用户名: 密码: 验证码:
水稻吸收利用NH_4~+、NO_3~-的电生理学特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虽然水稻是喜NH4+作物,但是由于水稻根系的泌氧作用,使水稻实际处于NH4+、N03-混合营养之中。与其他旱地作物一样,水稻根系吸收的NO3-也主要在植株的地上部还原。所以,研究水稻的NO3-营养也很重要。本文利用离子微电极技术研究水培条件下水稻吸收利用NH4+、NO3-的电生理特征,分析了水稻根系吸收NH4+、NO3-过程的细胞膜电位变化以及在不同品种间的差异;分别用NH4+选择性双阻微电极、NO3-选择性双阻微电极分析了NH4+、NO3-在细胞内的区域化分布以及NO3-的再调动;用双阻H+选择微电极分析了水稻吸收NH4+、NO3-对根系质外体pH的影响。用RT-PCR方法分析了水稻NH4+、NO3-转运蛋白和相关同化酶的基因表达,旨在为提高水稻的N利用率提供理论依据。
     本文首先研究了水稻吸收NH4+的过程中根系细胞膜电位的变化以及在品种间的差异。利用单电极分别测定了两个水稻品种即武育粳3号(粳稻)和扬稻6号(籼稻)幼苗根尖细胞在不同NH4+浓度处理下(0.025 mmol L-1、0.05 mmol L-1、0.1 mmol L-1、0.5 mmol L-1、1 mmol L-1和1.5 mmol L-1)膜电位的变化特征。结果表明:水稻根系吸收NH4+主要引起膜电位的去极化,去极化到一定程度出现部分复极化,有约20%的被测根系还有超极化现象。去极化大小随外界处理液中NH4+浓度的增加而增加,达到一定程度以后趋于平稳,吸收进程符合Michaelis-Menten动力学特征。扬稻6号对NH4+较敏感,产生的平均去极化大小显著高于武育粳3号(p<0.05),表明扬稻6号吸收NH4+的能力比武育粳3号强,这与吸收动力学的结果是一致的。此外,不同pH值(pH 4.0、8.0)减小了相等NH4+浓度处理下膜电位去极化大小,高pH值(pH 8.0)提高了膜电位超极化出现的比例(50%-70%),超极化大小不依赖于供应的NH4+的浓度并且在不同品种之间没有差异。根系RT-PCR结果表明,两个NH4+运输蛋白(OsAMT1;1、OsAMT1;3)、两个NO3-运输蛋白(OsNRT1.1、OsNRT2.1)在不同品种和不同N处理条件下的表达不同:在不同浓度NH4+培养下,除了OsNRT1.1以外其余3个基因的表达都是扬稻6号高于武育粳3号;在NH4++NO3-培养下,OsNRT2.1的表达是扬稻6号高于武育粳3号,而OsNRT1.1的表达是武育粳3号高于扬稻6号,其余两个基因在两个品种间的表达水平差异不显著。电生理和基因表达分析的结果总体表明扬稻6号吸收NH4+的能力比武育粳3号强。
     不同水稻品种对NO3-的响应程度也不同。利用单电极分别测定了4个水稻品种即农垦57(粳稻)、泗优917(杂粳)、扬稻6号(籼稻)和汕优63(杂籼)幼苗根尖表皮细胞在3种NO3-浓度(0.1 mmol L-1、1 mmol L-1、10 mmol L-1)处理过程中膜电位的变化特征。结果表明:水稻根系吸收NO3-引起膜电位的去极化、复极化和超极化。去极化程度随外界处理液中NO3-浓度的增加而加强,就单位时间膜电位变化大小而言,扬稻6号对外界NO3-较敏感,3种NO3-浓度处理下膜电位去极化值均高于其他3个品种,表现出对NO3-的吸收能力较强;两个杂交品种泗优917和汕优63表现出相似的去极化大小和相似的反应时间,而农垦57对NO3-相对不敏感,膜电位去极化值均低于其他3个品种,表现出对NO3-的吸收能力较弱。同水稻对NH4+的吸收类似,去极化大小随外界处理液中NO3-浓度的增加而增加,达到一定程度以后趋于平稳,吸收进程符合Michaelis-Menten动力学特征。扬稻6号对NO3-较敏感,产生的平均去极化大小显著高于其余品种,这与吸收动力学的结果是一致的。这表明用根系对NO3-响应的细胞膜电位变化来研究水稻对NO3-的吸收是可行的。不同pH值对水稻根系细胞膜电位的影响的结果表明,膜电位的去极化大小因溶液pH值和其中NO3-浓度的不同而有差异:在同一pH值下膜电位的去极化大小随着处理NO3-浓度的升高而增大,而在不同pH值时膜电位的去极化都以pH4.0时最大。吸收动力学的结果表明,扬稻6号对NO3-的吸收能力强于武育粳3号,最大吸收速率Vmax在品种间差异显著(p<0.05),但是表观米氏常数Km在品种间差异不显著,pH4.0促进了根系对NO3-的吸收、而高的pH如8.0抑制了根系对NO3-吸收,原因可能是碱性降低了酶对底物的亲和力,而对Vmax没有影响。
     了解NH4+在细胞内的区域分布有利于研究NH4+穿膜运输的机制。微电极与溶液中NH4+的浓度呈对数曲线的关系,NH4+选择性微电极与其他类型的电极(如H+、NO3-)最大区别是K+的干扰,在含有72 mmol L-1 K+的标定溶液中,电极标定曲线的斜率为48~58 mV,对NH4+的检出限小于10-3 mmol L-1,说明电极对NH4+有较高的选择性,受K+的影响较小。用以测定2.5 mmol L-1 NH4+培养两周的水稻叶片,结果表明叶片细胞中NH4+活度分布在活度高低不同的两个区间内,即分别代表了细胞质和液泡中的测定,水稻叶片细胞质和液泡NH4+的活度分别为2.58~9.37mmol L-1,11.36~25.2 mmol L-1。用以测定不同水稻品种液泡NH4+活度的结果表明,扬稻6号叶片液泡NH4+活度显著高于武育粳3号,说明扬稻6号可利用的NH4+较高、维持了细胞质中的NH4+相对稳定,这在一定程度促进了GS活性而提高了NH4+同化效率。NH4+选择性微电极为研究水稻对NH4+的吸收利用提供了技术支撑。
     与NH4+在细胞内的区域分布类似,NO3-主要在液泡中积累,液泡NO3-的再调动与利用与N素高效利用关系密切。利用双阻NO3-选择性微电极测定了在外界停止供应NO3-前后,不同水稻品种细胞质和液泡中NO3-活度的变化。结果表明水稻叶片细胞质和液泡中NO3活度存在着明显的不同变化趋势,NO3-的再调动能力在不同水稻品种间存在差异。在停止供应NO3-以后,水稻叶片液泡中的NO3-逐渐降低,而细胞质中的NO3却维持在一个较低的活度而基本稳定;水稻植株组织水平的NO3-随缺N时间延长而呈降低的趋势。扬稻6号液泡中和细胞质中的NO3-活度均高于武育粳3号,且在停止供应NO3-的不同时间段,液泡中NO3-的释放速率也较快。此外,在N饥饿的不同时段,硝酸还原酶活性(Nitrate reduatase activity, NRA)在品种间差异显著(扬稻6号高于武育粳3号),同时RT-PCR的结果表明OsNia2在扬稻6号叶片表达较强、OsNRT2.1在其根系的表达比武育粳3号高2-3倍。这些结果表明在受到NO3-营养胁迫时,水稻先前积累在叶片液泡中的NO3-可以进行再调动,而且扬稻6号在N胁迫下能有效地吸收和利用NO3-。
     水稻根系吸收NH4+、NO3-对根系质外体pH的影响不同。双阻H+选择微电极的P2值在40~59mV之间,P3值在10-8~10-9 mol L-1,说明电极对H+有较高的选择性可以用来测定。水稻质外体的pH值维持在5.8左右;不同供N条件影响水稻质外体pH值:4.0 mmol L-1NO3-培养下水稻质外体的pH上升了0.2~0.8个单位;2 mmol L-1 NO3-+2 mmol L-1NH4+培养下水稻质外体的pH下降0.7~0.9个单位。就不同品种来说,NO3-以及NO3-+NH4+培养下武育粳3号根质外体的pH都高于扬稻6号,表明不同水稻品种质外体pH的调控能力不同。H+选择性微电极为研究水稻根系质外体pH的调节以及对N的吸收利用的影响提供了新视角。
The nitrogen (N) available for rice plants is chiefly present in NH4+. However, some NH4+ near rice root surface can be oxidized to NO3- owing to leaked oxygen, and thus rice is in fact under the mixed nutrition of NH4+ and NO3-. Like other anaerobic crops, NO3-absorbed by rice plants is mainly reducted in shoots. Therefore, it is important to study NO3- nutrition of rice plants. Microelectrodes, developed from 1980s-1990s, were used to study NO3- and NH4+ nutrition of rice plants in this thesis.The main results are shown as in follows:
     Firstly, the thesis studied changes of the plasma membrane potential of rice root tips during the uptake of NH4+ and differences among rice cultivars. The plasma membrane potential of rice root tips of two rice (Oryza Sativa L) cultivars, i.e., Wuyujin 3 (Japonica) and Yangdao 6 (Indica) were monitored using microelectrodes under different concentrations of NH4+(0.025 mmol L-1,0.05 mmol L-1,0.1 mmol L-1,0.5 mmol L-1,1.0 mmol L-1 and 1.5 mmol L-1). NH4+ uptake by rice roots mainly made plasma membrane potential depolarized then partially repolarized and sometimes hyperpolarized. The magnitude of depolarization increased with the increasing of NH4+concentrations outside and went placidly, while the course of NH4+ uptake exhibited Michaelis-Menten kinetics. Yangdao 6 was more sensitive to NH4+ with its significant high average level of depolarization than Wuyujin 3 (p< 0.05). This suggested that Yangdao6 had the stronger capability to absorb NH4+ than Wuyujin 3. The results obtained from microelectrodes experiment were in accord with that of kinetics of NH4+ influx. Besides, the size of membrane potential was reduced when external pH was 4.0 or 8.0 and high pH (8.0, for example) increased proportion of hydepolarization (about 60%-70%) in tested roots. While the size of depolarization was independent of external NH4+ concentration and it showed no significant differences between cultivars. Results of RT-PCR of genes including two OsAMT and two OsNRT in rice roots showed that the expression of most genes in Yangdao 6 was higher than that of in Wuyujing 3 except OsNRT1.1 under the treatment of NH4+, while only the expression of OsNRT2.1 was higher when seedlings were supplied with NH4+ NO3-. Results of electrophysiology and molecular indicated that Yangdao 6 had a strong ability to uptake NH4+.
