用户名: 密码: 验证码:
采用中空电极喷吹气体的新型LF炉内冶金行为的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢包精炼炉(Ladle Furnace,简称LF)是洁净钢精炼的重要手段之一,在国内外钢铁企业得到了广泛应用。随着洁净钢冶炼技术的发展,LF精炼过程升温速率低导致精炼时间长,以及容易使钢水增碳、增氮而不利于低碳、低氮钢精炼等缺点暴露越来越突出。这使得LF向高效率化(快速、高质量、高洁净度)方向发展的要求越来越迫切。近年来,通过优化LF供电和吹氩等操作制度,采用预熔渣、泡沫渣的造渣技术等对此起到了一定的改进作用。但是,到目前为止,LF的这些缺点仍没有得到较好解决。
     本文在广泛查阅国内外文献的基础上,对LF利用中空电极喷吹气体过程中的冶金行为进行了系统研究。应用等离子体局部平衡热力学和冶金热力学理论,建立了氩氢等离子体粒子数密度计算模型,分析计算了氩氢体系中的粒子数密度;研究了LF中空电极喷吹Ar-H2、Ar-CH4体系的脱碳、脱氮机理。在此基础上,在实验室100kg LF和某厂14tLF上开展了中空电极喷吹气体精炼试验,研究了喷吹Ar-H2、Ar-CH4、Ar-CO2、Ar-液化气和Ar-天然气对熔池内w[C]、w[N]和w[H]以及熔池温度、电极消耗的影响。并建立了基于BP人工神经网络的钢水温度预报模型和中空电极吹气过程的电极消耗模型。通过上述研究,得到的主要结论如下:
     (1)在LF中空电极喷吹Ar-H2或Ar-CH4构成的等离子体体系温度范围内,电弧等离子体中氢原子粒子数密度最大,氢原子与碳、氮反应生成物的分压远远大于氢分子反应生成物的分压。氢原子是脱碳、脱氮的主要反应物,CH4和NH3是氢原子脱碳、脱氮的主要反应产物。
     (2)LF中空电极喷吹Ar-H2、Ar-CH4或Ar-CO2混合气体均能降低钢液增碳量。直流供电时,喷吹Ar-H2、Ar-CH4、Ar-CO2混合气体时的最大增碳速率为实心石墨电极精炼时的66.7%、31.48%和74.2%。
     (3)LF中空电极喷吹Ar-H2、Ar-CH4、Ar-液化气混合气体均对钢液有脱氮作用,其最低脱氮速率分别为0.30×10-6/min、0.233×10-6/min和0.18×10-6/min。
     (4)LF中空石墨电极喷吹Ar-H2、Ar-CH4、Ar-CO2和Ar-液化气等气体时,熔池的最大升温速率均明显加快。直流供电时,它们的最大升温速率分别是实心电极精炼时最大升温速率的6.92倍、5.35倍、3.05倍和12.17倍。
     (5)建立了基于BP神经网络的中空电极喷吹气体的LF温度预报模型。预报结果表明,有30.8%的炉次误差绝对值在10K以内,有76.9%的炉次误差绝对值在20 K以内。误差绝对值的平均值为16.9 K,最小误差绝对值为3 K。
     (6)直流供电时,喷吹Ar-H2、Ar-CH4和Ar-CO2混合气体时电极消耗速率均小于实心电极精炼时的电极消耗速率,前者比后者至少分别减少2.1%、32.4%和34.7%。
     (7)中空电极喷吹混合气体过程的石墨电极消耗模型计算值与实验测定的实际值误差较小,有39.3%的数据误差绝对值小于0.05kg,误差绝对值的平均值为0.101 kg。
     (8)工业试验结果表明,LF采用中空电极喷吹Ar-天然气时,各炉次均出现了明显的脱碳过程,脱碳速率最高达到4×10-6/min,最高脱碳率达到13.25%。平均脱氮速率为1.12×10-6/min,平均脱氮率为18.57%。与实心电极精炼相比,平均升温速率提高26.18%。
Ladle furnace (is called LF) is one of the important methods for clean steel refining, and it is used widely in the domestic and foreign iron and steel enterprise. With the development of the clean steel smelting technology, during the refining of low-carbon and/or low nitrogen clean steel in LF, the main disadvantages of it are carbon and nitrogen pickup, lower heating rate and longer refining time. This causes the request of the high efficiency LF (fast, high grade, high cleanness) to be getting more and more urgent. In recent years, some improvements regarding above problems have been made through optimization of the LF power supply and argon stirring system, application of the premelted slag, the foaming slag technology and so on. However, these problems of LF still have not been solved.
