (3)评估介质表面对流换热系数的方法提出了一种基于快响应热电偶测量不锈钢“替代片”温度变化,结合有限元计算模型反推表面对流换热系数的方法。通过寻求实测温度值和不同模拟参数下温度值的最小方差,得出某Yb:YAG放大器冷却构型表面对流换热系数值为3500 W/(m2 K)。该方法解决了对流换热系数计算模型不统一、实验中难以测量的问题。2.液氮制冷的低温Yb:YAG激光器
     低温下激光介质的热特性大幅改善,受激发射截面大幅提高。本文首先从材料特性的角度分析了温度对Yb:YAG介质的影响,研究了~100K低温激光器的热效应;然后研究了“电透镜”效应,并就Yb:YAG介质低温下的“电透镜”效应进行了理论分析,讨论了ASE效应、温度等因素的影响;针对低温激光器面临的泵浦传输难度增加的问题,提出了“楔形窗口”“实心棱镜”等解决方案;最后实验研究了12 kW端面泵浦的V型腔液氮冷却Yb:YAG激光器,对液氮制冷技术、系统效率以及最佳工作温度问题进行了讨论。
     3.利用相变潜热的固体激光介质散热技术
     (1)环路热管冷却的Yb:YAG放大器实验研究根据热阻理论以及多种新型热管技术的不同原理,设计了环路热管端面冷却Yb:YAG激光放大器和平板热管冷却的低温激光器,应用有限元软件ICEPAK建立了系统级热效应分析模型,实验上测量了6 kW泵浦的环路热管端面冷却Yb:YAG激光放大器性能,与水流冷却的对比表明,~1 Hz低重频下热管冷却完全可以代替水流冷却。
     (2)基于新型热管的非均匀散热理论与技术研究基于重频大能量激光器介质温度分布呈现的时、空不均匀性,提出了非均匀生热和非均匀散热两种热管理思路,即对原本温度高的地方减少生热、增强散热。与传统冷却方式对比的模拟结果表明:时空非均匀散热可以不同程度的降低温度梯度。例如:空间非均匀散热可将最高温度由362.3 K下降为347.6 K,最低温度从288.1 K升为292.6 K,从两方面共同减小了介质温度梯度;时间非均匀散热可将最高温度从362.3 K下降为336.1 K,最低温度不变。分别研究了利用嵌入式微热管阵列实现空间非均匀散热、利用脉动热管的振荡特性实现时间非均匀散热的技术,分析了基于热管技术实现非均匀散热的可行性。
     4.基于径向偏振光的光弹效应规避技术论述了径向偏振光在热管理中的优势。从规避光弹效应的角度出发,对径向偏振光的热致双焦点效应和热退偏效应进行了理论分析。重点分析了利用各向同性介质的热致双焦点产生径向偏振光的技术,该技术在利用热效应的同时,可规避部分热效应。研究了径向偏振光应用于固体激光热管理中的两个关键单元技术,即高度对称的泵浦场设计和补偿元件的设计,建立了环形激光二极管泵浦棒状放大器的设计理论,综合考虑了介质增益、系统效率、泵浦均匀性等因素。
     本论文对于光热效应分析模型的改进和对系统级热管理新技术的研究,可对新一代高功率固体激光器的设计和运行提供参考。
Solid-state lasers are developing rapidly with the trends of high power, high beam quality, high efficiency and miniaturization, however, the thermal effects limit the further development severely, the innovative solutions are very necessary. In this dissertation, an optical-thermal coupled theoretical model is presented, from the points of uniform heat generation, high efficient heat removing and effective avoidance, the cryogenic laser technology, phase change cooling technology and the radially polarized light technology are studied which lead to the system-level thermal management. The major works are shown the following:
     1. Optical-thermal coupled thermal effects analysis
     Using ray tracing method, based on the Laser Diode(LD) bar’s structure, the coupling system of high power LD array end-pumped laser is designed, and the results of ray tracing are taken as heat generation of thermal analysis. A three-dimensional, transient finite element model is established to solve the temperature and thermal stress distribution in laser medium. Thermal wavefront distortion is also solved with the measured pump profile, after that, the impact of pump uniformity is discussed. Measured pump profile verify the design model of the pump coupling system, and by thermal imaging of Nd:glass, the finite element heat transfer model is also verified. Compared to the conventional model, it is closer to the actual situation when using micro LD element as the basic unit of ray tracing and taking measured pump profile as load of thermal analysis.
     The evaluation criteria and critical value of thermal stress inducing fracture are reviewed. A Weibull statistical model is established to predict the possibility of fracture taking account of medium size and stress value. The fracture limit and absorption limit of Nd:glass and Yb:YAG are analyzed respectively. The mechanism of pump limit varies under different repetition rate. Fracture experiment of 17 kW, 1 Hz pumped Nd:glass is presented and the rationality of model is discussed.
     The surface heat transfer coefficient is estimated by using a fast thermocouple to measure the temperature evolution of false crystal, while compared with finite element analysis. Searching the lowest least square difference between measurement and simulation, a Yb:YAG amplifier surface heat transfer coefficient value of 3500 W/(m2K) is obtained. This method is simple and costless, while other calculation models are inconsistent and the direct experimental measurement is quite difficult.
     2. Liquid nitrogen cooled cryogenic Yb:YAG laser
     First, dependence of the Yb:YAG properties on temperature is reviewed and the thermal effects of laser medium with ~100K cooling are calculated, and then the electronic lensing effects for Yb:YAG medium are analyzed theoretically, the influence of cryogenic temperature is studied for the first time so far as we know. Comparing to the thermally induced refractive-index changes, the importance of electronic lensing is described. As liquid nitrogen(LN) cooling facing the problem of pump laser transmission, "wedge-shaped window," and "kaleidoscope homogenizer" are proposed as solutions. Finally, experimental study of a 12 kW LD pumped LN cooled V-shaped Yb:YAG laser is reported, LN refrigeration technique, system efficiency and other problems encountered in the experiment are discussed.