     Response of rice to NO3- was also different among rice cultivars. Changes of the membrane potential of epidermal cells in root tips of four rice (Oryza SativaL.) cultivars, i.e., Nongken 57(Japonica), Siyou 917 (Hybrid Japonica), Yangdao 6 (Indica), and Shanyou 63 (Hybrid Indica) were monitored using microelectrodes under different concentrations of NO3-(0.1 mmol L-1,1 mmol L-1 and 10 mmol L-1, respectively). Uptake of NO3- by rice roots made the membrane potential depolarized and then repolarized, sometimes hyperpolarized. The magnitude of depolarization increased with the increasing of NO3-concentrations outside. Among the four rice cultivars tested, Yangdao6 was most sensitive to NO3- with its higher level of depolarization and least time to reach the maximum membrane potential, while Nongken 57 was less sensitive to NO3- with its lower level of depolarization and most time to reach the maximum membrane potential. The two Hybrid cultivars Siyou917 and Shanyou63 exhibited the similar manner in terms of the two aspects. This suggested that Yangdao 6 has the strongest capability to absorb NO3- while Nongken 57 had the poorest uptake of NO3-. Similar with the uptake of NH4+, the magnitude of depolarization due to uptake of NO3- increased with the increasing of NO3- concentrations outside and went placidly, and the course of NO3- uptake exhibited Michaelis-Menten kinetics. The results obtained in this experiment implied that response of electro-potentials of cell membranes to NO3- could be a feasible way to the study of NO3- nutrition in rice plants. Results of pH effects on membrane potential and NO3- uptake kenetics showed that the size of membrane potential increased with the increasing of NO3- concentration outside at the same pH and reached maxim at pH 4.0. Km and this tendency was higher in Yangdao 6 than Wuyujing 3. A pH of 4.0 promoted NO3- uptake, while a pH 8.0 showed an inhibition on it. This might be due to the enhacement of affinity in enzyme under alkaline, which did not affect Vmax.
     Working theory and use of double-barreled NH4+ selective microelectrode were introduced in this thesis to study NH4+ compartmentation in cells. A distinguished difference of NH4+ selective microelectrode from other microelectrodes (such as H+ and NO3- microelectrode) was the interference of K+. These microelectrodes showed a typical log linear response to NH4+ from 0.01~100 mmol L-1 in the presence of 72 mmol L-1 K+, with a slope of 48~58 mV and the detecting limit was below 10-3 mmol L-1. Microelectrode made in our laboratory was more sensitive to NH4+ than others reported so far and could be used as NH4+ microelectrode. Intracellular measurement of NH4+ activity in leaf cells of rice plants cultured in 2.5 mmol L-1 NH4+ for two weeks with double-barreled NH4+ selective microelectrode showed that NH4+ activity fell into two main populations, one was in the cytosol with the NH4+concentrations of 2.58-9.37 mmol L-1 and the anther was in the vacuole with the NH4+concentrations of 11.36~25.2 mmol L-1. And we also determined tissue NH4+ of rice leaf using a continuous-flow auto analyzer and the concentrations were 11.12 mmol L-1 that was very similar to NH4+ concentrations in vacuoles. This inferred that NH4+ in rice leaves mainly came from vacuoles. Vacuolar NH4+ activities in Yangdao 6 were significantly higher than that of in Wuyujing 3, suggested that Yangdao 6 had more NH4+ to use for keep NH4+ consistant in the cytocle. This may promote the activity of GS and the assimilation of NH4+. Therefore, NH4+ microelectrode offered technical support for the study of the assimilation and utilization of NH4+ in rice plants.
     There existed closed relationship between NO3- remobilization and N use efficiency. Measurements with double-barreled NO3- selective microelectrode showed that NO3- in vacuoles changed in different patterns from cytocle when N supply was withdrawn. NO3- in vacuole decreased with the increasing time of N starvation, while it kept a relative low level in cytocle. Meanwhile, NO3- concentrations of tissues in both leaves and roots decreased gradually during N starvation. The patterns of NO3- remobilization were different between organs and cultivars, and leaves, for examples, responded more quickly to N starvation than roots and Yangdao 6 released NO3- from vacuoles faster than Wuyujing 3. Becides, NO3- reductase activities were higher in Yangdao 6 than in Wuyujing 3 before and after N starvation. Results of RT-PCR showed that the expression of OsNial existed in almost no difference, while the expression of OsNia2 was higher in leaves of YD6. Also, the expression of OsNRT2.1 in roots of Yangdao 6 was higher. These measurements suggested that NO3- could be remobilized under N sress, and Yangdao 6 responded well to NO3- supply and thus was more efficient in utilizing NO3- than Wuyujing 3.
