用户名: 密码: 验证码:
黄芪注射液拮抗高糖损伤作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖尿病(DM)是目前威胁人类健康的主要慢性病之一。在糖尿病的治疗中,如何充分利用我国传统的医药资源,开辟糖尿病治疗的新途径具有重要意义。氧化应激是糖尿病并发症发生的重要机制之一,抗氧化剂的应用,尤其是中药抗氧化剂的应用,对糖尿病病情的影响报道较少。本研究通过体内外实验,探讨了黄芪(RA)对链脲佐菌素(STZ)诱导的糖尿病大鼠的治疗作用以及拮抗高糖损伤作用的机制,为临床应用RA治疗糖尿病提供了理论与实验依据。
     为了观察RA对糖尿病及其并发症的防治作用,我们应用STZ制备了糖尿病大鼠模型,并应用RA治疗糖尿病大鼠,主要从治疗前后糖尿病大鼠的血清学指标、尿常规、各器官的病理改变以及Rho A在各组织器官的表达情况等几个方面,观察了RA对糖尿病的治疗作用。实验结果表明:糖尿病病程中,RA能够参与调节脂代谢,降低TC、TG、LDL、血糖水平,提高HDL、胰岛素水平;RA治疗组大鼠13h尿量显著少于DM组,同时RA治疗组大鼠尿液的白细胞计数、细菌计数、红细胞计数显著低于DM组大鼠;DM组大鼠的胰腺和肾脏的组织结构变化明显,腹腔注射RA 60d后, RA治疗组大鼠胰腺、肾脏的组织结构与正常大鼠相似;RhoA在正常组大鼠肾脏上皮细胞呈阴性或弱阳性表达,而在DM组大鼠的肾脏上皮细胞中呈强阳性表达,经过RA治疗60d后,RhoA表达减弱,呈阴性或弱阳性。上述动物实验结果显示,经过RA治疗的糖尿病大鼠脂代谢得到一定程度的纠正,RA能明显降低糖尿病大鼠的血糖,提高胰岛素水平,RA对糖尿病大鼠的胰腺和肾脏具有积极的保护作用。这一结果提示,在糖尿病治疗中,黄芪可作为治疗糖尿病的一种手段,预防和延缓并发症的发生。
     为了探讨黄芪拮抗高糖损伤作用以及对内皮细胞保护作用的机制。我们将人脐静脉内皮细胞ECV304随机分为正常组、高糖组、RA处理组和甘露醇组,观察了RA对高糖诱导的人脐静脉内皮细胞ECV304的细胞凋亡、细胞膜流动性、细胞内Ca2+浓度、细胞线粒体膜电位以及细胞产生氧自由基的影响,并做了电镜观察。实验结果表明:高糖能够导致内皮细胞凋亡,RA处理组细胞发生凋亡的比例与高糖组细胞相比较显著下降;高糖组细胞膜流动性、线粒体膜电位显著下降,显著低于正常细胞组、RA处理组和甘露醇组;高糖组细胞的细胞内钙离子浓度显著高于正常细胞组、RA组和甘露醇组;高糖组细胞产生MDA、OH-、O2-的水平显著高于正常细胞组、RA组、甘露醇组;高糖组细胞的损伤亦较其它组显著,电镜观察的结果表明,高糖组细胞的损伤较重,细胞死亡增多,细胞核中异染色质增多,线粒体数目减少、结构异常,线粒体发生肿胀,线粒体内的嵴消失。上述结果充分表明,高糖对内皮细胞可造成非常显著的损伤,甚至导致细胞死亡。RA能够在高糖环境下对内皮细胞的功能和形态提供很好的保护。
     综上所述,糖尿病发病率高,并发症危害大,糖尿病及其相关疾病耗资巨大,目前对糖尿病的治疗主要采取胰岛素注射的方法,而有关中药在糖尿病治疗中的作用报道较少,我国具有丰富的中药资源,黄芪是其中较常用的一种,且黄芪具有毒副作用小、药源丰富的特点,本研究探讨了黄芪对糖尿病动物的治疗和保护作用以及黄芪拮抗高糖损伤的机制,为在糖尿病治疗领域广泛应用中药黄芪提供了理论和实验依据。
Diabetes mellitus is a metabolic disease featured by chronic elevation of blood glucose level. The prevalence of diabetes is increasing and has become the most challenging health problem in the 21st centrury. Worldwidely, diabetes affected the health of 2300 million people, and the number is estimated to shoot up to 3500 million by 2025. Diabetes is top 4 death cause for the whole population at present, there will be one person dead because of diabetes related disease every 10 second. In America, it is estimated that more than 20 million people have diabetes, among therm 14 million people are diagnosed, 6 million people are not. Persistent high level of blood glucose attacks microvessel and macrovessels along the body. In developoing countries, diabetes is the main cause for adult blindness, visioin damage, non-trauma amputation and kidney failure. Diabetes threatens the vision, the patients with diabetes develop cataract earlier and the chances to develp glaucoma doubles, diabetes is also a major cause for delayed wound healing.
     In the mechanisms of diabetes complication, oxidative stress plays an important role.Oxidative stress comes from glucose autooxidation, Fenton reaction, advanced glycation end products, polyol pathway, mitochondria respiratory chain deficiency, hexasine, peroxisome, nitric oxide synthase and NADPH oxidase. Pancreaticβcells are more sensitive to oxidative stress because the level of antioxidase, such as catalase, glutathione peroxidase and superoxide dismutase inβcells is very low, which results in the weaker ability to resist oxidative stress. Oxidative stress can damage pancreaticβcells and induce the insulin secretion obstacles, moreover cause the development of complications by inducing pathologic metabolic pathways.
     Due to the important role of oxidative stress in the development and progression of diabetes complications, it is necessary to explore the effects of antioxidative agents on the process and progression of diabetes, especially traditional Chinese medicine, so the present study is to explore the therapeutic effects of Radix Astragali on diabetes mellitus and its mechanisms of actions through animal and cell experiments.
     In animal experiments, Wistar rats were injected STZ at the dose of 50 mg?kg-1 to establish diabetes rat model, the blood sugar level were tested three times on day 3, 5, and 7, those which had blood sugar level more than 16.7 mmol?L-1 three times were determined diabetes rats. The diabetes rats were classified into diabetes grou, DM and Radix Astragali group, RA; rats in DM group were given 3.3 ml/kg saline and RA group 3.3 ml/kg RA every day through IP. Normal rats were in control group, C.