     3. Heat removing of medium with two-phase cooling technology
     According to the thermal resistance theory and the various principles of novel heat pipe, loop heat pipe end cooling Yb:YAG laser amplifier and flat heat pipe cooled cryogenic laser are designed. Using finite element software ICEPAK, a system-level thermal analysis model is established. By experimental measurements on the 6 kW LD end-pumped loop heat pipe cooling Yb:YAG laser amplifier performance versus water cooling, the results show that in low repetition rate(~1Hz) water cooling can be replaced by heat pipe cooling.
     Based on the temporal and spatial asymmetry of medium temperature in rep-rated high energy regime, two novel ideas of non-uniform heat generation and non-uniform heat removing are presented. For example, the spatial non-uniform heat removing concept is increasing heat dissipation where the temperature is high. Compared with conventional cooling methods, the simulation results show that temporal and spatial non-uniform heat removing can reduce temperature gradient to a certain extent. By using embedded micro heat pipe arrays and pulsating heat pipe, the spatial and temporal non-uniform cooling can be achieved respectively. The idea of non-uniform cooling is proposed for the first time as we know.
     4. Application of radially polarized beam to avoid photoelastic effects
     To avoid the photoelastic effects, the thermal bifocusing mechanism and depolarization on radially polarized beam are theoretically studied, its superiority in thermal management is pointed out. In particular, the generating method of making use of thermal bifocusing in isotropic medium is investigated and its predominance is emphasized.
     Two key issues of applying the radially polarized beam in thermal management of high power solid-state lasers are analyzed, which are the designs of highly symmetric pump profile and aberration compensation components. The complete design theory of LD ring side-pumped rod amplifier is proposed, factors such as gain coefficient, system efficiency and pump uniformity are all taking into account.
     In conclusion, this paper improves the model of the optical-thermal effect analysis and proposes system-level thermal management with three new technologies, the results will be helpful in the design and operation of high power solid-state lasers.
引文
[1] Koechner W. Solid-state laser engineering[M]. Berlin: Springer Verlag, 2006.
    [2] Payne S, Beach R, Bibeau C, et al.. Diode arrays, crystals, and thermal management for solid-state lasers[J]. Selected Topics in Quantum Electronics, IEEE Journal of, 2002, 3(1): 71-81.
    [3] Santala M, Zepf M, Beg F, et al.. Production of radioactive nuclides by energetic protons generated from intense laser-plasma interactions[J]. Applied Physics Letters, 2001, 78: 19-21.
    [4] FUCHS J, ANTICI P, D’HUMIERES E, et al.. Laser-driven proton scaling laws and new paths towards energy increase[J]. Laser, 2005, 10: 100-106.
    [5] Nakai S, Yamanaka M, Kitagawa Y, et al.. Driver development of IFE power plant in Japan--Collaborative process with industry and industrial applications[J]. J. Phys. IV France, 2006, 133: 811-819.
    [6] Kmetec J, Gordon III C, Macklin J, et al.. MeV x-ray generation with a femtosecond laser[J]. Physical Review Letters, 1992, 68(10): 1527-1530.
    [7] Marmo J, Injeyan H, Komine H, et al.. Joint high power solid state laser program advancements at Northrop Grumman[C]. 2009: 719507.
    [8] Alex M, Daniel E K. Textron's J-HPSSL 100 kW ThinZag Laser Program[C]. in Conference on Lasers and Electro-Optics. Optical Society of America. 2010: JThH2.
    [9] Bayramian A J, Armstrong J P, Beer G K, et al.. Design of a 10 Hz Femto-Petawatt Laser Pumped by the Mercury Laser Facility[C]. in Advanced Solid-State Photonics. Optical Society of America. 2008: MC1.
    [10] Stappaerts S, Telford S, Trenholme J, et al.. ND: GLASS LASER DESIGN FOR LASER ICF FISSION ENERGY (LIFE)[J]. FUSION SCIENCE AND TECHNOLOGY, 2009, 56: 607.
    [11] Kawanaka J, Miyanaga N, Tsubakimoto K, et al..―GENBU‖-Laser Development with Cryogenic Yb: YAG Ceramic for Fusion Energy Reactor Driver[C]. 2008: IFP7-8
    [12] Kawashima T, Ikegawa T, Kawanaka J, et al.. The HALNA project: Diode-pumped solid-state laser for inertial fusion energy[J]. J. Phys. IV France, 2006,133: 615-620.
    [13] Chanteloup J, Yu H, Bourdet G, et al.. Overview of the Lucia laser program: toward 100-Joules, nanosecond-pulse, kW averaged power based on ytterbium diode-pumped solid state laser[C]. SPIE. 2005, 5707: 105-116.
    [14] Chanteloup J C F, Albach D, Bourdet G, et al.. Impact of Variable Doped Gain Medium on HiPER Multiple kJ/~ 10Hz Diode Pumped Beam Lines Design[C]. in Advanced Solid-State Photonics. Optical Society of America. 2009:WB6.
    [15] Hein J, Kaluza M, B defeld R, et al.. Polaris: An all diode-pumped ultrahigh peak power laser for high repetition rates[J]. Lasers and nuclei, 2006, 47-66.