     Based on the wide investigation of the domestic and foreign literatures, the metallurgical behaviors during LF refining with gas injection through hollow electrode were systematically studied. Applying the plasma local equilibrium thermodynamics and metallurgical thermodynamics theories, a calculation model of argon-hydrogen plasma component concentration was established. Using this model, the particle densities of the argon-hydrogen system were calculated. The decarburization and denitrogenation mechanisms during Ar-H2 and Ar-CH4 injection in LF with hollow graphite electrode were studied.
     Based on above theoretical research, the gas injection refining experiments using hollow graphite electrode were carried out in 100 kg LF in laboratory and 14 t LF at one steel corporation. The effects of the injection of gases such as Ar-H2, Ar-CH4, Ar-CO2, Ar-liquid gas and Ar-natural gas on the carbon, nitrogen and hydrogen contents, temperature of the molten steel, consumption of the graphite electrode were investigated. A prediction model of molten steel temperature used the method of back-propagation (BP) artificial neural network and a consumption model of the hollow graphite electrode were developed. Through the above research, the main conclusions are obtained as follows:
     (1) In the temperature range of the plasma system consisting of Ar-H2 or Ar-CH4 injected through hollow electrode in LF, the particle density of the hydrogen atom in the electric arc plasma is the biggest. The partial pressures of the products reacted by hydrogen atom with carbon or nitrogen are far greater than that of the hydrogen molecular. The hydrogen atom is the main reactants of decarburization and denitrogenation. The methane and ammonia are the main reaction products of the hydrogen atom decarburization and denitrogenation.
     (2) The carbon pickup values are reduced during Ar-H2, Ar-CH4 or Ar-CO2 gas mixtures injection into LF with hollow graphite electrode. When direct-current power supply, the maximum carbon pickup ratios in the cases of the injection of Ar-H2, Ar-CH4 or Ar-CO2 are 66.7%,31.48% or 74.2% than that in the case of the solid graphite electrode respectively.
     (3) The denitrogenation of the molten steel takes place during Ar-H2, Ar-CH4 or Ar-liquid gas injection into LF with hollow graphite electrode. The lowest denitrogenation rates of them are 0.30×10-6/min, 0.233×10-6/min and 0.18×10-6/min, respectively.
     (4) All the maximum heating rates increased obviously during Ar-H2, Ar-CH4, Ar-CO2 and Ar-liquid gas injection into LF through hollow graphite electrode, which are 6.92,5.35,3.05 and 12.17 times than that of the solid graphite electrode respectively when direct-current power supply.
     (5) The temperature prediction model of the LF with hollow electrode injection gas was established based on BP neural network. Prediction results show that the error absolute values of 30.8% heats are less than 10 K, and 76.9% are less than 20 K. The everage error absolute value is 16.9 K. The least error absolute value is 3 K.
     (6) When direct-current power supply, the consumption ratios of the graphite electrode during the injection of Ar-H2, Ar-CH4 or Ar-CO2 are less than that of the solid graphite electrode, and it is decreased by 2.1%,32.4% and 34.7% respectively.
     (7) The errors between the prediction values calculated by the consumption model of the hollow graphite electrode and the actual value measured by the experiements are small. The error absolute values of 39.4% heats are smaller than 0.05 kg. The everage error absolute value is 0.101 kg.
     (8) Industrial test results show that, during Ar-liquid gas injection into LF with the hollow graphite electrode, there are decarburization and denitrogenation for all the heats. The highest decarburization rate is 4×10-6/min, the highest decarburization ratio achieves 13.25%. The average denitrogenation rate is 1.12×10-6/min, the average denitrogenation ratio is 18.57% Compared with solid electrode refining, the average heating rate enhances 26.18%.
引文
1. Simmons J W. High-nitrogen alloying of stainless steels[J]. Transactions ISIJ,1995,35(6): 321-326.
    2.朱苗勇,杜钢,阎立懿,等.现代冶金学[M].北京:冶金工业出版社,2005,286-287.
    3.战东平,姜周华,王文忠,等.RH真空精炼技术冶金功能综述[J].宝钢技术,1999,(4):60-63.
    4.战东平,姜周华,王文忠,等.高洁净度管线钢中元素的作用与控制[J].钢铁,2001,36(6):67-70.
    5.马廷温,王平.清洁钢发展现状及今后进展[J].特殊钢,1994,15(2):1-7.