     Blood samples were collected on day 7, 14, 30, 60 of RA injection to test the level of triglyceride(TG), high density lipoprotein(HDL-C), low density lipoprotein(LDL-C) and insulin, each time 5 rats from each group including normal rats.
     Human umbilical vein endothelial cells were used to explore the protective effects of RA against high level of glucose. ECV 304 cells were exposed to high glucose concentration (35mM), high glucose concentration and RA(35mM glucose and 500μg/ml), an osmetic control was set up by mannitol(25Mm). The cells were collected 24 hours later after the glucose, mannitol and RA were added to the cells, cell membrane fluidity, intracellular Ca2+ concentration, mitochondrial membrane potential, ROS production and morphology under electronic microscope were tested.
     On day 7 and 14 of RA injection, there was no significant difference in blood index in rats between RA and DM group(P>0.05); On day 30 and 60 of RA injection, the level of HDL-C and insulin in rats of RA groups was significantly higher than that of DM group(P<0.05), the level of LDL-C, TG, and TC lower(P<0.05).
     On day 7, 14 and 30 of RA injection, there was no significant difference in the morphology of liver, kidney and heart between RA group and DM group rats, which were similar to the normal rats. On day 60 of RA injection, the morphology of liver and heart in rats of RA and DM groups was similar to normal one. But in kidney and pancreas, remarkable changes were seen, for rats in DM group, glomeruli capsular spaced were narrower, matrix hyperplasia, cell number increased while for rats in RA group, the morphology of kidney was similar to that of normal rats.
     In cell experiment, intracellular calcium concentration was significantly higher in the presence of high glucose concentration when compared with normal, RA and mannitol control; there was significant decrease in intracellular calcium concentration in the presence of combined high glucose concentration and RA compared to mannitol control (P<0.05). Cells exposed to high glucose concentration had lower mitochondrial membrane potential compared to normal control, RA and mannitol control(P<0.05), cells exposed to combined RA and high glucose concentration had higher mitochondrial membrane potential compared to mannitol control(P<0.05).There was a significant increase in the number of apoptotic cells in the presence of high glucose concentration compared to normal control, RA and mannitol control(P<0.05), there was a significant decrease in the number of apoptotic cells in the presence of RA and high glucose concentration compared to mannitol control. Cellls exposed to high glucose concentration had higher level of MDA, OH- , O2- and lower level of SOD、CAT、GSH activities compared to normal control, RA and mannitol(P<0.05), Cells exposed to combined RA and high glucose concentration had lower level of MDA, OH, O2- and higher level of SOD, CAT, GSH activities compared to mannitol control(P<0.05). Cells exposed to mannitol had lower level of MDA, OH-, O2- and higher level of SOD, CAT, GSH activities compared to high glucose concentration(P<0.05). Under electronic microscope, the cells exposed to high glucose concentration were abnormal with swollen mitochondria and decrease in the number of mitochondria, and cristae disappeared, while the cells exposed to combined RA and high glucose concentration had normal structure and number of mitochondria with clear cristae.
     The results of the present research indicated that Radix Astragali could produce therapeutic effects on diabetes rats and one of the mechanisms of action was its ability to eliminate free radicals and participation in the lipid metabolism of diabetes rats.
引文
[1]RenuA. Kowluru and Pooi-See Chan. Oxidative Stress and Diabetic Retinopathy[J]. Experimental Diabetes Research, 2007.
    [2]S. Sharma, A. Oliver-Fernandez, W. Liu, P. Buchholz, and J.Walt. The impact of diabetic retinopathy on health-related quality of life[J]. Current Opinion in Ophthalmology, 2005, 16(3): 155–159.
    [3]R. N. Frank. Diabetic retinopathy[J]. New England Journal of Medicine, 2004, 350(1): 48–58.
    [4]G. W. Aylward. Progressive changes in diabetics and their management[J]. Eye, 2005, 19(10): 1115–1118.
    [5]N. S. Harhaj and D. A. Antonetti. Regulation of tight junctions and loss of barrier function in pathophysiology[J] . International Journal of Biochemistry and Cell Biology, 2004, 36(7): 1206–1237.
    [6]L. P. Aiello, T. W. Gardner, G. L. King, et al. Diabetic retinopathy[J]. Diabetes Care, 1998, 21( 1): 143–156.
    [7]T. S. Kern, J. Tang, M.Mizutani, et al. Response of capillary cell death to aminoguanidine predicts the development of retinopathy: comparison of diabetes and galactosemia[J]. Investigative Ophthalmology & Visual Science, 2000, 41(12): 3972–3978.
    [8]R. A. Kowluru and S. Odenbach. Effect of long-termadministration ofα-lipoic acid on retinal capillary cell death and the development of retinopathy in diabetic rats[J]. Diabetes, 2004, 53(12): 3233–3238.
    [9]A. M. Joussen, V. Poulaki, M. L. Le, et al. A central role for inflammation in the pathogenesis of diabetic retinopathy[J]. FASEB Journal, 2004, 18( 12): 1450–1452.
    [10]Rubler S, Dlugash J, Yuceoglu YZ, et al. New type of cardiomyopathy associated with diabetic Glomerulosclerosis[J] . Am J Cardiol. 1972:595-602.
    [11]Ashish Aneja, W. H. Wilson Tang, Sameer Bansilal, Mario J. Garcia, Michael E. Farkouh. Diabetic Cardiomyopathy: Insights into Pathogenesis, Diagnostic Challenges, and Therapeutic Options[J]. The American Journal of Medicine, 2008, 121(9): 748-757.
    [12]Boudina S, Abel ED. Diabetic cardiomyopathy revisited[J]. Circulation. 2007, 26:3213-3223.
    [13]Rodrigues B, Cam MC, McNeill JH. Metabolic disturbances in diabetic cardio- myopathy[J]. Mol Cell Biochem. 1998, 180:53-57.
    [14]Eckel J, Reinauer H. Insulin action on glucose transport in isolated cardiac myocytes: signalling pathways and diabetes-induced alterations[J] . Biochem Soc Trans. 1990, 18: 1125- 1127.
    [15]Liedtke AJ, DeMaison L, Eggleston AM, et al. Changes in substrate metabolism and effects of excess fatty acids in reperfused myocardium[J] . Circ Res. 1988, 62:535-542.
    [16]Yazaki Y, Isobe M, Takahashi W, et al. Assessment of myocardial fatty acid abnormalities in patients with idiopathic dilated cardiomyopathy using I123 BMIPP SPECT: correlation with clinicopathological findings and clinical course[J] . Heart. 1999, 81:153-159.