    [16] Siebold M, Hein J, Wandt C, et al.. High-energy, diode-pumped, nanosecond Yb: YAG MOPA system[J]. Optics Express, 2008, 16(6): 3674-3679.
    [17] Andy B, Paul A, Camille B, et al.. The Mercury Project:A kW Scale Yb:S-FAP Laser for Inertial Fusion Energyand Target Experiments[C]. in Advanced Solid-State Photonics. Optical Society of America. 2007: WD4.
    [18]周寿桓.固体激光器中的热管理[J].量子电子学报, 2005, 22(004): 497-509.
    [19] Cousins A. Temperature and thermal stress scaling in finite-length end-pumped laser rods[J]. Quantum Electronics, IEEE Journal of, 2002, 28(4): 1057-1069.
    [20] Peng X, Xu L, and Asundi A. Thermal lensing effects for diode-end-pumped Nd: YVO and Nd: YAG lasers[J]. Optical Engineering, 2004, 43(10): 2454-2461.
    [21]曹丁象.高功率固体激光系统的热效应及热管理研究[D].长沙:国防科学技术大学2008.
    [22]陶毓伽,淮秀兰,李志刚等.大功率固体激光器冷却技术进展[J].激光杂志, 2007, 28(002): 11-12.
    [23]田长青,徐洪波,曹宏章等.高功率固体激光器冷却技术[J].中国激光, 2009, 36(7): 1686-1692.
    [24]欧群飞.高功率二极管抽运固体激光器的热效应分析[D].成都:四川大学2005.
    [25]宋小鹿.二极管泵浦固体激光器若干重要问题的研究[D].西安:西安电子科技大学2009.
    [26]汪晓波.高平均功率固体激光的热效应研究[D].长沙:国防科学技术大学2008.
    [27] Le Garrec B, Casagrande O. Solid state laser design for inertial confinement fusion: Trends toward power production[J]. J. Phys. IV France, 2006, 133: 829-831.
    [28] Bibeau C, Bayramian A, Armstrong P, et al.. The mercury laser system—An average power, gas-cooled, Yb: S-FAP based system with frequency conversion and wavefront correction[J]. J. Phys. IV France, 2006, 133: 797–803.
    [29] Bayramian A, Armstrong J, Beer G, et al.. High-average-power femto-petawatt laser pumped by the Mercury laser facility[J]. Journal of the Optical Society of America B, 2008, 25(7): 57-61.
    [30] Krupke W. Ytterbium solid-state lasers. The first decade[J]. Selected Topics in Quantum Electronics, IEEE Journal of, 2002, 6(6): 1287-1296.
    [31] Bowman S. Lasers without internal heat generation[J]. Quantum Electronics, IEEE Journal of, 2002, 35(1): 115-122.
    [32] Andrianov S, Samartsev V. Solid state lasers with internal laser refrigeration effect[C]. SPIE. 2001, 4605: 208-213.
    [33] Lavi R, Jackel S. Thermally boosted pumping of neodymium lasers[J]. Applied Optics, 2000, 39(18): 3093-3098.
    [34] Lavi R, Jackel S, Tzuk Y, et al.. Efficient pumping scheme for neodymium-doped materials by direct excitation of the upper lasing level[J]. Applied Optics, 1999, 38(36): 7382-7385.
    [35] Sato Y, Taira T, Pavel N, et al.. Laser operation with near quantum-defect slope efficiency in Nd: YVO under direct pumping into the emitting level[J]. Applied Physics Letters, 2003, 82: 844-846.
    [36] Mungan C, Rusconi R, Isa L, et al.. Thermodynamics of radiation-balanced lasing[J]. Journal of the Optical Society of America B, 2003, 20(5): 1075-1082.
    [37]王晓峰.固体荧光致冷效应及掺Yb激光介质辐射冷却研究[D].长沙:国防科学技术大学2008.
    [38]周沐,王晓峰,谭吉春.角抽运优化及辐射平衡激光器增益介质设计[J].中国激光, 2008, 35(010): 1473-1476.
    [39] Jean C, Chanteloup F, Daniel A, et al.. Impact of Variable Doped Gain Medium on HiPER Multiple kJ / ~10Hz Diode Pumped Beam Lines Design[C]. in Advanced Solid-State Photonics. Optical Society of America. 2009: WB6.
    [40] Dong J, Bass M, Mao Y, et al.. Dependence of the Yb3+ emission crosssection and lifetime on temperature and concentration in yttrium aluminum garnet[J]. Journal of the Optical Society of America B, 2003, 20(9): 1975-1979.
    [41] Ripin D, Ochoa J, Aggarwal R, et al.. 300-W cryogenically cooled Yb: YAG laser[J]. Quantum Electronics, IEEE Journal of, 2005, 41(10): 1274-1277.
    [42] Kawanaka J, Miyanaga N, Tsubakimoto K, et al.. New Concept of Laser Fusion Energy Driver Using Cryogenic Yb: YAG Ceramics[C]. in 21st IAEA. Fusion Energy Conference. Chengdu, China. 2006: 16-21.
    [43] Tokita S, Kawanaka J, Izawa Y, et al.. 23.7-W picosecond cryogenic-Yb: YAG multipass amplifier[J]. Optics Express, 2007, 15(7): 3955-3961.
    [44] Kim J. Spray cooling heat transfer: The state of the art[J]. International Journal of Heat and Fluid Flow, 2007, 28(4): 753-767.
    [45]陈永平,郑平.新型分形树状微通道散热器的实验研究[J].工程热物理学报, 2007, 30(1): 853-855.
    [46] Silk E, Golliher E, Paneer Selvam R. Spray cooling heat transfer: Technology overview and assessment of future challenges for micro-gravity application[J]. Energy Conversion and Management, 2008, 49(3): 453-468.