    6.徐增啟.炉外精炼[M].北京:冶金工业出版社,1998,1-12.
    7.张鉴.炉外精炼的理论与实践[M].北京:冶金工业出版社,1993,316-323.
    8.知水,王平,侯树庭.特殊钢炉外精炼[M].北京:原子能出版社,1996,10-20.
    9.梶冈博幸,李宏.炉外精炼[M].北京:冶金工业出版社,2002,119.
    10.余志祥,郑万,汪晓川,等.洁净钢的生产实践[J].炼钢,2000,16(3):11-15.
    11.魏成富,李静媛.洁净钢与零夹杂物钢[J].钢铁研究学报,1996,8(10):61-64.
    12.朱立新,蒋晓放,许春雷.宝钢纯净钢生产技术进展[J].钢铁,2000,35(11):15-18.
    14.南攸敏夫.直流电弧炉的电弧现象[J].铁と鋼,1998,4(7):756-762.
    15.罗思J R.工业等离子体工程[M].北京:科学出版社,1998,48-49.
    16. Takeda K, Yasushi N. Behavior of nitrogen in plasma arc melting[J]. Transactions ISIJ, 1978,18(2):641-647.
    17.许根慧,姜恩永,盛京,等.等离子体技术与应用[M].北京:化学工业出版社,2006,1.
    18.过增元,赵文华.电弧和热等离子体[M].北京:科学出版社,1986:10-12.
    19. Feinman J,刘述临,金佑民.等离子体技术在冶金中的应用[M].北京:北京工业大学出版社,1989,15-299.
    20. Asada C, Adachi T. Plasma induction melting[J]. Neue Hutte,1971,16(11):657-660.
    21. McCombe C. Plasma-arc a joint USSR/GDR development in electric steelmaking[J]. Steel Times,1978,206(9):86-87.
    22. Jurgen H, Neuschutz D. New process developments in melting scrap and sponge iron[J]. Iron and Steel Engineer.1982,59(2):36-42.
    23. Fujiwara T, Amagauchi K Y. Progress of plasma melting and refining process[M]. Nagoya: Booklet Published by Daido Steel Co.Ltd.,1983,22.
    24. Neuschutz D, Rossner H O, Bebber H J, et al. Development of 3-phase A-C plasma furnaces at Krupp[J]. Iron and Steel Engineer,1985,62(5):27-33.
    25. Oliver J F, Stefanic S M, Kemeny F L. Plasma heating for ladle treatment furnaces[J]. Iron and Steelmaker,1989,16(7):17-22.
    26.殷宝言.用等离子枪加热中间包[J].兰钢科技,1992,(3):23-24.
    27. Hans B. Plasma ladle furnace-alternative or additional refining for high specification grades[J]. Steel Times International,1996,20(2):46-48.
    28. Maddever W J. The influence of electrode gas injection on arc furnace steelmaking[A], Electric Furnace Proceeding[C]. New York:AIME,1976:78-89.
    29.武田宏.等离子熔炼中氮的行为[J].铁と鋼,1976,3(2):452-460.
    30. Neuschutz D. Metallurgical results from a 30t AC plasma ladle furnace[J]. Steel Research, 1991,8(6):344-352.
    31. Neuschiitz D, Spirin D通过向电弧区喷吹甲烷来提高电弧炉功率的初步研究[A],第一届中德(欧)冶金技术研讨会论文集[C].北京:中国金属学会,德国金属学会,2004,10:90-97.
    32. Capodilupo D, Paura M, Repetto E. A new generation electrode for ecological and economical steelmaking[J]. Metallurgia Italiana,2002,94(4):17-26.
    33.万天翼,袁章福,樊友三,等.等离子体技术解决半钢升温、增碳和碳(氮)[J].钢铁钒钛,1991,12(3):75-79.
    34. Neuschiitz D. Progress in plasma processing [A].15th International Symposium on Plasma Chemistry[C], Orleans:ISPC'15,2001,5(15):2615-2620.
    35. Kaneko K. Decarburization and denitrogenization of iron and iron-chromium alloys by plasma jet of hydrogen-gas mixture[J]. Transactions ISIJ,1976,16(1):78-87.
    36. Neuschiitz D. Injection of CH4-CO2 mixtures into electrics to increase arc voltages at minimum contamination of liquid steel[A], Electric Furnace Conference Proceedings[C]. Moderia:AIME,1999:66-78.