    [17]Malhotra A, Sanghi V. Regulation of contractile proteins in diabetic heart[J] . Cardiovasc Res. 1997, 34:34-40.
    [18]Takeda N, Nakamura I, Hatanaka T, et al. Myocardial mechanical and myosin isoenzyme alterations in streptozotocin-diabetic rats[J] . Jpn Heart J. 1988, 29:455-463.
    [19]Abe T, Ohga Y, Tabayashi N, et al. Left ventricular diastolic dysfunction in type 2 diabetes mellitus model rats[J]. Am J Physiol Heart Circ Physiol. 2002, 282:H138-H148.
    [20]Fiordaliso F, Leri A, Cesselli D, et al. Hyperglycemia activates p53 and p53-regulated genes leading to myocyte cell death[J] . Diabetes.2001, 50: 2363-2375.
    [21]Frustaci A, Kajstura J, Chimenti C, et al. Myocardial cell death in human diabetes[J]. Circ Res. 2000, 87:1123-1132.
    [22]Chen S, Evans T, Mukherjee K, et al. Diabetes-induced myocardial structural changes: role of endothelin-1 and its receptors[J]. J Mol Cell Cardiol. 2000, 2:1621-1629.
    [23]Fischer VW, Barner HB, Larose LS. Pathomorphologic aspects of muscular tissue in diabetes mellitus[J] . Hum Pathol. 1984, 15:1127-1136.
    [24]Shimizu M, Umeda K, Sugihara N, et al. Collagen remodelling in myocardia of diabetic patients[J] . J Clin Pathol. 1993, 46:32-36.
    [25]Zieman SJ, Kass DA. Advanced glycation endproduct crosslinking in the cardio- vascular system: potential therapeutic target for cardiovascular disease[J]. Drugs. 2004, 64: 459-470.
    [26]Kajstura J, Fiordaliso F, Andreoli AM, et al. IGF-1 overexpression inhibits the development of diabetic cardiomyopathy and angiotensin II-mediated oxidative stress[J] . Diabetes. 2001, 50:1414-1424.
    [27]Mizushige K, Yao L, Noma T, et al. Alteration in left ventricular diastolic filling and accumulation of myocardial collagen at insulinresistant prediabetic stage of a type II diabetic rat model[J] . Circulation.2000,101:899-907.
    [28]Park JY, Takahara N, Gabriele A, et al. Induction of endothelin-1 expression byglucose: an effect of protein kinase C activation[J]. Diabetes. 2000, 49:1239-1248.
    [29]Hattori Y, Kawasaki H, Abe K, Kanno M. Superoxide dismutase recovers altered endothelium-dependent relaxation in diabetic rat aorta[J]. Am J Physiol. 1991, 261: H1086- H1094.
    [30]Bucala R, Tracey KJ, Cerami A. Advanced glycosylation products quench nitric oxide and mediate defective endothelium dependent vasodilatation in experimental diabetes[J] . J Clin Invest. 1991, 87:432- 438.
    [31]Tesfamariam B, Jakubowski JA, Cohen RA. Contraction of diabetic rabbit aorta caused by endothelium-derived PGH2-TxA2[J] . Am J Physiol. 1989, 257:H1327-H1333.
    [32]Tsfamariam B, Brown ML, Cohen RA. Elevated glucose impairs endothelium- dependent relaxation by activating protein kinase C[J] . J Clin Invest. 1991, 87:1643-1648.
    [33]Josephine M. Forbes, Melinda T. Coughlan, and Mark E. Cooper. Oxidative Stress as a Major Culprit in Kidney Disease in Diabetes[J]. DIABETES, 2008, 57: 1446-1455.
    [34]Cooper ME. Pathogenesis, prevention, and treatment of diabetic nephropathy[J]. Lancet, 1998,352:213–219.
    [35]A. C. Maritim, R. A. Sanders, and J. B. Watkins III.Diabetes, Oxidative Stress, and Antioxidants: A Review[J]. J BIOCHEM MOLECULAR TOXICOLOGY2003, 17(1): 24-38.
    [36]Heilig CW, Concepcion LA, Riser BL, Freytag SO, Zhu M, Cortes P: Overexpression of glucose transporters in rat mesangial cells cultured in a normal glucose milieu mimics the diabetic phenotype[J]. J Clin Invest,1995, 96:1802–1814.
    [37]Coward RJ, Welsh GI, Yang J, Tasman C, Lennon R, Koziell A, Satchell S, Holman GD, Kerjaschki D, Tavare JM, Mathieson PW, Saleem MA. The human glomerular podocyte is a novel target for insulin action[J] . Diabetes, 2005, 54:3095–3102.
    [38]UK Prospective Diabetes Study (UKPDS) Group: Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33)[J]. Lancet, 1998, 352:837– 853.
    [39]Asada T, Ogawa T, Iwai M, Shimomura K, Kobayashi M. Recombinant insulin-like growth factor I normalizes expression of renal glucose transporters in diabetic rats[J] . Am J Physiol, 1997, 273:F27–F37.
    [40]Kabat A, Ponicke K, Salameh A, Mohr FW, Dhein S. Effect of a beta 2- adrenoceptor stimulation on hyperglycemia-induced endothelial dysfunction[J] . J Phar- macol Exp Ther, 2004, 308:564–573.
    [41]Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA,Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M: Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage[J]. Nature , 2000, 404:787–790.
    [42]Turrens JF, Boveris A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria[J] . Biochem J, 1980, 191:421– 427.
    [43]Verkaart S, Koopman WJ, van Emst-de Vries SE, Nijtmans LG, van den Heuvel LW, Smeitink JA, Willems PH. Superoxide production is inversely related to complex I activity in inherited complex I deficiency[J] . Biochim Biophys Acta2007, 1772:373–381.
    [44]Martin-Hernandez E, Garcia-Silva MT, Vara J, Campos Y, Cabello A, Muley R, Del Hoyo P, Martin MA, Arenas J. Renal pathology in children with mitochondrial diseases[J]. Pediatr Nephrol, 2005 ,20:1299–1305.
    [45]Diomedi-Camassei F, Di Giandomenico S, Santorelli FM, Caridi G, Piemonte F, Montini G, Ghiggeri GM, Murer L, Barisoni L, Pastore A, Muda AO, Valente ML, Bertini E, Emma F. COQ2 nephropathy: a newly described inherited mitochondriopathy with primary renal involvement[J]. J Am Soc Nephrol 2007, 18:2773–2780.