    [47]王亚青,刘明侯,刘东等.高功率激光器喷雾冷却的实验研究[J].强激光与粒子束, 2009, 21(012): 1761-1766.
    [48] AGOSTINI B. State of the Art of High Heat Flux Cooling Technologies[J]. Heat Transfer Engineering, 2007, 28(4): 258-281.
    [49] Kim K, Won M, Kim J, et al.. Heat pipe cooling technology for desktop PC CPU[J]. Applied Thermal Engineering, 2003, 23(9): 1137-1144.
    [50] Ryo Y, Takashi S, Takashi K, et al.. High Pulse Energy, Rep-Rated Nd:Glass Laser with Stimulated Brillouin Scattering Phase Compensator[C]. in Advanced Solid-State Photonics. Optical Society of America. 2008: MC6.
    [51] Moshe I, Jackel S, Meir A, et al.. 2kW, M2< 10 radially polarized beams from aberration-compensated rod-based Nd: YAG lasers[J]. Optics Letters, 2007, 32(1): 47-49.
    [52] Yasuhara R, Kawashima T, Sekine T, et al.. 213 W average power of 2.4 GW pulsed thermally controlled Nd: glass zigzag slab laser with a stimulated Brillouin scattering mirror[J]. Optics Letters, 2008, 33(15): 1711-1713.
    [53] Albrecht G, Sutton S, George E, et al.. Solid state heat capacity disk laser[J]. Laser and Particle Beams, 1998, 16(04): 605-625.
    [54] Stuart J M, Hiroshi K, Weiss S B, et al.. 100 kW Coherently Combined Slab MOPAs[C]. in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference. Optical Society of America. 2009: CThA1.
    [55] Bourdet G L, Yu H. Longitudinal temperature distribution in an end-pumped solid-state amplifier medium: application to a high average power diode pumped Yb: YAG thin disk amplifier[J]. Applied Optics, 2007, 46(23): 6033-6041.
    [56] Pollnau M, Hardman P, Kern M, et al.. Upconversion-induced heat generation and thermal lensing in Nd: YLF and Nd: YAG[J]. Physical Review B, 1998, 58(24): 16076-16092.
    [57] Peng X, Xu L, Asundi A. Power scaling of diode-pumped Nd:YVO4 lasers[J]. Quantum Electronics, IEEE Journal of, 2002, 38(9): 1291-1299.
    [58] Peng X, Xu L, Asundi A. High-power efficient continuous-wave TEM00 intracavity frequency-doubled diode-pumped Nd: YLF laser[J]. Applied Optics, 2005, 44(5): 800-807.
    [59] Pfistner C, Weber R, Weber H, et al.. Thermal beam distortions in end-pumped Nd: YAG, Nd: GSGG, and Nd: YLF rods[J]. Quantum Electronics, IEEE Journal of, 2002, 30(7): 1605-1615.
    [60] Innocenzi M, Yura H, Fincher C, et al.. Thermal modeling of continuous‐wave end‐pumped solid‐state lasers[J]. Applied Physics Letters, 2009, 56(19): 1831-1833.
    [61]段文涛,蒋东镔,蒋学君等.高效大功率激光二极管阵列端面抽运耦合系统[J].中国激光, 2009, 36(001): 51-55.
    [62] Van Wonterghem B, Murray J, Campbell J, et al.. Performance of a prototype for a large-aperture multipass Nd: glass laser for inertial confinement fusion[J]. Applied Optics, 1997, 36(21): 4932-4953.
    [63] Norman M, Andrew J, Bett T, et al.. Multipass reconfiguration of the HELEN Nd: glass laser at the Atomic Weapons Establishment[J]. Applied Optics, 2002, 41(18): 3497-3505.
    [64] Schaffers K, Bayramian A J, Menapace J A, et al.. Advanced Material Development for Inertial Fusion Energy (IFE)[M]. Crystal Growth Technology: Wiley-VCH Verlag GmbH & Co. KGaA, 2010: 229-248.
    [65]於海武,段文涛,徐美健等. Yb激光材料综述[J].激光与光电子学进展, 2007, 44(4): 30-41.
    [66]杜少军,陆启生,舒柏宏.激光窗口热效应和应力双折射的分析[J].强激光与粒子束, 2004, 16(005): 575-581.
    [67]段文涛,蒋新颖,蒋东镔等.激光二极管端面抽运的焦耳级10 Hz“V”型水冷Yb: YAG激光器[J].中国激光, 2010, 37(001): 44-48.
    [68] Wynne R, Daneu J, Fan T. Thermal coefficients of the expansion and refractive index in YAG[J]. Applied Optics, 1999, 38(15): 3282-3284.
    [69] Yan L, Lee C. Thermal effects in end‐pumped Nd: phosphate glasses[J]. Journal of Applied Physics, 1994, 75(3): 1286-1292.
    [70]王建磊,李磊,乔亮等.端面抽运复合Nd: YAG陶瓷板条激光介质温度和应力分布的理论分析[J].中国激光, 2009, 36(7): 1777-1783.
    [71]王明哲,李明中,谭吉春等.大口径LD泵浦的激光放大器热沉积特性[J].强激光与粒子束, 2006, 18(012): 1979-1982.
    [72]王建磊,施翔春,朱小磊.高效率高功率脉冲Yb: YAG片状激光器优化设计与模拟[J].光学学报, 2010, 30(8): 2278-2283.
    [73] Bernhardi E, Forbes A, Bollig C, et al.. Estimation of thermal fracture limits in quasi–continuous–wave end–pumped lasers through a time–dependent analytical model[J]. Optics Express, 2008, 16(15): 11115-11123.