     Uptake of different forms of N may affect the apoplast pH in rice roots. The value of P2 and P3 of a H+ microelectrode was in the range of 40~59mV and 10-8~10-9 mol L-1 repectively, indicating the electrode was more sensitive to H+ than to any other ions and could be used to detect the activity of H+ both in and outsite cytosol. The apoplast pH in rice roots sustained about 5.8 before treatment but was significantly affected by the N forms supplied. The apoplast pH, for example, was increasd by 0.2~0.8 unit under 4.0 mmol L-1 NO3- while was decreased by 0.7~0.9 unit under 2 mmol L-1 NO3- plus 2.0 mmol L-1NH4+. As for cultivars, the apoplast pH in Wuyujing 3 was higher than that of in Yangdao 6 at both treatments, inferring that there were different abilities of regulating pH in apoplasts between different rice cultivars. H+ microelectrode provided a new insight to study the regulation of pH in apoplasts and its effect on N uptake and utilization in rice plants.
引文
[1]康光华.细胞电生理与膜片钳技术.中国医疗器械杂志,2000,24(3):155-160
    [2]王新刚,毛罕平,左志宇.离子选择微电极与膜片钳在电生理检测中的应用.农机化研究,2007,10:36-39
    [3]彭霞,李国华.膜电位的生物物理机制Ⅰ离子通透性和静息膜电位.辽宁教育学院学报,1998,15(5):75-79
    [4]张福锁,刘书娟,毛达如.苹果抗缺铁基因型差异的生理生化指标研究.园艺学报,1995,22:1-5
    [5]张道勇,邓春暖,潘响亮.三种植物对UV—B辐射和臭氧污染的电生理响应.地球与环境,2008,36(3):213-217
    [6]Araki R, Hasegawa H. Expression of rice gene involved in high-affinity nitrate transport during the period of nitrate induction. Breed Sci,2006,56:295-302
    [7]Arconde'guy T, Jack R, Merrick M. PII signal transduction proteins, pivotal players in microbial nitrogen control. Microbiol Mol Biol Rev,2001,65:80-105
    [8]Aslam M, Travis RL, Rains DW. Enhancement of nitrate reductase activity and metabolic nitrate concentration by methionine sulfoximine in barley roots. Plant Sci,2001,161(1):133-142
    [9]Bell CI, Cram WJ, Clarkson DT. Compartamentation analysis of SO42- exchange kinetics in roots and leaves of a tropical legume Macroptilium atropireum, cv.Siratro, J Exp Bot,1994,45: 879-886
    [10]Biorkman T, Cleland RE. The role of extracellular free-calcium gradients in gravitropic signaling in maize root. Planta,1991,185,379-384
    [11]Chipman DM, Shaanan B. The ACT domain family.Curr Opin Struc Biol,2001,11:694-700
    [12]Crawford NM, Glass ADM. Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci,1998,3:389-395
    [13]Chen BM, Wang ZH, Li SX, Wang GX, Song HX, Wang XN. Effects of nitrate supply on plant growth, nitrate accumulation, metabolic nitrate concentration and nitrate reductase activity in three leafy vegetables. Plant Sci,2004,167:635-643
    [14]Fan XR, Gordon-Weeks R, Shen QR, Miller AJ. Glutamine transport and feedback regulation of nitrate reductase activity in barley roots leads to changes in cytosolic nitrate pools. J Exp Bot, 2006,1-8
    [15]Felle HH. The H+/Cl- symporter in root-hair cells of Sinapis alba (an electrophysiological study using ion-selective microelectrodes. Plant Physiol,1994,106:1131-1136
    [16]Felle HH, Zimmermann MR. Systemic signalling in barley through action potentials. Planta,2007, 226:203-214
    [17]Ford BG. Nitrate transport in plants:structure,function and regulation. Biochim Biophys Acta, 2000,1465:219-235
    [18]Gazzarrini S, Lejay L, Gojon A, Ninnemann O, Frommer WB, Wiren NV. Three functional transporters for constitutive, diurnally regulated, and starvation-induced uptake of ammonium into Arabidopsis roots. Plant Cell,1999,11:937-947
    [19]Glass ADM, Britto DT, Kaiser BN, Kinghorn JR., Kronzucker HJ, Kumar A, Okamoto M,Rawat S, Siddiqi MY, Unkles SE, Vidmar JJ. The regulation of nitrate and ammonium transport systems in plants. J Exp Bot,2002,53:855-864
    [20]Glass ADM, Shaft JE, Kochian LV. Studies of the uptake of nitrate in barley. IV. Electrophysiology. Plant Physiol,1992,99:456-463
    [21]Gurovich LA, Hermosilla P. Electric signaling in fruittrees in response to water applications and light- darkness conditions. J Plant Physiol,2009,166:290-300
    [22]Halperin SJ, Kochian LV, Lynch JP. Salinity stress inhibits calcium loading into the xylem of excised barley (Hordeum vulgare) roots. New Phytol,1997,135:419-427
    [23]Harstein S, Felle H. The influence of atmospHeric NH3 on the apoplastic pH of green leaves:a non-invasive approach with pH-sensitive microelectrodes. New Phytol,1999,143:333-338
    [24]Hayakawa T, Kudo T, Ito T, Takahashi N, Yamaya T. ACT domain repeat protein7, ACR7, interacts with a chaperon HSP18.0-CII in rice nuclei. Plant Cell Physiol,2006,47:891-940
    [25]Heil M, Silva Bueno JC. Within-plant signaling by volatiles leads toinduction and priming of an indirect plant defense in nature. Proc Natl Acad Sci USA,2007,104:5467-5472
    [26]Heil M, Ton J. Long-distance signalling in plant defence. Trends Plant Sci,2008,13:264-272
    [27]Henriksen GH, Raman DR, Walker LP. Measurement of net fluxes of ammonium and nitrate at the surface of barley rots using ion selective microelectrodes. Ⅱ. Patterns of uptake along the root axis and evaluation of the microelec trod eflux estimation technique. Plant Physiol,1992,99:734-747
    [28]Henriksen GH, Spanswick R. Investigation of the apparent induction of nitrate uptake in barley (Hordeum vulgare L) using NO3- selective microelectrodes:Modulation of coarse regulation of NO3- uptake by exogenous application of downstream metabolites in the NO3- assimilatory pathway. Plant Physiol,1993,103:885-892
    [29]Henriksen GH, Blom AJ, Spanswick R M. Measurement of net fluxes of ammonium and nitrate at the surface of barley roots using ion selective microelectrodes. Plant Physiol,1990,93:271-280
    [30]Hirose N, Yamaya T. Okadaic acid mimics nitrogenstimulated transcription of NADH-glutamate synthase gene in rice cell cultures. Plant Physiol,1999,121:805-812