    37. Neuschtitz D, Hahn I. Power increase and metallurgical effects during arc heating of liquid steel due to the addition of molecular gases[J]. Transactions ISIJ,1974,14(3):78-86.
    38. Knoppek T. Initial results from the Voest-Alpine plasma furnace[J]. Iron and Steel Engineer,1985.62(5):23-26.
    39.杨州.LF炉中空吹气电极损耗行为研究[D].沈阳:东北大学.2007,6-9.
    40. Jordan G R. Electrode erosion in electric arc furnaces-the controlling parameters[J]. Ironmaking and Steelmaking,1978,5(4):177-183.
    41. Lars H. The electric arc now more stable than ever[A]. Electric Furnace Conference Proceedings[C]. Washington:AIME 1993,43:203-208.
    42. Bowman B. Optimum use of electrodes in arc furnaces[J]. Metallurgical Plant and Technology,1983, (1):30-39.
    43. Siegfried K. Variables influencing electric energy and electrode consumption in electric arc furnaces[J]. MPT,1992, (6):48-54.
    44. Schwabe W E. The mechanics of consumption of graphite electrodes in electric steel furnace[A]. Electric Furnace Conference Proceedings[C]. Toronto:AIME,1971,29: 1480-1489.
    45. Maddever W J, Segsworth R S. The influence of gas injection arc stabilization and electrode consumption[J]. Canadian Metallurgical Quarterly,1976,15 (1):49-52.
    46. John R L. Assessment techniques for graphite electrodes[J]. FUEL,1978,57 (3):151-154.
    47. Klein K H. Ultra high efficiency steelmaking at Badische Stahlwerke[J]. Metallurgical Plant and Technology,1987,10(1):22-33.
    48. Cotchen J K. Analyzing ladle furnace performance[J]. I&SM,1988, (11):52-58.
    49. Jung H, Armstead R S. Development of electrode consumption[J]. Ironmaking and Steelmaking,1990,17 (2):118-122.
    50. Claus F, Hagen F. Selecting the optimum electrode diameter for AC EAFs[J]. Metallurgical Plant and Technology International,2005,28(5):38-41.
    51.李圣华.钢铁冶金用炭素材料(一)(续二)[J].炭素技术,1995,(5):46-47.
    52.刘明非.电炉炼钢中的电极消耗及其对策[J].炭素技术,1998,(1):29-30.
    53.闫小平,朱占文,段永卿,等.LF精炼炉电极消耗原因及对策[J].河北冶金,2000,(3):38.
    54.崔国伟,何锡江,吴昱.关于行墨电极联接偏差与炼钢过程中电极事故的探讨[J1.炭素技术,2000,(3):34.
    55.王明理.刘峰.降低60 t EAF电极单耗的生产实践[J].湖南冶金,2002,(6):32.
    56.郑颖,乔光,赵鑫.包钢炼钢厂3#LF炉降低电耗及电极消耗实践[J].包钢科技,2004,30(4):28-29.
    57.殷宝言.电炉电极消耗的机理及控制措施[J].上海金属,1991,13(4):8-12.
    58.唐东.LF炉热效率和电极消耗的研究[D].沈阳:东北大学,2002.
    59. Schwabe W E. Method of improving the quality and productivity of electric arc furnace steel:USA,2909442[P].1959-10-20.
    60. Landry E R. Recent developments in electric arc furnace technology[J]. Mining and Metallurgical Bulletin,1967,8:923-928.
    61. Charles J A, Cowen A G. Effect of gases through hollow electrodes in arc-furnace melting[J]. Iron and Coal Trades Review,1960, (12):353-358.
    62. Brsovic J A. Electric arc furnace analysis via photography [J]. Iron and Steel Engineer, 1959,36(11),85-90.
    63. Segsworth R S, Maddever W J, Nikolic R. The influence of electrode-gas-injection on noise in arc furnaces[A], Electric Furnace Conference Proceedings[C]. Houston:AIME,1975: 223-224.
    64.过增元.热力学非平衡条件下电弧等离子体温度场计算的新方法[J].工程热物理学报,1982,3(2):60-66.
    65.过增元,赵文华.电弧和热等离子体[M].北京:科学出版社,1986,265-267.
    66.德姆鲍夫斯基V.等离子冶金[M].北京:冶金工业出版社,1987,11-49.
    67.丘军林.气体电子学[M].武汉:华中理工大学出版社,1999,23-30.
    68.金佑民,樊友三.低温等离子体物理基础[M].北京:清华大学出版社,1983:53-73.