    [46]Schulz TJ, Zarse K, Voigt A, Urban N, Birringer M, Ristow M. Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress[J]. Cell Metab, 2007, 6:280–293.
    [47]Zhang Z, Apse K, Pang J, Stanton RC. High glucose inhibits glucose-6- phosphate dehydrogenase via cAMP in aortic endothelial cells[J] . J Biol Chem, 2000, 275:40042– 40047.
    [48]Pandolfi PP, Sonati F, Rivi R, Mason P, Grosveld F, Luzzatto L. Targeted disruption of the housekeeping gene encoding glucose 6-phosphate dehydrogenase (G6PD): G6PD is dispensable for pentose synthesis but essential for defense against oxidative stress[J] . Embo J, 1995, 14:5209–5215.
    [49]Pingle SC, Mishra S, Marcuzzi A, Bhat SG, Sekino Y, Rybak LP, Ramkumar V: Osmotic diuretics induce adenosine A1 receptor expression and protect renal proximal tubular epithelial cells against cisplatin-mediated apoptosis[J] . J Biol Chem 2004, 279:43157– 43167.
    [50]Fu MX, Wells-Knecht KJ, Blackledge JA, Lyons TJ, Thorpe SR, Baynes JW. Glycation, glycoxidation, and cross-linking of collagen by glucose: kinetics, mechanisms, and inhibition of late stages of the Maillard reaction[J] . Diabetes, 1994, 43:676–683.
    [51]Thornalley PJ, Langborg A, Minhas HS. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose[J] . Biochem J, 1999,344:109–116.
    [52]Fu MX, Wells-Knecht KJ, Blackledge JA, Lyons TJ, Thorpe SR, Baynes JW.Glycation, glycoxidation, and cross-linking of collagen by glucose: kinetics, mechanisms, and inhibition of late stages of the Maillard reaction[J]. Diabetes, 1994, 43:676–683.
    [53]Neeper M, Schmidt AM, Brett J, Yan SD, Wang F, Pan YC, Elliston K, Stern D, Shaw A. Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins[J] . J Biol Chem, 1992, 267:14998–15004.
    [54]Schmidt AM, Hori O, Chen JX, Li JF, Crandall J, Zhang J, Cao R, Yan SD, Brett J, Stern D. Advanced glycation endproducts interacting with their endothelial receptor induce expression of vascular cell adhesion molecule- 1 (VCAM-1) in cultured human endothelial cells and in mice: a potential mechanism for the accelerated vasculopathy of diabetes. J Clin Invest, 1995, 96:1395–1403.
    [55]Wendt TM, Tanji N, Guo J, Kislinger TR, Qu W, Lu Y, Bucciarelli LG, Rong LL, Moser B, Markowitz GS, Stein G, Bierhaus A, Liliensiek B, Arnold B, Nawroth PP, Stern DM, D’Agati VD, Schmidt AM. RAGE drives the development of glomerulosclerosis and implicates podocyte activation in the pathogenesis of diabetic nephropathy. Am J Pathol, 2003, 162:1123–1137.
    [56]Rosca MG, Mustata TG, Kinter MT, Ozdemir AM, Kern TS, Szweda LI, Brownlee M, Monnier VM, Weiss MF. Glycation of mitochondrial proteins from diabetic rat kidney is associated with excess superoxide formation[J] . Am J Physiol Renal Physiol 2005, 289: F420–F430.
    [57]Coughlan MT, Thallas-Bonke V, Pete J, Long DM, Gasser A, Tong DC, Arnstein M, Thorpe SR, Cooper ME, Forbes JM. Combination therapy with the advanced glycation end product cross-link breaker, alagebrium, and angiotensin converting enzyme inhibitors in diabetes: synergy or redundancy?[J]. Endocrinology, 2007, 148:886–895.
    [58]Gill PS, Wilcox CS. NADPH oxidases in the kidney[J]. Antioxid Redox Signal, 2006, 8:1597–1607.
    [59]Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW. Angiotensin IIstimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells[J]. Circ Re,s 1994, 74:1141–1148.
    [60]Thallas-Bonke V, Thorpe SR, Coughlan MT, Fukami K, Yap FY, Sourris K, Penfold S, Bach LA, Cooper ME, Forbes JM. Inhibition of NADPH oxidase prevents AGE-mediated damage in diabetic nephropathy through a protein kinase C-_–dependent pathway[J] . Diabetes, 2007, 57:460–469.
    [61]Onozato ML, Tojo A, Goto A, Fujita T, Wilcox CS. Oxidative stress and nitric oxide synthase in rat diabetic nephropathy: effects of ACEI and ARB[J] .Kidney Int, 2002, 61:186–194.
    [62]Asaba K, Tojo A, Onozato ML, Goto A, Quinn MT, Fujita T, Wilcox CS: Effects of NADPH oxidase inhibitor in diabetic nephropathy[J]. Kidney Int 2005, 67:1890–1898.
    [63]Gorin Y, Block K, Hernandez J, Bhandari B, Wagner B, Barnes JL, Abboud HE. Nox4 NAD(P)H oxidase mediates hypertrophy and fibronectin expression in the diabetic kidney[J]. J Biol Chem 2005, 280:39616–39626.
    [64]DeRubertis FR, Craven PA, Melhem MF. Acceleration of diabetic renal injury in the superoxide dismutase knockout mouse: effects of tempol[J] .Metabolism, 2007, 56:1256–1264.
    [65]Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage[J]. Nature ,2000, 404:787–790.
    [66]Mollsten A, Marklund SL, Wessman M, Svensson M, Forsblom C, Parkkonen M, Brismar K, Groop PH, Dahlquist G. A functional polymorphism in the manganese superoxide dismutase gene and diabetic nephropathy[J] . Diabetes, 2007, 56:265–269.
    [67]Brezniceanu ML, Liu F, Wei CC, Tran S, Sachetelli S, Zhang SL, Guo DF, Filep JG, Ingelfinger JR, Chan JS. Catalase overexpression attenuates angiotensinogen expression and apoptosis in diabetic mice[J] . Kidney Int 2007, 71:912–923.
    [68]dos Santos KG, Canani LH, Gross JL, Tschiedel B, Souto KE, Roisenberg I. The catalase -262C/T promoter polymorphism and diabetes complications in Caucasians with type 2 diabetes[J]. Dis Markers, 2006, 22:355–359.