    [74] Bernhardi E H, Bollig C, Forbes A, et al.. Modelling end-pumped solid state lasers, in Proceedings of the 13th Annual Symposium of the IEEE LEOS Benelux Chapter. 2008, IEEE LEOS Benelux Chapter: Enschede, The Netherlands.
    [75]刘孝敏.工程材料的微细观结构和力学性能[M]:中国科学技术大学出版社, 2003.
    [76] Marion J, Fracture of solid state laser slabs[J]. Journal of Applied Physics, 1986, 60(1): 69-77.
    [77] Zhou Y, Zhu Z, Duan Z. Thermal fracture characteristics induced by laser beam[J]. International Journal of Solids and Structures, 2001, 38(32-33): 5647-5660.
    [78] Mirkin L, Shesterikov S, Yumashev M, et al.. Instability of thermal fracture under the conditions of constrained deformation[J]. Materials Science, 2006, 42(6): 778-785.
    [79] Guo L, Noda N, Wu L. Thermal fracture model for a functionally graded plate with a crack normal to the surfaces and arbitrary thermomechanical properties[J]. Composites Science and Technology, 2008, 68(3-4): 1034-1041.
    [80]胡丽丽,姜中宏.磷酸盐激光玻璃研究进展[J].硅酸盐通报, 2005, 24(005): 125-129.
    [81]王宏志.多晶YAG陶瓷的制备及力学性能[J].硅酸盐学报, 2001, 29(001): 35-38.
    [82] Murthy D, Xie M, Jiang R. Weibull models[M]. New York: Wiley-Interscience, 2004.
    [83]高俊超,朱长虹,李正佳.固态激光介质的热效应与光泵浦极限研究[J].激光技术, 2004, 28(003): 271-274.
    [84]严雄伟,於海武,曹丁象等.脉冲储能型重复频率Yb: YAG片状激光放大器ASE效应研究[J].物理学报, 2009. 58(6): 4230-4238.
    [85] H nninger C, Paschotta R, Graf M, et al.. Ultrafast ytterbium-doped bulk lasers and laser amplifiers[J]. Applied Physics B: Lasers and Optics, 1999, 69(1): 3-17.
    [86] Choi J, Shi F, Margaryan A, et al. Optical absorption and emission properties of Nd 3-doped fluorophosphates glass for broadband fiber amplifier applications [C]. SPIE. 2003: 106-111.
    [87] Bonner R, Wadell R, Popov G. Local Heat Transfer Coefficient Measurements of Flat Angled Sprays Using Thermal Test Vehicle[C]. in 24th IEEE SEMI-THERM Symposium. IEEE. 2008: 149-153.
    [88] Tawfek A. Heat transfer and pressure distributions of an impinging jet on a flat surface[J]. Heat and Mass Transfer, 1996, 32(1): 49-54.
    [89] Martin H, James P H, Thomas F. Irvine. Heat and Mass Transfer between Impinging Gas Jets and Solid Surfaces[C], in Advances in Heat Transfer. 1977, Elsevier. 1-60.
    [90] Incropera F, De Witt D. Fundamentals of heat and mass transfer (6th edition)[M]. New York: John Wiley & Sons, 2006.
    [91]宋小鹿,过振,李兵斌等.散热方式对激光晶体热畸变效应的影响[J].中国激光, 2010, 37(002): 351-357.
    [92] Hein J, Podleska S, Siebold M, et al.. Diode-pumped chirped pulse amplification to the joule level[J]. Applied Physics B: Lasers and Optics, 2004, 79(4): 419-422.
    [93] Chenais S, Forget S, Druon F, et al.. Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb: YAG[J]. Applied Physics B: Lasers and Optics, 2004, 79(2): 221-224.
    [94] Fan T, Daneu J. Thermal coefficients of the optical path length and refractive index in YAG[J]. Applied Optics, 1998, 37(9): 1635-1637.
    [95] Ashkenasi D, Rosenfeld A, Varel H, et al.. Laser processing of sapphire with picosecond and sub-picosecond pulses[J]. Applied Surface Science, 1997, 120(1-2): 65-80.
    [96] Siebold M, Hornung M, Bock S, et al.. Broad-band regenerative laser amplification in ytterbium-doped calcium fluoride (Yb: CaF2)[J]. Applied Physics B: Lasers and Optics, 2007, 89(4): 543-547.
    [97] Siebold M, Hein J, Kaluza M, et al.. High-peak-power tunable laser operation of Yb: SrF2[J]. Optics Letters, 2007, 32(13): 1818-1820.
    [98] DeLoach L, Payne S, Chase L, et al.. Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications[J]. Quantum Electronics, IEEE Journal of, 2002, 29(4): 1179-1191.
    [99] Sueda K, Kawato S, Kobayashi T. LD pumped Yb:YAG regenerative amplifier for high average power short-pulse generation[J]. Laser Physics Letters, 2008, 5(4): 271-275.
    [100] Kawanaka J. Conceptual Design of IFE Laser Reactor Driver Using Diode-Pumped Cryogenic Yb:YAG Ceramics[C]. in 3rd International Workshop HEC-DPSSL. Livermore. 2006.
    [101] Taira T, Tulloch W, Byer R. Modeling of quasi-three-level lasers and operation of cw Yb: YAG lasers[J]. Applied Optics, 1997, 36(9): 1867-1874.
    [102] Fan T. Heat generation in Nd: YAG and Yb: YAG[J]. Quantum Electronics, IEEE Journal of, 2002, 29(6): 1457-1459.