    [31]Hsieh B, Lam HM, van de Loo J, Coruzzi G. PⅡ-like protein in Arabidopsis:putative role in nitrogen sensing. Proc Nat Acad Sci USA,1998,95:13965-13970
    [32]Hsieh MH, Goodman HM. Molecular characterization of a novel gene family encoding ACT domain repeat proteins in Arabidopsis. Plant Physiol,2002,130:1797-806
    [33]Hoffmann B, Plenker R, Mengel K. Measurements of pH in the apoplast of sunflower leaves by means of fluorescence. Physiol Plant,1992,84:146-153
    [34]Howe GA, Jander G. Plant immunity to insect herbivores. Annu Rev Plant Biol,2008,59:41-66
    [35]Huang JW, Shaft JE, Grunes L. Aluminum effects on calcium flues at the root apex of aluminum-tolerant and aluminum-sensitive wheat cultivars. Plant Physiol,1992,98:230-239
    [36]Huang NC, Liu KH, Lo HJ, Tsay YF. Cloning and functional characterization of an arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake. Plant Cell, 1999,11:1381-1392
    [37]Ishiyama Ishiyama K, Inoue E, Tabuchi M, Yamaya T, Takahashi H. Biochemical backgrounds of compartmentalized functionsof cytosolic glutamine synthetase for active ammonium assimilation in rice roots. Plant Cell Physiol,2004,45:640-647
    [38]Jones RW, Sheard RW. Nitrate reductase activity:phytochrome mediation of induction in etiolated peas. Nature,1972,238:221-222
    [39]Kaiser BN, Rawat SR, Siddiqi MY, Masle J, Glass ADM. Functional analysis of an Arabidopsis T-DNA 'knockout' of the High-affinity transporter AtAMTl.Ⅰ. Plant Physiol,2002,130:1263-1275
    [40]Kaiser WM, Weiner H, Kandlbinder A, Tsai CB, Rochel P, Sonada M, Planchet E. Modulation of nitrate reductase:some new insights, an unusual case and a potentially important side reaction. J Exp Bot,2002,53:875-822
    [41]Kiyomiya S, Nakanishi H, Uchida H, Tsuji A, Nishiyama S, Futatsubashi M, Tsukuda H, Ishioka NS, WatanabeS, Ito T, Mizuniwa C, Osa A, Matsuhashi S, Hashimoto S, Sekine T, Mori S. Real timevisualization of 13N-translocation in rice under different environment conditions using position emitting tracer imaging system. Plant Physiol,2001,125:1743-754
    [42]Kumar A, Silim SN, Okamoto M, Siddiqi MY Glass ADM. Differential expression of three members of the AMTI gene family encoding putative high-ffinity NH4+ transporters in roots of Oryza sativa subspecies indiea. Plant Cell Environ,2003,26:907-914
    [43]Lea PJ, Miflin BJ. Glutamate synthase and the synthesis of glutamate in plants. Plant Physiol Biochem,2003,41:555-64
    [44]Lea PJ, Sodek L, Parry MAJ, Shewry PR, Halford NG. Asparagine in plants. Ann Appl Biol, 2007,150:1-26
    [45]Lee RB, Clarkson DT. Nitrogenstudies of nitrate fluxes in barley roots. Ⅰ. Compartmental analysis from measurements of 13N-efflux. EMBO J,1986,5:1753-1767
    [46]Lillo C. Light regulation of nitrate uptake, assimilation and metabolism. Nitrogen Acquisition and Assimilation in Higher Plants.2004,149-184. Kluwer Academic Publishers, Printed in the Netherlands
    [47]Marini AM, Vissers S, Urrestarazu A, Andrd B. Cloning and expression of the MEPI gene encoding an46 ammonium transporter in Saccharomyces cerevisiae. EMBO J,1994.13: 3456-3463
    [48]Marschner H. Mineral Nutrition of Higher Plants. London:Academic Press,1995
    [49]Martinoia E, Heck U, Wiemken A. Vascuoles as storage compartments for nitrate in barley leaves. Nature,1981,289:292-293
    [50]McClure PR, Kochian LV, Spanswick RM. Evidence for cotransport of nitrate and protons in maize roots. Plant Physiol,1990,93:281-289
    [51]Migge A, Meya G, Carryol E, Hirel B, Becker TW. Coaction of light and the nitrogen substrate in controlling the expression of the tomato genes encoding nitrite reductase and nitrate reductase. J Plant Physiol,1997,151:151-158.
    [52]Miller AJ, Cookson SJ, Smith SS, Wells DW. The use of micoelectrodes to investigate compartmentation and the transport of metabolized inorganic ions in plants. J Exp Bot,2001,52: 541-549
    [53]Mitho fer A, Boland W, Maffei ME. Chemical ecology of plant-insect interactions. In J Parker, ed, Annual Plant Reviews:Plant Disease Resistance. Wiley-Blackwell, Chichester, UK,2009, pp 261-291
    [54]Morita S, Lux A, Enstone DE, Peterson CA, Abe J. Reexamination of rice seminal root ontogeny using fluorescence microscopy. Japan J Crop Sci,1996,65:37-38
    [55]Ninnemann, Jauniaux JC, Frommer WB. Identification of a high-ffinity ammonium transporter from plants. EMBO J,1994,13:3464-3471
    [56]Ochs G, Schock G, Trischler M, Kosemund K, Wild A. Complexity and expression of the glutamine synthetase multigene family in the amphidiploid crop Brassica napus. Plant Mol Biol, 1999,39(3):395-405
    [57]Oliveira IC, Coruzzi GM. Carbon and amino acids reciprocally modulate the expression of glutamine synthetase in Arabidopsis. Plant Physiol,1999,121:301-330
    [58]Okamoto M, Kumar A, Li W, Wang Y, Siddiqi MY, Crawford NM, Glass ADM. High-affinity nitrate transport in roots of Arabidopsis depends on expression of the NAR2-like gene AtNRT3.1. Plant Physiol,2006,140:1036-1046
    [59]Okamoto M, Vidmar JJ, Glass ADM. Regulation of NRT1 and NRT2gene families of Arabidopsis thaliana:responses to nitrate provision. Plant Cell Physiol,2003,44:304-317
    [60]Pand Z, Carpena O. Study on ammonium tolerance of cucumber plants. J Plant Nutr,1992,15: 2417-2426
    [61]Rhodes JD, Thain JF, Wildon DC. The pathway for systemic electrical signal conduction in the wounded tomato plant. Planta,1996,200:50-57
    [62]Ryan PR, Shaft JE, Kochian LV. Aluminum toxicity in roots:Correlation among ionic currents, ion fluxes, and root elongation in aluminum-sensitive and aluminum-tolerant wheat cultivars. Plant Physiol,1992,99:1193-1200
    [63]Sarttelmacher B. The apoplast and its significance for plant mineral nutrition. New Phytol,2001, 149:167-192