    [69]Shao Chin Lee a, Shazib Pervaiz. Apoptosis in the pathophysiology of diabetes mellitus[J]. The International Journal of Biochemistry & Cell Biology, 2007, 39: 497–504.
    [70]Green, D. Apoptotic pathways: Ten minutes to dead[J]. Cell, 2005,121,671–674.
    [71]Scaffidi, C., Fulda, S., Srinivasan, A., et al.. Two CD95 (APO- 1/Fas) signaling pathways[J]. EMBO J.,1998, 16, 1675–1687.
    [72]Xiao, D., & Singh, S. (). Diallyl trisulfide, a constituent of processed garlic, inactivates Akt to trigger mitochondrial translocation of BAD and caspase-mediated apoptosis in human prostate cancer cells[J]. Carcinogenesis, 2006, 27, 533–540.
    [73]Zhou, X., Liu,Y., Payne, G., et al. (). Growth factors inactivate the cell death promoter BADby phosphorylation of its BH3 domain on Ser155[J]. The Journal of Biological Chemistry, 2002, 275, 25046–25051.
    [74]Sun, H., Lesche, R., Li, D., et al. PTEN modulates cell cycle progression and cellsurvival by regulating phosphatidylinositol 3,4,5,-trisphosphate and Akt/protein kinase B signaling pathway[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 6199–6204.
    [75]Datta, S., Dudek, H., Tao, X., et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell, 1997, 91, 231–241.
    [76]Reaven, G. Role of insulin resistance in human disease[J]. Diabetes, 1988,37, 1595–1607.
    [77]Masiello, P. Animal models of Type 2 diabetes with reduced pancreatic _-cell mass. International Journal of Biochemistry and Cell Biology, 2006, 38, 873–893.
    [78]Butler, A., Janson, J., Bonner-Weir, S., et al. Beta-cell deficit and increased beta-cell apoptosis in humans with Type 2 diabetes[J]. Diabetes, 2003, 52, 102–110.
    [79]Butler, A., Jang, J., Gurlo,T., et al. Diabetes due to a progressive defect in beta-cell mass in rats transgenic for human islet amyloid polypeptide (HIP Rat):Anewmodel for Type 2 diabetes[J]. Diabetes, 2004, 53, 1509–1516.
    [80]Marchetti, P., Del Guerra, S., Marselli, L., et al. Pancreatic islets from type 2 diabetic patients have functional defects and increasedapoptosis that are ameliorated by metformin. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 5535–5541.
    [81]Federici, M., Hribal, M., Perego, L., et al. High glucose causes apoptosis in cultured human pancreatic islets of Langerhans: A potential role for regulation of specific Bcl family genes toward an apoptotic cell death program[J]. Diabetes, 2001, 50, 1290–1301.
    [82]Saldeen, J. Cytokines induce both necrosis and apoptosis via a common Bcl- 2-inhibitable pathway in rat insulin-producing cells[J]. Endocrinology, 2000, 141, 2003–2010.
    [83]Maedler, K., Spinas, G., Lehmann, R., et al.. Glucose induces beta-cell apoptosis via upregulation of the Fas(CD95) receptor in human islets[J]. Diabetes, 2001, 50, 1683–1690.
    [84]Zhang, S., Liu, J., Saafi, E., et al. Induction of apoptosis by human amylin in RINm5F islet beta-cells is associated with enhanced expression of p53 and p21WAF1/CIP1[J]. FEBS Letters, 1999, 455, 315–320.
    [85]Rumora, L., Hadzija, M., Barisic, K., et al. Amylin-induced cytotoxicity is associated with activation of caspase-3 and MAP kinases[J]. Biological Chemistry, 2002, 383, 1751–1758.
    [86]Lupi, R., Dotta, F., Marselli, L., et al. Prolonged exposure to free fatty acids has cytostatic and pro-apoptotic effects on human pancreatic islets: Evidence that beta-cell death is caspase mediated, partially dependent on ceramide pathway, and Bcl-2 regulated[J]. Diabetes, 2002, 51, 1437–1443.
    [87]Contreras, J., Smyth, C., Bilbao, G., et al. Simvastatin induces activation of the serine–threonine protein kinase AKT and increases survival of isolated human pancreatic islets[J]. Transplantation, 2002, 74, 1063–1069.
    [88]Lin, C., Gurlo, T., Haataja, L., et al. Activation of peroxisome proliferator-activated receptor-gamma by rosiglitazone protects human islet cells against human islet amyloid polypeptide toxicity by a phosphatidylinositol 3_-kinase-dependent pathway[J]. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 6678–6686.
    [89]Ueki, K., Okada, T., Hu, J., et al.. Total insulin and IGF-I resistance in pancreatic beta cells causes overt diabetes[J]. Nature Genetics, 2006, 38, 583–588.
    [90]Tammy M. Seasholtz and Joan Heller Brown. RHO SIGNALING in Vascular Diseases[J]. molecular interventions, 2004, 4( 6): 348-357.
    [91]Seasholtz, T.M., Majumdar, M., Kaplan, D.D., and Brown, J.H. Rho and Rho kinase mediate thrombin-stimulated vascular smooth muscle cell DNA synthesis and migration[J]. Circ. Res. 1999, 84, 1186–1193.
    [92]Sander, E.E. and Collard, J.G. Rho-like GTPases: Their role in epithelial cell–cell adhesion and invasion[J]. Eur. J. Cancer, 1999,35, 1302–1308.
    [93]Majumdar, M., Seasholtz, T.M., Goldstein, D., de Lanerolle, P., and Brown, J.H. Requirement for Rho-mediated myosin light chain phosphorylation in thrombin-stimulated cell rounding and its dissociation from mitogenesis[J]. J. Biol. Chem. 273, 10099–10106 (1998).
    [94]Sauzeau, V., Le Mellionnec, E., Bertoglio, J., Scalbert, E., Pacaud, P.,and Loirand, G. Human urotensin II–induced contraction and arterial smooth muscle cell proliferation are mediated by RhoA and Rho kinase[J]. Circ. Res. 2001,88, 1102–1104.
    [95]Treisman, R., Alberts, A.S., and Sahai, E. Regulation of SRF activity by Rho family GTPases[J]. Cold Spring Harb. Symp. Quant. Biol. 1998, 63, 643–651.