    [103] Dong J, Ueda K, Yagi H, et al.. Comparative study the effect of Yb concentrations on laser characteristics of Yb:YAG ceramics and crystals[J]. Laser Physics Letters, 2009, 6(4): 282-289.
    [104] Hiroaki F, Junji K, Noriaki M, et al.. Zig-Zag Active-Mirror Laser with Cryogenic Yb:YAG[C]. in Advanced Solid-State Photonics. Optical Society of America. 2010: AWB21.
    [105] Simmons W, Hunt J, Warren W. Light propagation through large laser systems[J]. Quantum Electronics, IEEE Journal of, 2002, 17(9): 1727-1744.
    [106] Yasuki T, Junji K, Masayuki F. Nonlinear refractive index of a YAG crystal at low temperature[C]. in Conference on Lasers and Electro-Optics/Europe and EQEC2009 Conference Digest. Optical Society of America. 2009: CA_P24.
    [107] Antipov O, Kuzhelev A, Chausov D, et al.. Dynamics of refractive index changes in a Nd: YAG laser crystal under Nd 3+-ions excitation[J]. Journal of the Optical Society of America B, 1999, 16: 1072-1079.
    [108] Antipov O, Bredikhin D, Eremeykin O, et al.. Electronic mechanism for refractive-index changes in intensively pumped Yb: YAG laser crystals[J]. Optics Letters, 2006, 31(6): 763-765.
    [109] Antipov O, Anashkina E, Fedorova K. Electronic and thermal lensing in diode end-pumped Yb: YAG laser rods and discs[J]. Quantum Electronics, 2009, 39(12): 1131-1136.
    [110] Antipov O, Eremeykin O, Savikin A, et al.. Electronic changes of refractive index in intensively pumped Nd: YAG laser crystals[J]. Quantum Electronics, IEEE Journal of, 2003, 39(7): 910-918.
    [111] Ivakin E, Sukhadolau A, Antipov O, et al.. Transient grating measurements of refractive-index changes in intensively pumped Yb-doped laser crystals[J]. Applied Physics B: Lasers and Optics, 2007, 86(2): 315-318.
    [112] Born M, Wolf E, and Bhatia A, Principles of optics[M]. Vol. 508: Pergamon press Oxford, 2005.
    [113] Anashkina E, Antipov O. Electronic (population) lensing versus thermal lensing in Yb: YAG and Nd: YAG laser rods and disks[J]. Journal of the Optical Society of America B, 2010. 27(3): 363-369.
    [114] Beach R. Theory and optimization of lens ducts[J]. Applied Optics, 1996, 35(12): 2005-2015.
    [115]贾伟,胡永明,李明中等.空心透镜导管的模拟与设计[J].中国激光, 2004, 31(008): 939-942.
    [116] Gong M, Lu F, Liu Q, et al.. Efficient corner-pumped Yb: YAG/YAG composite slab laser[J]. Applied Optics, 2006, 45(16): 3806-3810.
    [117]邓青华,彭翰生,隋展等.高功率激光二极管阵列端面抽运放大器新型耦合方式研究[J].物理学报, 2008, 57(010): 6340-6347.
    [118]赵天卓,樊仲维,陈亚楠等.大发光面积激光二极管堆栈抽运结构[J].中国激光, 2009, 36(008): 1951-1956.
    [119] Wandt C, Klingebiel S, Siebold M, et al.. Generation of 220 mJ nanosecond pulses at a 10 Hz repetition rate with excellent beam quality in a diode-pumped Yb:YAG MOPA system[J]. Optics Letters, 2008, 33(10): 1111-1113.
    [120] Bartnicki E, Bourdet G. Simulation and experimental results of kaleidoscope homogenizers for longitudinal diode pumping[J]. Applied Optics, 2010, 49(9): 1636-1642.
    [121] Junji K, Ryo Y, Stuart J P, et al.. Efficient, High-Power, Repeatable, Cryogenic Yb:YAG MOPA System[C]. in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference. Optical Society of America. 2009: CFD5.
    [122] Kurita T, Yasuhara R, Sekine T, et al.. High-pulse-energy, rep.-rated diode-pumped slab laser technology: scalable architecture, thermal management, and wavefront correction[C]. in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference. Optical Society of America. 2007: 1-1.
    [123]罗亦鸣,李明中,唐军等.用于ICF驱动器的全LD泵浦高增益放大系统研究[J].强激光与粒子束, 2005, 17(B04): 45-48.
    [124] Sekine T, Kawashima T, Matsumoto O, et al.. 1-J at 10 Hz Output Diode-Pumped Nd: YLF Regenerative Ring Amplifier[C]. IEEE. 2006: 152-153.
    [125] Liu Q, Gong M, Lu F, et al.. Corner-pumped Yb: yttrium aluminum garnet slab laser emitted up to 1 kW[J]. Applied Physics Letters, 2006. 88: 101113.
    [126] Tokita S, Kawanaka J, Fujita M, et al.. Sapphire-conductive end-cooling of high power cryogenic Yb: YAG lasers[J]. Applied Physics B: Lasers and Optics, 2005, 80(6): 635-638.
    [127] Bartnicki E, Bourdet G, Ynard M. Homogenizer and multipass pump beam combination for quasi-longitudinally diode-pumped solid-state lasers[J]. Applied Optics, 2007, 46(29): 7190-7195.
    [128] Bourdet G L. Numerical simulation of a high-average-power diode-pumped ytterbium-doped YAG laser with an unstable cavity and a super-Gaussian mirror[J]. Applied Optics, 2005, 44(6): 1018-1027.
    [129]陈佳元,余文峰,程祖海.强激光热管冷却镜的数值研究[J].强激光与粒子束, 2008, 20(05): 710-714.