    [64]Shabala SN, Lew RR. Turgor regulation in osmotically stressed arabidopsis epiderma 1 root cells: Direct support for the role of inorganic ion uptake as revealed by concurrent flux and cell turgor measurements. Plant Physiol,2002,129:290-299
    [65]Shirahama K, Yakaki Y, Sakano K, Wada Y, Ohsumi Y. Vacuolar function in the phosphate nomeostasis of yeast Saccharomyces cerevisa. Plant Cell Physiol,1995,37:1090-1093
    [66]Siddiqi MY, Glass ADM, Ruth TJ, Rufiy JTW. Studies of the uptake of nitrate in barley. Plant Physiol,1990,93:1426-1432
    [67]Smith CS, Weljie AM, Moorhead GBG. Molecular properties of the putative nitrogen sensor PII from Arabidopsis thaliana. Plant J,2003,33:353-360
    [68]Sonoda Y, Ikeda A, Saiki S, Yamaya T, Yamaguchi J. Feedback regulation of the ammonium transporter gene family AMT1 by glutamine in rice. Plant Cell Physiol,2003,44:1396-1402
    [69]Stankovic B, Davies E. Intercellular communication in plants:electrical stimulation of proteinase inhibitor gene expression in tomato. Planta,1997,202:402-406
    [70]Stitt M, Muller C, Matt P, Gibon Y, Carillo P. Morcuende R, Scheible W-R, Krapp A. Steps towards an integrated view of nitrogen metabolism. J Exp Bot,2002,53:959-970
    [71]Suenaga A, Moriya K, Sonoda Y Ikeda A, Von Wiren N, Hayakawa r Yamaguchi J. Yamaya r Constitutive expression of a novel-type ammonium transporter OsAMT2 in rice plants. Plant Cell Physoil,2003,44(2):206-211
    [72]Tabuchi M, Sugiyama K, Ishiyama K, Inoue E, Sato T, Takahashi H, Yamaya T. Severe reduction in growth rate and grain filling of rice mutants lacking OsGS1;1, a cytosolic glutamine synthetase1; 1. Plant J,2005,42:641-651
    [73]Taylor AR, Bloom AJ. Ammoniu, nitrate, and proton fluxes along the maize root. Plant Cell Environ,1998,21:1255-1263
    [74]Ulrich WR, Novacky A. Nitrate-depentent membrane potential changes and their induction in Lemna gibba. Plant Sci Lett,1981,22:211-217
    [75]Wang MY, Glass ADM, Shaff JE, Kochian LV. Ammonium uptake by rice roots Ⅲ. Electrophysiology, Plant physiol,1994,104:899-906
    [76]Wells DM, Miller AJ. Intracellular measurement of ammonium in Chara corallina using ion-selective microelectrodes. Plant Soil,2000,221:103-106
    [77]Yamaya T, Oaks A. Metabolic regulation of ammonium uptake and assimilation. In:Amancio S, Stulen I, eds. Nitrogen acquisition and assimilation in higher plants. Dordrecht/Boston/London: Kluwer Academic Publishers,2004,35-63
    [78]Yu Q, Kuo J, Tang C. Using confocal laser scanning microscopy to measure apoplastic pH changes in roots of Lupinus angustifolius L. in response to high pH. Annal Bot,2001,87:47-52
    [79]Zhen RG, Smith SJ, Miller AJ. A comparison of nitrate-selective microelectrodes made with different nitrate sensors and the measurement of intracellular nitrate activities in cells of excised barley roots. J Exp Bot,1992,43:131-138
    [80]Zhao XQ, Shi WM. Expression analysis of glutamine synthetase and glutamate synthase genes families in young rice (Oryza sativa) seedlings. Plant Sci,2006,170:748-754
    [81]Zimmermann MR, Maischak H, Mitho" fe A, Boland W, Felle HH. System Potentials, a Novel Electrical long-distancapopla signal in Plants. Induced by Wounding. Plant Physiol,2009,149: 1593-1600
    [82]Zozaya-HInchiliffe M, Potenza C, Ortega JL, Sengupta-Gopalan C. Nitrogen and metabolic regulation of the expression of plastidic glutamine synthease in alflfa (Midicago sativa). Plant Sci, 2005,68:1041-1052
    [1]段英华,张亚丽,沈其荣.增硝营养对不同基因型水稻吸收利用铵的影响.土壤学报,2004,41(5):803-809
    [2]张亚丽,董园园,沈其荣.不同水稻品种对铵态氮和硝态氮吸收特性的研究.土壤学报,200441(4):571-576
    [3]尹晓明,范晓荣,贾莉君,沈其荣.水稻幼苗根系吸收N03-对细胞膜电位的影响.植物营养与肥料学报,2006,12(4):500-505
    [4]Duan YH, Yin XM, Zhang YL, Shen QR. Mechanisms of enhanced rice growth and nitrogen uptake by nitrate. Pedosphere,2007,17(6):697-705
    [5]Glass ADM, Jon ES, Leon VK. Studies of the uptake of nitrate in barley. Plant Physiol,1992,99: 456-463
    [6]Higinbotham N, Etherton B, Foster RJ. Effect of external K, NH4+, Na, Ca, Mg and H ions on the cell transmembrane electropotential of Avena Coleoptile. Plant Physiol,1964,39:196-203
    [7]Krapp A, Fraisier V, Scheible WR, Quesada A, Gojon A, Stitt M, Caboche M, Daniel-Vedele F. Expression studies of Nrt2:1Np, a putative high affinity nitrate transporter:evidence for its role in nitrate uptake. Plant J,1998,14:1051-1061
    [8]Kumar A, Silim SN, Okamoto M, Siddiqi M, Glass ADM. Differential expression of three members of the AMT1 gene family encoding putative high-affinity NH4+ transporters in roots of Oryza sativa subspecies indica. Plant Cell Environ,2003,26:907-914
    [9]Li BZ, Xin WJ, Sun SB, Shen QR, Xu GH. Physiological and molecular responses of nitrogen-starved rice plants to re-supply of different nitrogen sources. Plant Soil,2006,287: 145-159
    [10]Ludewig U, Wire'n NV, Frommer WB. Uniport of NH4+ by the root hair plasma membrane ammonium transporter LeAMT1;1. J Biol Chem,2002,227(16):13548-13555
    [11]McClure PR, Kochian LV, Spanswick RM. Evidence for cotransport of nitrate and protons in maize rots. Plant Physiol,1990,93:281-289
    [12]Miller AJ, Smiss JS, Cookson SJ. The use of microelectrodes to investigate compartmentation and the transport of metabolized inorganic ions in plants. J Exp Bot,2001,52:541-549
    [13]Sonoda Y, Ikeda A, Saiki S, von Wiren N, Yamaya T, Yamaguchi J. Distinct expression and function of three ammonium transporter genes (OsAMT1;1-1;3) in rice. Plant Cell Physiol,2003, 44:726-734
    [14]Taylor AR, Bloom AJ. Ammonium, nitrate, and proton fluxes along the maize root. Plant Cell Environ,1998,21:1255-1263
    [15]Thibaud JB, Grignon C. Mechanism of nitrate uptake in corn roots. Plant.Sci Lett,1981,22: 279-289
    [16]Ulrich WR, Novacky A. Nitrate-depentent membrane potential changes and their induction in Lemna gibba. Plant Sci Lett,1981,22:211-217