    [96]Morissette, M. R., Sah, V.P., Glembotski, C.C., and Brown, J.H. The Rho effector, PKN, regulates ANF gene transcription in cardiomyocutes through a serum response element[J]. Am. J. Physiol. 2000, 278, H1769–H1774.
    [97]Fritz, G and Kaina, B. Transcriptional activation of the small GTPase gene RhoB by genotoxic stress is regulated via a CCAAT element[J]. Nucleic Acids Res. 2001,29, 792–798.
    [98]Chen, Z., Sun, J., Pradines, A., Favre, G., Adnane, J., and Sebti, S.M. Both farnesylated and geranylgeranylated RhoB inhibit malignant transformation and suppress human tumor growth in nude mice[J]. J. Biol.Chem. 2000, 275, 17974–17978.
    [99]Suwa, H., Ohshio, G., Imamura, T., Watanabe, G., Arii, S., Imamura, M.,Narumiya, S., Hiai, H., and Fukumoto, M. Overexpression of the rhoC gene correlates with progression ofduodenal adenocarcinoma of the pancreas[J]. Br. J. Cancer, 1998, 77, 147–152.
    [100]van Golen, K.L., Davies, S., Wu, Z.F. et al. A novel putative low-affinity insulin-like growth factor-binding protein, LIBC (lost in inflammatory breast cancer), and RhoC GTPase correlate with the inflammatory breast cancer phenotype[J]. Clin. Cancer Res. 1999, 5, 2511–2519.
    [101]Ren, X.D., Kiosses, W. B., and Schwartz, M. A. Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton[J]. EMBO J. 1999, 18, 578–585.
    [102]Nishimura, J., Kolber, M., and van Breemen, C. Norepinephrine and GTP S increase myofilament Ca2+ sensitivity in -toxin permeabilized arterial smooth muscle[J]. Biochem. Biophys. Res. Commun. 1988, 157, 677–683.
    [103]Kitazawa, T., Kobayashi, S., Horiuti, K., Somlyo, A.V., and Somlyo, A.P. Receptor-coupled, permeabilized smooth muscle. Role of the phosphatidylinositol cascade, G-proteins, and modulation of the contractile response to Ca2+[J]. J. Biol. Chem. 1989, 264, 5229–5342.
    [104]Kokubu, N., Satoh, M., and Takayanagi, I. Involvement of botulinum C3- sensitive GTP-binding proteins in 1-adrenoceptor subtypes mediating Ca2+-sensitization[J]. Eur. J. Pharmacol. 1995, 290, 19–27.
    [105]Kimura, K., Ito, M., Amano, M.et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase)[J]. Science, 1996, 273, 245–248.
    [106]Kureishi, Y., Kobayashi, S., Amano, M., Kimura, K., Kanaide, H., Nakano,T., Kaibuchi, K., and Ito, M. Rho-associated kinase directly induces smooth muscle contraction through myosin light chain phosphorylation[J]. J. Biol. Chem. 1997, 272, 12257–12260.
    [107]Uehata, M., Ishizaki, T., Satoh, H. et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension[J]. Nature, 1997, 389, 990–994.
    [108]CLAIRE C. SHARPE AND BRUCE M. HENDRY. Signaling: Focus on Rho in Renal Disease[J]. J Am Soc Nephrol, 2003,14: 261–264.
    [109]Khosravi-Far R, Campbell S, Rossman KL, Der CJ. Increasing complexity of Ras signal transduction: Involvement of Rho family proteins[J]. Adv Cancer Res, 1998, 72: 57–107.
    [110]Bishop AL, Hall A. Rho GTPases and their effector proteins[J]. Biochem J , 2000, 348: 241–255.
    [111]Heusinger-Ribeiro J, Eberlein M, Wahab NA, Goppelt-Struebe M: Expression of connective tissue growth factor in human renal fibroblasts: Regulatory roles of RhoA andCamp[J]. J Am Soc Nephrol, 2001, 12: 1853–1851.
    [112]Fangfang Peng, Dongcheng Wu, Bo Gao, Alistair J. Ingram,1 Baifang Zhang, Katherine Chorneyko, Rick McKenzie, and Joan C. Krepinsky. RhoA/Rho-Kinase Contribute to the Pathogenesis of Diabetic Renal Disease[J]. DIABETES, 2008,57: 1683-1692.
    [113]Miao L, Dai Y, Zhang J: Mechanism of RhoA/Rho kinase activation in endothelin- 1- induced contraction in rabbit basilar artery[J]. Am J Physiol Heart Circ Physiol 283: H983–H989, 2002
    [114]Kobayashi N, Nakano S, Mita S, Kobayashi T, Honda T, Tsubokou Y, Matsuoka H. Involvement of Rho-kinase pathway for angiotensin II-induced plasminogen activator inhibitor-1 gene expression and cardiovascular remodeling in hypertensive rats[J]. J Pharmacol Exp Ther, 2002, 301: 459–466.
    [115]Han YP, Nien YD, Garner WL. Recombinant human plateletderived growth factor and transforming growth factor-beta mediated contraction of human dermal fibroblast populated lattices is inhibited by Rho/GTPase inhibitor but does not require phospha- tidylinositol-3' kinase[J]. Wound Repair Regen, 2002, 10: 169–176.
    [116]Marinissen MJ, Chiariello M, Gutkind JS. Regulation of gene expression by the small GTPase Rho through the ERK6 (p38 gamma) MAP kinase pathway[J]. Genes Dev, 2001, 15: 535–553.
    [117]Aznar S, Lacal JC. Rho signals to cell growth and apoptosis[J]. Cancer Lett, 2001, 165: 1–10.
    [118]Yuichi Kikuchi, Muneharu Yamada, Toshihiko Imakiire, Taketoshi Kushiyama, Keishi Higashi, Naomi Hyodo, Kojiro Yamamoto, Takashi Oda, Shigenobu Suzuki and Soichiro Miura. A Rho-kinase I nhibitor, fasudil, prevents development of diabetes and nephropathy in insulin-resistant diabetic rats[J]. Journal of Endocrinology, 2007,192:595-603.
    [119]Kanai F, Ito K, Todaka M, Hayashi H, Kamohara S, Ishii K, Okada T, Hazeki O, Ui M & Ebina Y. Insulin-stimulated GLUT4 translocation is relevant to the phosphorylation of IRS-1 and the activity of PI3-kinase[J]. Biochemical and Biophysical Research Commun- ications, 1993, 195 762–768.