    69.葛波维奇M A,万春候.等离子体离子源物理与技术[M].北京:科学出版社,1976,18.
    70. Chang L T, John H L. Statistical thermodynamics[M]. London:Hemisphere Publishing Corporation,1978,171-178.
    71.金家骏,称民生,俞闻枫.分子热力学[M].北京:科学出版社,1990,134-136.
    72. James A F. Molecular thermodynamics[M]. New York:Addison-Wesley Publishing Company,1965,182-195.
    73.赫兹堡G,王鼎昌.分子光谱与分子结构-双原子分子光谱[M].北京:科学出版社,1983,428.
    74. Koichi T, Yasushi N. Behavior of nitrogen in plasma arc melting[J]. Transactions ISIJ, 1978.18(10):641-647.
    75.伊赫桑·巴伦.纯物质热化学数据手册[M].北京:科学出版社,2003,280-288.
    76.陈家祥.炼钢常用图表数据手册[M].北京:冶金工业出版社,1984,519-520.
    77.郭鸿志,张书臣,阚晚西,等.直流电弧炉电弧速度场和温度场的数值计算[J].钢铁研究学报,2003,15(1):6-10.
    78. Wang F, Jin Z, Zhu Z. Numerical study of dc arc plasma and molten bath in dc electric are furnace[J]. Ironmaking and Steelmaking,2006,33(1):39-44.
    79. Qian F, Farouk B, Mutharasan R. Modeling of fluid flow and heat transfer in the plasma region of the dc electric arc furnace[J]. Metallurgical and Materials Transactions B,1995, 26B(10):1057-1067.
    80. Ushio M, Szekely J, Chang W. Mathematical modeling of flow field and heat transfer in high-current arc discharge[J]. Ironmaking and Steelmaking,1981,8(6):279:286.
    81.王丰华,金之俭,朱子述.直流电弧炉电弧等离子体射流的数值模拟[J].高压电器,2005,41(4):241-248.
    82. Szekely J, Mckelliget J, Choudhary M. Heat-transfer fluid flow and bath circulation in electric-arc furnaces and dc plasma furnaces[J]. Ironmaking and Steelmaking,1983,10(1): 169-179.
    83.殷凤良,胡绳荪,郑振太,等.等离子弧焊电弧的数值模拟[J].焊接学报,2006,27(8):51-54.
    84. Hsu K C, Pfender E. Two-temperature modeling of the free-burning, high-intensity arc[J]. Journal of Apply Physics,1983,54(8):4359-4366.
    85. Kaneko K. Decarburization and denitrogenization of iron and iron-chromium alloys by plasma jet of hydrogen-gas mixture[J]. Transactions ISIJ,1976,16(1):78-87.
    86. Neuschutz D, Spirin D. Nitrogen removal and arc voltage increase in EAF steelmaking by methane injection into the arc[J]. Steel Research,2003,74(1):19-25.
    87.梁连科,车荫昌,杨怀,等.冶金热力学及动力学[M].沈阳:东北工学院出版社,1990,76-77.
    88.刘颖,王浩静,周立公.热等离子体裂解天然气的研究进展天然气化工[J].2003,28:31-35.
    89.谭世语.甲烷等离子体转化的研究进展[J].河南化工,2007,24:6.
    90.陈熙.高温电离气体的传热与流动[M].北京:科学出版社.1993,60.
    91. Fineke J R, Anderson R P. Plasma thermal conversion of metnaneto aeetylene[J]. Plasma Chemistry and Plasma Processing,2002,1(22):105-136.
    92. Chen H G. Thermodynamic analysis of the hydrogen-carbon system for aeetylene production by plasma[J]. The Chinese Journal of Process Engineering,2002,2(2):112-117.
    93.陶旭梅,代伟,陈琦,等.等离子体射流裂解天然气制乙炔的实验[J].天然气工业,2006,26(4):131-134.
    94.朱跃和,耿恒亮,于学斌.100 t单臂LF生产实践[J].钢铁研究,2007,35(5):54-56.
    95.贺庆,曾加庆,刘浏,等.马钢CSP流程钢水增碳现象的分析[J].炼钢,2006,22(4):9-11.
    96.知水,王平,侯树庭.特殊钢炉外精炼[M].北京:原子能出版社,1996,150.
    97. Katz J D. The Kinetics of decarburization of iron melts by argon-hydrogen plasma jets[J]. Transactions ISIJ,1988,28(2):360-363.
    98. Neuschutz D, Spirin D. Nitrogen removal and arc voltage increase in EAF steelmaking by methane injection into the arc[J]. Steel Research,2003,74(1):19-25.