    [17]Vidmar JJ, Zhuo D, Siddiqi MY, Schjoerring JK, Touraine B, Glass ADM. Regulation of high-affinity nitrate transporter genes and high-affinity nitrate influx by nitrogen pools in roots of barley. Plant Physiol,2000,123:307-318
    [18]Wang MY, Glass ADM, Shaff JE. Ammonium uptake by rice roots. Plant Physiol,1994,104: 899-906
    [19]Zhou JJ, Theodoulou FL, Muldin I, Ingemarsson B, Miller AJ. Cloning and functional characterization of a Brassicanapus transporter which is able to transport nitrate nitrate and histidine. J Biol Chem,1998,273:12017-12033
    [20]Zhu YY, Di TJ, Xu GH, Chen X, Zeng HQ, Yan F, Shen QR. Adaptation of plasma membrane H+-ATPase of rice roots to low pH as related to ammonium nutrition. Plant Cell Enviro,2009, 32(10):1428-1440
    [1]李华,杨肖娥,罗安程.不同氮源与钾水平对杂交组合及常规稻生长的养分吸收的影响.植物营养与肥料学报,2001,17(3):278-284
    [2]汪晓丽,封克,盛海君.不同水稻基因型苗期N03-吸收动力学特征及其受吸收液中NH4+的影响.中国农业科学,2003,36(11):1306-1311
    [3]尹晓明,范晓荣,贾莉君,沈其荣.水稻幼苗根系吸收N03-对细胞膜电位的影响.植物营养与肥料学报,2006,12(4):500-505
    [4]张亚丽,段英华,沈其荣.水稻对硝态氮响应的生理指标筛选.土壤学报,2004,41(4):57-576
    [5]张亚丽,董园园,沈其荣.不同水稻品种对铵态氮和硝态氮吸收特性的研究.土壤学报,2004,41(6):918-923
    [6]张亚丽,沈其荣,段英华.不同氮素营养对水稻的生理效应.南京农业大学学报,2004,27(2):103-135
    [7]贾莉君,范晓荣,尹晓明,沈其荣.pH对水稻吸收NO3-的影响.植物营养与肥料学报,2006,12(5):649-655
    [8]Aslam M, Travis RL, Huffaker RC. Effect of pH and Calcium on short-term NO3- fluxes in roots of barley seedling. Plant Physiol,1995,108:727-734
    [9]Deane-Drummond CE. Mechanisms of nitrate uptake into Chara corallina cells:lack of evidence for obligatory coupling to proton pump and a new NO3-/NO3- exchange model. Plant Cell Environ, 1984,7:317-323
    [10]Doddema H, Telkamp GP. Uptake of nitrate by mutants of Arabidopsis tkaliana, disturbed in uptake or reduction of nitrate. Ⅱ. Kinetics. Physiol Plant,1979,45:332-338
    [11]Garnett TP, Smethurst PJ. Ammonium and nitrate uptake by Eucalyptus nitens:Effects of pH and temperature. Plant Soil,1999,214:1-2
    [12]Glass AD, MJon ES, Leon VK. Studies of the uptake of nitrate in barley. Plant Physiol,1992,99: 456-463
    [13]Grawford NM, Glass ADM. Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci,1998,3:389-395
    [14]Higinbotham N, Etherton B, Foster RJ. Effect of external K, NH4+, Na, Ca, Mg and H ions on the cell transmembrane electropotential of Avena Coleoptile. Plant Physiol,1964,39:196-203
    [15]Miller AJ, Susan JS. Nitrate transport and compartmentation in cereal root cells. J Exp Bot,1996, 47:843-854
    [16]McClure PR, Kochian LV, Spanswick RM. Evidence for cotransport of nitrate and protons in maize rots. Plant Physiol,1990,93:281-289
    [17]Thibaud JB, Grignon C. Mechanism of nitrate uptake in corn roots. Plant Sci Lett,1981,22: 279-289
    [18]Tyerman SD, Findlay GP. Current-voltage curves of single Cl- channels which coexist with two types of K+ channel in the tonoplast of Chara corallina. J Exp Bot,1989,40:105-11
    [19]Ulrich WR, Novacky A. Nitrate-depentent membrane potential changes and their induction in Lemna gibba. Plant Sci Lett,1981,22:211-217
    [20]Wang MY, Glass ADM, Shaff JE. Ammonium uptake by rice roots. Plant Physiol,1994,104: 899-906
    [21]Wang XL, Wang YQ, Shan YH, Feng K, Wang XZ. Effect of low pH on uptake of inorganic nitrogen by different plant seedlings. The Proceedings of the International Plant Nutrition Colloquium ⅩⅥ,04/15/2009
    [1]贾莉君,范晓荣,尹晓明,沈其荣.双阻离子选择性微电极测定活体不结球小白菜叶片细胞中硝酸根离子的活度.土壤学报,2005,42(3):457462
    [2]马逸龙.离子选择性微电极及其在生物医学中的应用.生物化学与生物物理进展,1991,18(4):200-203
    [3]贾莉君,范晓荣,尹晓明,沈其荣.微电极法测定水稻叶片液泡中硝酸根离子的再调动.中国农业科学,2005,38(6):1379-1385
    [4]郑筱祥,马忠明,戴欣,钱伟钰,离子选择性微电极技术的研究与利用,中国微循环第一卷(1):17-19
    [5]Balkos KD, Britto D, Kronzucker HJ. Optimization of ammonium acquisition and metabolism by potassium in rice (Oryza sativa L. cv. IR-72). Plant Cell Enviro,2009, doi:10.1111/ j.1365-3040.2009.02046.ⅹ
    [6]Glass ADM, Jon ES, Leon VK. Studies of the uptake of nitrate in barley. Plant Physiol,1992,99: 456-463
    [7]Kronzucker HJ, Siddiqi MY, Glass ADM. Compartmentationand flux characteristics of ammonium in spruce. Planta,1995,196:691-698
    [8]Kronzucker HJ, Siddiqi MY, Glass ADM. Conifer root discrimination against soil nitrate and ecology of forest succession. Nature,1997,385:59-61
    [9]Kronzucker HJ, Siddiqi MY, Glass ADM, Kirk GJD. Nitrate and ammonium synergism in rice. A subcellar analysis. Plant Physiol,1999,119:1041-1045
    [10]Li BZ, Xin WJ, Sun SB. Physiological and molecular responses of nitrogen-starved rice plants to re-supply of different nitrogen sources. Plant Soil,2006,87:145-159
    [11]Lee RB, Ratcliffe RG. Observations on the subcelluar distribution of ammonium ion in maize root tissue using in vivo 14N-nuclear magenetic resonance spectroscopy. Planta,1991,183:359-367
    [12]Macklon AES, Ron MM, Sim A. Cortal cells fluxes of ammonium and nitrate in excised roots segments of Alliumcepa L. J Exp Bot,1990,41:359-370
    [13]McClure PR, Kochian LV, Spanswick RM. Evidence for cotransport of nitrate and protons in maize rots. Plant Physiol,1990,93:281-2894
    [14]Miller AJ, Smith SJ. Nitrate transport and compartmentation in cereal root cells. J Exp Bot,1996, 47:843-854
    [15]Rawat SR, Silim SN, Kronzucker HJ, Siddiqi MY, Glass ADM. AtAMT gene expression and NH4+ uptake in roots of Arabidopsis thaliana:evidence for regulation by root glutamine level. Plant J, 1999,19:143-152
    [16]Roberts JKM, Pang MKL. Estimation of ammonium ion distribution between cytoplasm and vacuole using nuclear magnetic resonance spectroscopy. Plant Physiol,1992,100:1571-1574
    [17]Ryan PR, Walker NA.The regulation of ammonia uptake in Chara australis. J Exp Bot,1994,45: 1057-1067
    [18]Van der Leij M, Smith SJ, Miller AJ. Remobilization of vacuole stored nitrate in barley root cells. Planta,1998,205:64-72.