    [130]宋小鹿,韦光,文建国等.热管在LD端面泵浦固体激光器散热系统中的应用[J].上海交通大学学报, 2009, 43(003): 397-401.
    [131] Vasiliev L. Heat pipes in modern heat exchangers[J]. Applied Thermal Engineering, 2005, 25(1): 1-19.
    [132] Launay S, Sartre V, Bonjour J. Parametric analysis of loop heat pipe operation: a literature review[J]. International Journal of Thermal Sciences, 2007, 46(7): 621-636.
    [133] Maydanik Y. Loop heat pipes[J]. Applied Thermal Engineering, 2005, 25(5-6): 635-657.
    [134] CHANDRATILLEKE R, HATAKEYAMA H, NAKAGOME H. Development of cryogenic loop heat pipes[J]. Cryogenics(Guildford), 1998, 38(3): 263-269.
    [135] Mo Q, Liang J. A novel design and experimental study of a cryogenic loop heat pipe with high heat transfer capability[J]. International Journal of Heat and Mass Transfer, 2006, 49(3-4): 770-776.
    [136] Boukhanouf R, Haddad A, North M, et al.. Experimental investigation of a flat plate heat pipe performance using IR thermal imaging camera[J]. Applied Thermal Engineering, 2006, 26(17-18): 2148-2156.
    [137]林梓荣,汪双凤,吴小辉.脉动热管技术研究进展[J].化工进展, 2008, 27(010): 1526-1532.
    [138]曲伟,马同泽.脉动热管的工质流动和传热特性实验研究[J].工程热物理学报, 2002, 23(005): 596-598.
    [139] Khandekar S, Schneider M, Schafer P, et al.. Thermofluid dynamic study of flat-plate closed-loop pulsating heat pipes[J]. Microscale Thermophysical Engineering, 2002, 6(4): 303-318.
    [140]范春利,曲伟,孙丰瑞等.微小型热管的研究现状与进展[J].电子器件, 2004, 27(001): 211-216.
    [141] Cotter T. Principles and prospects for micro heat pipes[R]. 1984, Los Alamos National Lab., NM (USA).
    [142] Chen H, Groll M, Rosler S. Micro heat pipes: experimental investigation and theoretical modeling[C]. in Proceedings of the 8th International Heat Pipe 1992.
    [143]范春利,曲伟,杨立等.电子器件冷却用微型热管的蒸发传热分析[J].电子器件, 2003, 26(003): 260-263.
    [144] Chiou R, Lu L, Chen J, et al.. Investigation of dry machining with embedded heat pipe cooling by finite element analysis and experiments[J]. The International Journal of Advanced Manufacturing Technology, 2007, 31(9): 905-914.
    [145] Petros M, Yu J, Melak T, et al.. Totally conductive-cooled diode-pumped2-μm laser transmitter[C]. SPIE, 2005, 5653: 158-166.
    [146] Horacek B, Kiger K, Kim J. Single nozzle spray cooling heat transfer mechanisms[J]. International Journal of Heat and Mass Transfer, 2005, 48(8): 1425-1438.
    [147] Romera-Guereca G, Lichtenberg J, Hierlemann A, et al.. Explosive vaporization in microenclosures[J]. Experimental Thermal and Fluid Science, 2006, 30: 829-836.
    [148]段文涛,蒋东镔,蒋学君等.高效大功率激光二极管阵列端面抽运耦合系统[J].中国激光, 2009, 36(1): 51-55.
    [149] Albach D, Chanteloup J C, TouzéG. Influence of ASE on the gain distribution in large size, high gain Yb3+: YAG slabs[J]. Optics Express, 2009, 17(5): 3792-3801.
    [150]张颖,朱启华,曾小明等.高功率激光与光学啁啾堆积脉冲传输过程中的小尺度自聚焦效应[J].强激光与粒子束, 2011. 23(1): 45-48.
    [151]刘红婕,景峰,左言磊等.高功率激光装置中局部波前畸变的非线性传输[J].强激光与粒子束, 2006, 18(011): 1850-1854.
    [152] Launay S, Sartre V, Lallemand M. Experimental study on silicon micro-heat pipe arrays[J]. Applied Thermal Engineering, 2004, 24(2-3): 233-243.
    [153] Zhang Y, Faghri A. Heat transfer in a pulsating heat pipe with open end[J]. International Journal of Heat and Mass Transfer, 2002, 45(4): 755-764.
    [154] Zhan Q. Cylindrical vector beams: from mathematical concepts to applications[J]. Advances in Optics and Photonics, 2009, 1(1): 1-57.
    [155] Peng F, Yao B, Yan S, et al.. Trapping of low-refractive-index particles with azimuthally polarized beam[J]. Journal of the Optical Society of America B, 2009, 26(12): 2242-2247.
    [156] Lu F, Zheng W, Huang Z. Coherent anti-Stokes Raman scattering microscopy using tightly focused radially polarized light[J]. Optics Letters, 2009, 34(12): 1870-1872.
    [157] Meier M, Romano V, Feurer T. Material processing with pulsed radially and azimuthally polarized laser radiation[J]. Applied Physics A: Materials Science & Processing, 2007, 86(3): 329-334.
    [158] Yoon Y J, Kim W C, Park N C, et al.. Feasibility study of the application of radially polarized illumination to solid immersion lens-based near-field optics[J]. OpticsLetters, 2009, 34(13): 1961-1963.
    [159]王振华,李劲松.径向偏振光的产生及在现代光学中的应用[J].激光杂志, 2009, 30(001): 8-10.