    99.耿建林,王华.浅谈钢中气体含量的控制[J].南钢科技与管理,2006,(1):31-33.
    100.郭上型,王建军,周俐,等BOF-LF-VD-CC工艺生产车轮钢的N含量控制[J].钢铁钒钛,2007,28(4):52-56.
    101. Mimura K, Saito K, Isshiki M. Removal of oxygen and nitrogen from iron and cobalt by hydrogen-argon plasma arc melting[J]. Journal of the Japan Institute of Metals,1996,63 (9): 1181-1190.
    102.吴宗双,龚志翔,陈刚,等.车轮钢冶炼过程氮含量的变化规律及工艺改进[J].连铸,2007,(4):8-11.
    103.胡志高,王文明,赵辉,等.等离子体熔炼含氮合金钢研究[J].北京科技大学学报,1996,18(2):183-187.
    104.刘润藻,战东平,姜周华,等.LF精炼用发泡剂的发泡效果[J].材料与冶金学报,2004,3(4):250-254.
    105.刘润藻,战东平,姜周华,等.精炼埋弧渣系对60 t钢包炉(LF)钢水升温速度的影响[J].特殊钢,2005,26(1):57-59.
    106.工程力学系热物理专业.电弧等离子体及其应用[J].清华大学学报(自然科学版),1977,(2):80-82.
    107.高荣发,马小雄.等离子喷焊[M].北京:机械工业出版社,1979,7-9.
    108.马廷温.电炉练钢学[M].北京:冶金工业版社,1990,39.
    109. Wildberger A M, Hickok K A. Introduction to neural networks[J]. Simulation Series, 1989,20(4):227-232.
    110. Haque M E, Sudhakar K V. ANN back-propagation prediction model for fracture toughness in microalloy steel[J]. International Journal of Fatigue,2002,24(9):1003-1010.
    111. Ilker B T, Mustafa S. Prediction of rubberized mortar properties using artificial neural network and fuzzy logic[J]. Journal of Materials Processing Technology,2008,199(1-3): 108-118.
    112. Martin T H, Howard B D, Mark H B神经网络设计[M].北京:机械工业出版社,2002,197-258.
    113.张慧书,战东平,姜周华.基于神经网络和多元回归的终点硫含量预报模型[J].东北大学学报(自然科学版),2006,27(S2):5-7.
    114.张慧书,战东平,姜周华.基于改进BP神经网络的铁水预处理终点硫含量预报模型[J].钢铁,2007,42(3):30-32.
    115.张慧书,战东平,姜周华.改进BP网络在铁水预脱硫终点硫含量预报中的应用[J].东北大学学报(自然科学版),2007,28(8):1140-1142.
    116. Zhan D P, Zhang H S, Jiang Z H. Prediction model of magnesium powder consumption during hot metal predesulfurization[A]. Magnesium technology 2009[C]. San Francisco: Magnesium committee of the light metals division of the minerals, metals and materials society (TMS),2009.2,51-55.
    117 Wang L Y, Zheng T S, Liu X F, et al. Prediction of flow stresses at high temperatures with artificial neural networks[J]. Transactions of Nonferrous Metals Society of China,2001,11(2): 213-216.
    118. Robert N H. Theory of the backpropagation neural network [J]. Neural Networks,1988, 1(1):445.
    119.吴浩.真空炉石墨电极消耗高的原因分析[J].有色冶炼,2001,(2):43.
    120.关玉龙.电炉炼钢技术[M].北京:科学技术出版社,1990,149-154.
    121.唐东.LF炉热效率和电极消耗的研究[D].沈阳:东北大学.2002,9.
    122.邱少岐,祝桂华.电炉炼钢原理及工艺[M].北京:冶金工业出版社,2004,111-112.
    123.殷宝言.电炉电极消耗的机理及控制措施[J].上海金属,1991,13(7):8-13.
    124.颜广庭.LF炉泡沫渣埋弧作业研究[A].第八届全国炼钢学术会议文集[C].北京: 中国金属学会,1994,417.
    125. Bergman M K. System design characteristics and experience from operating EAF'S with high arc voltages[A]. Electric furnace conference proceedings[C]. ISS-AIME, USA,1988: 286.
    126.张鉴.炉外精炼的理论与实践[M].北京:冶金工业出版社,1993,514-516.
    127. Bowman B. An updated model electrode consumption[J]. UCAR Carbon,1995,7:1-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700