    [19]Walker DJ, Leigh RA, Miller AJ. Potassium homeostasisin vacuolate plant cells. Proc Natl Acad Sci USA,1996,93:10510-10514
    [20]Wang MY, Siddiqi MY, Ruth TJ, Glass ADM. Ammonium uptake by rice roots. Ⅰ. Fluxes and subcellular distribution of 13NH4+. Plant Physiol,1993,103:1249-1258
    [21]Wang MY, Glass ADM, Shaff JE. Ammonium uptake by rice roots. Plant Physiol,1994,104: 899-906
    [22]Wells DM, Miller AJ. Intracellular measurement of ammonium in Chara corallina using ion-selective microelectrodes. Plant Soil,2000,221:103-106
    [23]Zhen RG, Koyro HW, Leigh RA. Compartmental nitrate concentrations in barley root cells measured with nitrate selective microelectrodes and by single cell sap sampling. Planta,1991,185: 356-361
    [1]钱晓晴,沈其荣,徐国华.配合施用NH4+-N和N03--N对旱作水稻生长与水分利用效率的影响.土壤学报,2003,40(6):894-900
    [2]段英华,张亚丽,沈其荣.水稻根际的硝化作用与水稻的硝态氮营养.土壤学报,2004,41(5):803-809
    [3]曹云,范晓荣,贾莉君,尹晓明,沈其荣.不同品种水稻对NO3同化的差异及其机理初探。南京农业大学学报,2005,28(1):52-56
    [4]段英华,张亚丽,沈其荣,陈红云,张勇.增硝营养对不同基因型水稻苗期氮素吸收同化的影响.植物营养与肥料学报,2005,11(2):160-165
    [5]张亚丽,段英华,沈其荣.水稻对硝态氮响应的生理指标筛选.土壤学报,2004,41(4):571-576
    [6]尹晓明,范晓荣,贾莉君,沈其荣.不同水稻品种根尖吸收N03-过程中表皮细胞膜电位变化特征.土壤学报,2005,142(2):278-285
    [7]段英华,张亚丽,沈其荣.增硝营养对不同基因型水稻吸收利用铵的影响.土壤学报,2005,42(2):260-265
    [8]沈其荣,汤利,徐阳春.植物液泡中硝酸盐行为的研究概况.土壤学报,2003,40(3):465-470
    [9]贾莉君,范晓荣,尹晓明,曹云,沈其荣.双阻离子选择性微电极测定活体不结球小白菜叶片细胞中硝酸根离子的活度.土壤学报,2005,42(3):457-462
    [10]贾莉君,范晓荣,尹晓明,曹云,沈其荣.微电极法测定水稻叶片液泡中硝酸根离子的再调动,中国农业科学,2005,38(6):1379-1385
    [11]Abd-Elbaki GK, Siefritz E, Man H-M, Weiner H, Kaldenhoef R, Kaiser WM. Nitrate reductase in Zea mays L. under salinity. Plant Cell Environ,2000,23:515-521
    [12]Belton OS, Lee RB, Ratcliffe RG. A 14N nuclear magnetic resonance study of inorganic nitrogen metabolismin barley, maize and pea roots. J Exp Bot,1985,36:190-210
    [13]Duan YH, Yin XM, Zhang YL, Shen QR. Mechanisms of enhanced rice growth and nitrogen uptake by nitrate. Pedosphere,2007,17:697-705
    [14]Fan XR, Shen QR, Ma ZQ, Zhu HL, Yin, XM, Miller A J. A comparison of nitrate transport in four different rice (Oryza sativa L.) cultivars. Science in China, Series C Life Sciences,2005,48: 897-911
    [15]Fan XR, Jia LJ, Shen QR, Li YL, Smith SJ, Miller AJ. Comparing nitrate storage and remobilization in two rice cultivars that differ in their nitrogen use efficiency. J Exp Bot,2007,58: 1729-1740
    [16]Ferrari TE, Yoder OC, Filner P. Anaerobic nitrite production by plant cells and tissues. Evidence for two nitrate pools. Plant Physiol,1973,51:423-431
    [17]Gerhardt R, Heldt HW. Measurement of subcellular metabolite levels in leaves by fraction of freeze stopped material in nonaqueous media. Plant Physiol,1984,75:542-547
    [18]Huber SC, Bachmann M, Huber JL. Post-translational regulation of nitrate reductase activity:a role for Ca2+ and 14-3-3 proteins. Trend Plant Sci,1996,1:432-438
    [19]Huber SC, MacKintosh C, Kaiser WM. Metabolic enzymes as targets for 14-3-3 proteins. Plant Mol Biol,2002,50:1053-1063
    [20]Kaise WM, Weiner RH, Kandlbinder A, Tsai CB, Rockel P, Sonoda M, Planchet E. Modulation of nitrate reductase:some new insights, an unusual case and a potentially important side reaction. J Exp Bot,2002,53:875-882
    [21]Koutroubas SD, Ntanos DA. Genotypic differences for grain yield and nitrogen utilization in indica and japonica rice under mediterranean conditions. Field Crop Res,2003,83:251-260
    [22]Li YL, Fan XR, Shen QR. The relationship between rhizosphere nitrification and nitrogen-use efficiency in rice plants. Plant Cell Enviro,2007,31:73-85
    [23]Lin CM, Koh S, Stacey G. Cloning and functional characterization of a constitutively expressed nitrate transporter gene, OsNRT1, from rice. Plant Physiol,2000,122:379-388
    [24]Macrobbie EAC. Flux and compartmentation in plant cells. Ann. Rev. Plant Physiol,1971, 22:75-96
    [25]Martinoia E, Heck U, Wiemken A. Vascuoles as storage compartments for nitrate in barley leaves. Nature,1981,289:292-293
    [26]Martinoia E, Schramm MJ, Kaiser G. Transport of anions in isolated barley vacuoles. I. Permeability to anions and evidence for a C12uptake system. Plant Physiol,1986,80:895-901
    [27]Martinoia E, Schramm MJ, Flugge UI. Intracellular distribution of organic and inorganic anions in mesophyll cells:transport mechanisms in the tonoplast. In:Martin B. ed. Plant Vacuoles their Importance in Solute Compartmentation in Cells and Their Applications in Plant Biotechnology. New York:Plenum Press,1987,407-416
    [28]Miller AJ, Zhen RG. Measurement of intracellular nitrate concentrations in Chara using nitrate selective microelectrodes. Planta,1991,184:47-52
    [29]Miller A J, Smith SJ. The mechanism of nitrate transport across the tonoplast of barley root cells. Planta,1992,187:554-557
    [30]Miller AJ, Smith SJ. Nitrate transport and compartmentation in cereal root cells. J Exp Bot,1996, 47:843-854
    [31]Okamoto M, Vidmar J, Glass ADM. Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana response to nitrate provision. Plant Cell Physiol,2003,44:304-317
    [32]Richard-Molard C, Krapp A, Brun F, Ney B, Daniel-Vedele F, Chaillou S. Plant response to nitrate starvation is determined by N storage capacity matched by nitrate uptake capacity in two Arabidopsis genotypes. J Exp Bot,2008,59(4):449-791
    [33]Ta TC, Michio T, kinkichi K. Comparative study on the response of indica and japonica rice plants to ammonium and nitrate nitrogen. Soil Sci Plant Nutri,1981a,27:83-92
    [34]Ta TC, Ohira K. Effects of various environmental and medium conditions on the response of indica and japonica rice plants to ammonium and nitrate nitrogen. Soil Sci Plant Nutri,1981b,27: 347-355
    [35]Van der ML, Smith SJ, Miller AJ. Remobilization of vacuolar stored nitrate in barley root cells. Planta,1998,205:64-72
    [36]Winter H, Robinson DG, Heldt HW. Subcellular volumes and metabolite concentrations in barley leaves. Planta,1993,191:180-190
    [37]Winter H, Robinson DG, Heldt HW. Subcellular volumes and metabolite concentrations in spinach leaves. Planta,1994,193:530-535