    [120]Begum N, Sandu OA, Ito M, Lohmann SM & Smolenski A. Active Rho kinase (ROK-a) associates with insulin receptor substrate-1 and inhibits signaling in vascular smooth muscle cells[J]. Journal of Biological Chemistry 2002, 277: 6214–6222.
    [121]董鹏达,郭宪清.黄芪的临床应用进展[J].中国医药论坛,2006,4(4):39.
    [122]江尚飞.黄芪现代应用综述[J].综述报告,2007,16(18):62-63.
    [123]李唯佳,戴关海,缪卫群,等.黄芪丸对糖尿病模型鼠血糖、血脂和免疫器官的影响[J].浙江医学,1999,21(4):216-217.
    [124]李先荣.注射用黄芪多糖药理作用的研究[J].中成药,1989,(9):32~34.
    [125]祁忠华,林善镁,黄宇峰,等.黄芪改善糖尿病肾病早期血流动力学异常的研究[J].中国糖尿病杂志,1999,7(3):147-149.
    [126]李先荣.黄芪多糖冲剂治疗Ⅱ型糖尿病的临床研究[J].山西中医药,1995, 11(11): 16.
    [127]刘桂春.黄芪注射液治疗糖尿病肾病的临床观察[J].中国综合临床,2004,20 (7):601-602.
    [128]周钦,李荣享.黄芪对肾小球疾病物质代谢紊乱的调节作用[J].中草药, 1999,30(5):386-388.
    [129]徐郁杰,张庆怡,吴青伟.黄芪对糖尿病大鼠早期肾肥大与蛋白尿的影响[J].上海第二医科大学学报,1997,17(5):357-359.
    [130]张荣国,蔡琴芳.黄芪对糖尿病血浆蛋白尿蛋白影响的观察[J].实用中医药杂志,2000,16(3):7.
    [131]苏芳.黄芪注射液治疗糖尿病肾病的临床观察[J].宁夏医学杂志, 2006, 28(3), 220-221.
    [132]程惠馨,汪晓霞,阎爽,等.黄芪对糖尿病性肾病降蛋白尿作用临床观察[J].铁道医学,1998,26(4):228-229.
    [133]李青,张国娟,冯蓉,等.糖安康治疗糖尿病肾病临床研究-附96例病例报告[J].成都中医药大学学报,1999,22(1):23-25.
    [134]李宁,林莺.黄芪注射液治疗早期糖尿病肾病疗效观察[J].陕西医学杂志,2004,33 (12): 1136-1137.
    [135]郭茜,孔德明,李雪梅.中药黄芪改善胰岛素抵抗对脂代谢影响的相关性研究[C].全国中西医结合内分泌代谢病学术会议论文汇编, 2006 .
    [136]王奇玲,等.黄芪皂甙对离体工作心脏的肌力作用及其可能机制[J].中国中药杂志,1992,17(9):559.
    [137]郭琰,魏玉苗.黄芪在脑血管疾病中的应用研究进展[J].山西中医, 2007, 23(1): 72-74.
    [138]赵怡蕊,刘光珍,韩履祺,等.肾康注射液联用黄芪注射液治疗糖尿病肾病的疗效评价[J].中国药物与临床,2006,6(8):618.
    [139]陈少华,侯凤英,张连记.黄芪注射液治疗糖尿病肾病疗效观察[J].中成药,2000,22(3):207.
    [140]黄承才,黄芪的药理作用[J].中药新药与临床药理,1993,4(4):50-52.
    [141]姚嘉励.黄茂药理研究进展[J].海峡药学,2002,14(4):7-9.
    [142]韩燕,中药黄芪的研究概况[J].河南中医学院学报,2003,18(109):86-88.
    [143]刘春荣.黄芪临床应用近况[J].右江民族医学院学报,1995,17(3):361.
    [144]王志杰,黄铁牛,刘焱问,等.黄芪多种成分抗人疱疹病毒的初步实验研究[J].中国现代应用药学杂志,2002,19(5):356.
    [145]石瑞如,刘艳红,翁世艾,等.人参、黄芪、枸杞对老年大鼠一些内分泌激素的调节作用[J].中医药学报,1998,(3):56.
    [146]元文波,陈凌,王兰芳.黄芪对糖尿病鼠肾脏氧化糖基化影响的实验研究[J].泰山医学院学报,2001,22(3):190.
    [147]陈晓春,薛茜大鼠脑缺血再灌注损伤及黄芪对脑细胞保护作用的实验研究[J].陕西医学杂志,2004,33(11):974-976.
    [148]赵洪伍,等.党参黄芪注射液对冠状动脉作用的研究[J].《中国次院药学杂志》. 1989,9(6):162.
    [149]王硕仁,等.气血注射液对冠心病心绞痛患者血小板功能的影响[J].《中西医结合杂志》,1987,7(l):12.
    [150]马占好,张春艳,刘旭,等.黄芪多糖对小鼠体内六种细胞系瘤株抑瘤作用的实验研究[J].中医药学报,1996,(4):55.
    [151]云秦川.中药黄芪的药理研究进展[J].文献综述,2004,6:33-34.
    [152]洪庚辛.黄芪水提物的促智作用[J].中国中药杂志,1994,19(11):687.
    [153]王羿廉.黄芪病虫害及防治[J].内蒙古农业科技,1995,(6):30-31.
    [154]宫喜臣,何宝华.黄芪栽培技术[J].特种经济动植物,2002,(11):27-28.
    [155]A. C. Maritim, R. A. Sanders, and J. B. Watkins III. Diabetes, Oxidative Stress, and Antioxidants: A Review[J]. J BIOCHEM MOLECULAR TOXICOLOGY2003, 17( 1): 24-38.
    [156]Vincent AM, Brownlee M, Russell JW. Oxidative stress and programmed cell death in diabetic neuropathy[J]. Ann N Y Acad Sci, 2002, 959: 368–383.
    [157]Marian Valko, Dieter Leibfritz, Jan Moncol, Mark T.D. Cronin, Milan Mazur, Joshua Telser. Free radicals and antioxidants in normal physiological functions and humandisease[J]. The International Journal of Biochemistry & Cell Biology, 2007, 39: 44–84.
    [158]周俐,张曙辉,于珍,等.黄芪对糖尿病胰岛素抵抗及血清脂联素影响的临床研究[J].新中医, 2007, 39 (5): 82-83.