    [160] Dorn R, Quabis S, Leuchs G. Sharper focus for a radially polarized light beam[J]. Physical Review Letters, 2003, 91(23): 233901.
    [161] Machavariani G, Lumer Y, Moshe I, et al.. Birefringence-induced bifocusing for selection of radially or azimuthally polarized laser modes[J]. Applied Optics, 2007, 46(16): 3304-3310.
    [162] Moshe I, Jackel S, Meir A. Production of radially or azimuthally polarized beams in solid-state lasers and the elimination of thermally induced birefringence effects[J]. Optics Letters, 2003, 28(10): 807-809.
    [163] Lumer Y, Moshe I, Meir A, et al.. Effects of thermally induced aberrations on radially and azimuthally polarized beams[J]. Journal of the Optical Society of America B, 2007, 24(9): 2279-2286.
    [164] Lumer Y, Moshe I, Horovitz Z, et al.. Thermally induced birefringence in nonsymmetrically pumped laser rods and its implications for attainment of good beam quality in high-power, radially polarized lasers[J]. Applied Optics, 2008, 47(21): 3886-3891.
    [165] Moshe I, Jackel S. Influence of birefringence-induced bifocusing on optical beams[J]. Journal of the Optical Society of America B, 2005, 22(6): 1228-1235.
    [166] Viswanathan N, Inavalli V. Generation of optical vector beams using a two-mode fiber[J]. Optics Letters, 2009, 34(8): 1189-1191.
    [167] Kozawa Y, Sato S. Generation of a radially polarized laser beam by use of a conical Brewster prism[J]. Optics Letters, 2005, 30(22): 3063-3065.
    [168] Moshe I, Jackel S, Meir A. Correction of spherical and azimuthal aberrations in radially polarized beams from strongly pumped laser rods[J]. Applied Optics, 2005, 44(36): 7823-7827.
    [169] Wang X, Xu X, Li X, et al.. Revising the formula of thermal focal length in a side-pumped laser rod by experiments[J]. Applied Optics, 2007, 46(22): 5237-5240.
    [170] Wang X, Xu X, Lu Q, et al.. Shack-Hartmann wavefront sensor measurement for dynamic temperature profiles in heat-capacity laser rods[J]. Applied Optics, 2007, 46(15): 2963-2968.
    [171] Mushiake Y, Matsumura K, Nakajima N. Generation of radially polarizedoptical beam mode by laser oscillation[J]. Proceedings of the IEEE, 1972, 60(9): 1107-1109.
    [172] Pohl D. Operation of a ruby laser in the purely transverse electric mode TE01[J]. Applied Physics Letters, 1972, 20: 266-267.
    [173] Thirugnanasambandam M P, Senatsky Y, Ueda K. Generation of radially and azimuthally polarized beams in Yb: YAG laser with intra-cavity lens and birefringent crystal[J]. Optics Express, 2011, 19(3): 1905-1914.
    [174] Li J, Ueda K, Zhong L, et al.. Efficient excitations of radially and azimuthally polarized Nd3+:YAG ceramic microchip laser by use of subwavelength multilayer concentric gratings composed of Nb2O5SiO2[J]. Optics Express, 2008, 16(14): 10841-10848.
    [175] Ahmed M, Voss A, Vogel M, et al.. Multilayer polarizing grating mirror used for the generation of radial polarization in Yb: YAG thin-disk lasers[J]. Optics Letters, 2007, 32(22): 3272-3274.
    [176] Li J, Ueda K, Musha M, et al.. Generation of radially polarized mode in Yb fiber laser by using a dual conical prism[J]. Optics Letters, 2006, 31(20): 2969-2971.
    [177] Li J, Ueda K, Musha M, et al.. Radially polarized and pulsed output from passively Q-switched Nd: YAG ceramic microchip laser[J]. Optics Letters, 2008, 33(22): 2686-2688.
    [178] Niziev V, Chang R, and Nesterov A. Generation of inhomogeneously polarized laser beams by use of a Sagnac interferometer[J]. Applied Optics, 2006, 45(33): 8393-8399.
    [179] Machavariani G, Lumer Y, Moshe I, et al. Efficient extracavity generation of radially and azimuthally polarized beams[J]. Optics Letters, 2007, 32(11): 1468-1470.
    [180] Lai W, Lim B, Phua P, et al.. Generation of radially polarized beam with a segmented spiral varying retarder[J]. Optics Express, 2008, 16(20): 15694-15699.
    [181] Stalder M and Schadt M. Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters[J]. Optics Letters, 1996, 21(23): 1948-1950.
    [182] Lim B, Phua P, Lai W, et al. Fast switchable electro-optic radial polarization retarder[J]. Optics Letters, 2008, 33(9): 950-952.
    [183] Bomzon Z, Biener G, Kleiner V, et al. Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings[J]. Optics Letters,2002, 27(5): 285-287.
    [184] Phua P B and Lai W J. Simple coherent polarization manipulation scheme for generating high power radially polarized beam[J]. Optics Express, 2007, 15(21): 14251-14256.
    [185] Tidwell S C, Ford D H, and Kimura W D. Generating radially polarized beams interferometrically[J]. Applied Optics, 1990, 29(15): 2234-2239.
    [186] Roth M S, Wyss E W, Glur H, et al. Generation of radially polarized beams in a Nd: YAG laser with self-adaptive overcompensation of the thermal lens[J]. Optics Letters, 2005, 30(13): 1665-1667.
    [187] Ito A, Kozawa Y, and Sato S. Selective oscillation of radially and azimuthally polarized laser beam induced by thermal birefringence and lensing[J]. Journal of the Optical Society of America B, 2009, 26(4): 708-712.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700