    [38]Walker DJ, Smith SJ, Miller AJ. Simultaneous measurement of intracellular pH and K+ or NO3-triple barrelled, ion-selective microelectrodes. Plant Physiol,1995,108:743-751
    [39]Wilkinson JQ, Crawford NM. Identification of the Arabidopsis CHL3 gene as the nitrate reductase structural gene Nia2. Plant Cell,1991,3:461-471
    [40]Yu XD, Sukumaran S, Marton L. Differential expression of the Arabidopsis Nial and Nia2 genes. Plant Physiol,1998,16:1091-1096
    [41]Zhen RG, Koyro HW, Leigh RA. Compartmental nitrate concentrations in barley root cells measured with nitrate selective microelectrodes and by single cell sap sampling. Planta,1991,185: 356-361
    [1]张福锁,刘书娟,毛达如.苹果抗缺铁基因型差异的生理生化指标研究.园艺学报,1995,(22):1-5
    [2]段英华,张亚丽,沈其荣.增硝营养对不同基因型水稻吸收利用铵的影响.土壤学报,2004,41(5):803-809
    [3]Felle H. The apoplastic pH of the Zea mays root cortex as measured with pH-sensitive microelectrodes:aspects of regulation. J Exp Bot,1998,49:987-995
    [4]Harstein S, Felle H. The influence of atmospHeric NH3 on the apoplastic pH of green leaves:a non-invasive approach with pH-sensitive microelectrodes. New Phytol,1999,143:333-338
    [5]Hoffmann B, Plenker R, Mengel K. Measurements of pH in the apoplast of sunflower leaves by means of fluorescence. Physiol Plant,1992,84:146-153
    [6]Kronzucker HJ, Schioerring JK, Emer Y. Dynamic interactions between root NH4+ influx and long-distance N translocation in rice insights into feedback processes. Plant Cell physiol,1998, 39:1287-1293
    [7]Pand Z, Carpena O. Study on ammonium tolerance of cucumber plants. J Plant Nutr,1992,15: 2417-2426
    [8]Penny MG, Bowling DJF. Direct determination of pH in the stomatal complex of Commelina. Planta,1975,122:209-212
    [9]Peuke A D, Jeschke WD, Dietz K J. Foliar application of nitrate or ammonium as sole nitrogen supply in Ricinus communis.Ⅰ. Carbon and nitrogen uptake and inflows. New Phytol,1998, 138:657-687
    [10]Reld RJ, Smith FA. Measurements of the cytoplasmic pH of Chara corallina using double-barrelled pH micro-electrodes. J Exp Bot,1998,39:1421-1432
    [11]Saftner R, Hollander 1975. Use of pH microelectrodes in the study of H+ion secretion in oat coleoptile tissue. Plant Physiol,56:S1
    [12]Sarttelmacher B. The apoplast and its significance for plant mineral nutrition. New Phytol, 2001,149:167-192
    [13]Yu Q, Kuo J, Tang C. Using confocal laser scanning microscopy to measure apoplastic pH changes in roots of Lupinus angustifolius L. in response to high pH. Ann Bot,2001,87:47-52
    [14]Yu Q, Tang C, Kuo J. A critical review on methods to measure apoplastic pH in plants. Plant Soil,2000,219:29-40
    [1]陈巍,罗金葵,尹晓明,沈其荣.硝酸盐在两个小白菜品种体内的分布及调配.中国农业科学,2005,38(11):2277-2282
    [2]贾莉君,范晓荣,尹晓明,曹云,沈其荣.双阻离子选择性微电极测定活体不结球小白菜叶片细胞中硝酸根离子的活度.土壤学报,2005,42(3):457462
    [3]贾莉君,范晓荣,尹晓明,曹云,沈其荣.微电极法测定水稻叶片液泡中硝酸根离子的再调动,中国农业科学,2005,38(6):1379-1385
    [4]贾莉君,范晓荣,尹晓明,曹云,沈其荣.pH对水稻吸收N03-的影响,植物营养与肥料学报,2006,12(5):649-655
    [5]王新刚,毛罕平,左志宇.离子选择微电极与膜片钳在电生理检测中的应用,农机化研究,2007,10:36-39
    [6]尹晓明,范晓荣,贾莉君,沈其荣.不同水稻品种根尖吸收N03-过程中表皮细胞膜电位变化特征.土壤学报,2005,42(2):278-285
    [7]尹晓明,范晓荣,贾莉君,沈其荣.NH4+的吸收对水稻根系细胞膜电位的影响.植物营养与肥料学报,2005,11(6):769-773
    [8]尹晓明,范晓荣,贾莉君,沈其荣.用微电极测定水稻根系质外体的pH值.土壤学报,2006,43(6):1033-1036
    [9]尹晓明,范晓荣,沈其荣.双阻NH4+选择性微电极测定水稻叶片细胞中NH4+的活度,植物营养与肥料学报,2009,15(3):701-706
    [10]张道勇,邓春暖,潘响亮.三种植物对UV—B辐射和臭氧污染的电生理响应,地球与环境,2008,36(3):213-217.
    [11]Duan YH, Yin XM, Zhang YL, Shen QR. Mechanisms of enhanced rice growth and nitrogen uptake by nitrate. Pedosphere,2007,17:697-705
    [12]Fan XR, Shen QR, Ma ZQ, Zhu HL, Yin, XM, Miller A J. A comparison of nitrate transport in four different rice (Oryza sativa L.) cultivars. Science in China, Series C Life Sciences,2005,48: 897-911
    [13]Fan XR, Jia LJ, Shen QR, Li YL, Smith SJ, Miller AJ. Comparing nitrate storage and remobilization in two rice cultivars that differ in their nitrogen use efficiency. J Exp Bot,2007, 58:1729-1740
    [14]Felle H. The apoplastic pH of the Zea mays root cortex as measured with pH-sensitive microelectrodes:aspects of regulation. J Exp Bot,1998,49:987-995
    [15]Glass AD, MJon ES, Leon VK. Studies of the uptake of nitrate in barley. Plant Physiol,1992,99: 456-463
    [16]Luo jk, Sun SB, Chen W, Shen QR. The mechanism of nitrate accumulation in pakchoi (Brassica Campestris L.ssp.Chinensis (L.)). Plant Soil,2006,282:291-300.
    [17]Miller AJ, Susan JS. Nitrate transport and compartmentation in cereal root cells. J Exp Bot, 1996,47:843-854
    [18]McClure PR, Kochian LV, Spanswick RM, Evidence for cotransport of nitrate and protons in maize rots. Plant Physiol,1990,93:281-289
    [19]Miller AJ, Zhen RG. Measurement of intracellular nitrate concentrations in Chara using nitrate selective microelectrodes. Planta,1991,184:47-52
    [20]Miller A J, Smith SJ. The mechanism of nitrate transport across the tonoplast of barley root cells. Planta,1992,187:554-557
    [21]Reld RJ, Smith FA. Measurements of the cytoplasmic pH of Chara corallina using double-barrelled pH micro-electrodes. J. Exp Bot,1998,39:1421-1432
    [22]Thibaud JB, Grignon C, Mechanism of nitrate uptake in corn roots. Plant.Sci Lett,1981,22: 279-289
    [23]Ulrich WR, Novacky A. Nitrate-depentent membrane potential changes and their induction in Lemna gibba. Plant Sci Lett,1981,22:211-217
    [24]Walker DJ, Smith SJ, Miller AJ. Simultaneous measurement of intracellar pH and K+ or NO3- in barley root cells using triple-barreled ion-selective microelectrodes. Plant Physiol,1995,108: 743-751
    [25]Wang MY, Glass ADM, Shaff JE. Ammonium uptake by rice roots. Plant Physiol,1994,104: 899-906
    [26]Wells DM, Miller AJ. Intracellular measurement of ammonium in Chara corallina using ion-selective microelectrodes. Plant Soil,2000,221:103-106
    [27]Zhen RG, Koyro H W, Leigh R A, et al. Compartmental nitrate concentrations in barley root cells measured with nitrate selective microelectrodes and by single cell sap sampling. Planta,1991, 185:356-361

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700