    [159]HChan JYH, HLam FCH, HLeung PCH, HChe CTH, HFung KPH. Antihyperglycemic andantioxidative effects of a herbal formulation of Radix Astragali, Radix Codonopsis and CortexLycii in a mouse model of type 2 diabetes mellitus[J]. HPhytother Res.H 2008 Dec 23. [Epubahead of print]
    [160]Xu A, Wang H, Hoo RL, Sweeney G, Vanhoutte PM, Wang Y, Wu D, Chu W, Qin G,Lam KS. HSelective Elevation of Adiponectin Production by the Natural Compounds Derivedfrom a Medicinal Herb Alleviates Insulin Resistance and Glucose Intolerance in ObeseMice[J].H Endocrinology. 2008 Oct 16. [Epub ahead of print]
    [161]童红莉,田亚平,汪德清,邓心新,董振南.黄芪多糖对高脂血症大鼠血脂的调节[J].中国临床康复,2006, (1):76-78.
    [162]Rosen P, Nawroth PP, King G, et al. The role of oxidative stress in the onset andprogression of diabetes and its complications: a summary of a Congress Series sponsored byUNESCOMCBN, the American Diabetes Association, and the German Diabetes Society [J].Diabetes Metab Res Rev, 2001, 17:189–212.
    [163]Evans JL, Goldfine ID, Maddux BA, et al. Are Oxidative Stress-Activated SignalingPathways Mediators of Insulin Resistance andβ-Cell Dysfunction? [J]. Diabetes, 2003,52(1):1-8.)
    [164]Xu DJ, Xia Q, Wang JJ, Wang PP. HMolecular weight and monosaccharidecomposition of Astragalus polysaccharides[J].H Molecules, 2008, 13(10):2408-15.
    [165]王娜,朱科,岳华,宋翠淼,王桂英,戴军,王锐,关鹏.黄芪总皂甙对心肌细胞氧化损伤的保护作用研究[J].河北中医药学报,2007,(2):10-11.
    [166]阮耀,岳兴如,李晓明,王珍珍,阮翘.黄芪对糖尿病大鼠心肌MDA及SOD, GSHPX,Na~+-k~+ATP酶活性的影响[J].时珍国医国药,2007,(3):89-90.[167许静,秦小红,薛梅.黄芪对D-半乳糖衰老大鼠脂质过氧化及红细胞免疫功能的影响[J].江苏医药,2007,(6):62-63.[168朱燕辉,严奉祥.黄芪甲苷及其生物学活性[J]. H现代生物医学进展H, 2008, (4):184,191-193.[169Shuang-Ying Gui,Wei Wei,Hua Wang,Li Wu,Wu-Yi Sun,Wen-bi Chen,Cheng-YiWu. Effects and mechanisms of crude astragalosides fractionon liver fibrosis in rats[J].Journalof Ethnopharmacology 103 (2006) 154–159.
    [170]Chan CM, Chan YW, Lau CH, Lau TW, Lau KM, Lam FC, Che CT, Leung PC, Fung KP, Lau CB, Ho YY. HInfluence of an anti-diabetic foot ulcer formula and its component herbs on tissue and systemic glucose homeostasis.H J Ethnopharmacol. 2007, 109(1):10-20.
    [171]杨宏杰,张丹,郑敏,范朝华.黄芪对糖尿病气虚症患者自由基影响的临床研究[J].四川中医,2006,34(4):59-61.
    [172]王清,任淑萍,董营.下肢血管病变与体内自由基[J].中国地方病防治杂志, 2008, 23(5):376-377.
    [173]Long J, Liu C, Sun L, Gao H, Liu J. HNeuronal Mitochondrial Toxicity of Malondialdehyde: Inhibitory Effects on Respiratory Function and Enzyme Activities in Rat Brain Mitochondria.H Neurochem Res, 2008, Nov 21. [Epub ahead of print].
    [174]Torun AN, Kulaksizoglu S, Kulaksizoglu M, Pamuk BO, Isbilen E, Tutuncu NB.HSerum total antioxidant status and lipid peroxidation marker malondialdehyde levels in overt and subclinical hypothyroidism[J].H Clin Endocrinol (Oxf). 2008 Aug 22. [Epub ahead of print]
    [175]Sheu ML, Ho FM, Yang RS, et al. High Glucose Induces Human Endothelial Cell Apoptosis Through a Phosphoinositide 3-Kinase–Regulated Cyclooxygenase-2 Pathway[J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25:539–545.
    [176]Sank A, Wei D, Reid J, et al. Human endothelial cells are defective in diabetic vascular disease, Journal of Surgical Research, 1994, 57 (6): 647–653.
    [177]匡洪宇,康英英,马丽丽,段鹏.黄芪总黄酮对高糖培养下牛视网膜血管周细胞凋亡的影响[J].中华中医药杂志2008, (3):75-77.
    [178]Ryu M, Kim EH, Chun M, Kang S, Shim B, Yu YB, Jeong G, Lee JS. HAstragali Radix elicits anti-inflammation via activation of MKP-1, concomitant with attenuation of p38 and Erk[J].H J Ethnopharmacol, 2008, 115(2):184-193. [179Chan JY, Leung PC, Che CT, Fung KP. HProtective effects of an herbal formulation of Radix Astragali, Radix Codonopsis and Cortex Lycii on streptozotocin-induced apoptosis in pancreatic beta-cells: an implication for its treatment of diabetes mellitus[J].H Phytother Res, 2008, 22(2):190-196. [180Shon YH, Nam KS. HProtective effect of Astragali radix extract on interleukin 1beta-induced in fl ammation in human amnion[J] .H Phytother Res, 2003 17(9):1016-1020.
    [181]Waczulikova I, Sikurova L, Carsky J. Fluidity gradient of erythrocyte membranes in diabetics: the effect of resorcylidene aminoguanidine [J]. Bioelectrochemistry, 2002, 55(1-2): 53-55.
    [182]Adak S, Chowdhury S, Bhattacharyya M. Dynamic and electrokinetic behavior of erythrocyte membrane in diabetes mellitus and diabetic cardiovascular disease [J]. Biochimica et Biophysica Acta (BBA) - General Subjects, 2008, 1780(2):108-115.)
    [183]HWiernsperger NFH. Membrane physiology as a basis for the cellular effects of metformin in insulin resistance and diabetes[J]. Diabetes Metab. 1999, 25(2):110-27.
    [184]Cazzola R, Rondanelli M, Russo-Volpe S, et al. Decreased membrane fluidity and altered susceptibility to peroxidation and lipid composition in overweight and obese female erythrocytes [J]. J Lipid Res, 2004, 45(10):1846-1851.)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700