用户名: 密码: 验证码:
不同耐铝型小麦品种耐铝差异机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酸性土壤中的铝毒害抑制植物生长,降低作物品质和产量。因此对植物耐铝胁迫机理的研究具有重要意义。本文以不同耐铝型小麦品种ET8(耐铝型)和ES8(铝敏感型)为试验材料,对两品种耐铝差异进行了比较研究。通过对铝胁迫下不同耐铝型小麦品种根尖细胞影响细胞壁结构的物质代谢的研究,阐明了不同耐铝型小麦品种根生长差异机理。通过对铝胁迫下不同耐铝型小麦品种活性氧代谢系统的研究,阐明了不同耐铝型小麦品种耐铝胁迫差异机理。通过对铝胁迫下不同耐铝型小麦品种根尖细胞质膜H+ -ATPase的研究,阐明了不同耐铝型小麦品种改变根际pH值能力差异机理。此外,通过对植物激素在铝胁迫下不同耐铝型小麦品种苹果酸分泌中作用的研究,揭示了铝激活苹果酸分泌机理。最后,通过对铝胁迫下不同耐铝型小麦品种根尖细胞有机酸代谢的研究,阐明了不同耐铝型小麦品种苹果酸分泌差异机理。结果概述如下:
     1.铝胁迫下不同耐铝型小麦品种根生长差异机理
     随着铝处理浓度的升高及处理时间的延长,ET8和ES8根相对伸长率及根尖细胞相对长度均显著降低,两者呈极显著正相关(R2=0.866**)。50μmol/L铝胁迫24h后,ET8和ES8根尖伸长区皮层细胞变扁平,细胞间隙变小,细胞壁褶皱,并呈齿轮状交合,ET8细胞核解体,高尔基体、线粒体依然完整,但是线粒体出现肿胀,且初生壁内出现多层次生壁,ES8细胞内含物消失,次生壁生长量更大,细胞壁明显变厚,ES8细胞受伤害程度较ET8显著。铝胁迫下ET8和ES8根尖细胞木质素、H202及胼胝质含量上升,纤维素含量下降,苯丙氨酸解氨酶(PAL)、肉桂醇脱氢酶(CAD)和过氧化物酶(POD)活性升高,胼胝质酶和纤维素酶活性降低,相同处理条件下ES8变化显著大于ET8。根相对伸长率与胼胝质、H202和纤维素含量间均具有极显著的相关性(R2=0.958**,R2=0.8806**,R2=0.9182**)。综上所述,铝胁迫下ES8根尖细胞结构受破坏程度较ET8显著,且由于ES8根尖细胞影响细胞壁结构的物质代谢酶活性的变化显著大于ET8,并造成这些物质变化也显著大于ET8,从而导致细胞壁结构更加不稳定,降低了细胞壁延展性,进而导致细胞伸长显著小于ET8,最终导致铝胁迫下两不同耐型小麦品种根生长差异。
     2.铝胁迫下不同耐铝型小麦品种活性氧代谢差异及与小麦耐铝差异关系
     随着铝处理浓度的升高,ET8和ES8根尖O2·-产生速率和H202含量随之显著升高,根尖活性氧代谢酶,如超氧化物歧化酶(SOD)、过氧化物酶(POD)、抗坏血酸过氧化物酶(APX)、过氧化氢酶(CAT)及谷胱甘肽还原酶(GR)等酶活性也均显著升高,ET8根尖活性氧累积量显著低于ES8,且抗氧化酶效率显著高于ES8。对O2·-和H2O2的组织化学定位研究表明,两者主要累积于根尖分生区及伸长区,而且ET8根尖活性氧累积量显著低于ES8。ET8和ES8根尖细胞丙二醛(MDA)含量显著升高,质膜透性随着MDA含量的升高而增加。对质膜完整性的组织化学染色表明,质膜受破坏的细胞在根尖的部位及受破坏程度与2·-和H202累积部位、累积量相吻合。综上所述,铝胁迫下不同耐铝型小麦品种活性氧清除酶系统效率显著差异是耐铝差异机理之一。
     3.铝胁迫下不同耐铝型小麦品种根尖细胞质膜H+-ATPase调节的根际pH值差异与耐铝差异关系
     ET8和ES8根际pH值随培养时间的延长及铝浓度的降低而显著升高,相同处理条件下ET8根际pH值显著高于ES8,根际pH值与根尖铝含量呈极显著负相关(R2=0.9321**)关系,与根相对伸长率呈极显著正相关(R2=0.9209**)关系。H+-ATPase专一性抑制剂DCCD(25μmol/L)处理显著抑制根际pH值的上升。根尖细胞质膜H+-ATPase活性随铝处理浓度的升高而显著降低,100μmol/L Al处理24h ET8和ES8根尖细胞质膜H+-ATPase活性分别为各自无铝处理的69.8%和60.0%,相同处理条件下,ET8根尖细胞质膜H+-ATPase相对活性显著高于ES8。细胞质膜H+-ATPase相对活性与根际pH值呈极显著正相关关系(R2=0.8319**)。综上所述,由于铝胁迫下耐铝型小麦品种ET8根尖细胞能够吸收根际H+的质膜H+-ATPase活性显著高于铝敏感型小麦品种ES8,因此其根际pH值也显著高于ES8,从而降低了根际活性铝含量,减少了铝在根尖细胞的累积,减轻了铝的毒害作用,铝胁迫下不同耐铝型小麦品种显著的质膜H+-ATPase活性差异导致的根际pH值差异也是不同耐铝型小麦品种耐铝差异机理之一。
     4.植物激素对铝胁迫下不同耐铝型小麦品种苹果酸分泌的影响
     1)与对照处理相比,无铝条件下,不同浓度的ABA、GA和IAA处理对小麦4d幼苗及20 d大苗的苹果酸分泌均无显著影响;与铝单独处理相比,铝存在条件下,ABA或GA处理对小麦根苹果酸的分泌也无显著影响,但IAA(50,100μmol/L)处理,ET8苹果酸分泌速率显著升高,ES8苹果酸分泌速率无显著变化,说明外源ABA和GA对铝胁迫下ET8和ES8苹果酸分泌无显著影响,但IAA可以增加ET8苹果酸的分泌;2)当ET8和ES8经铝预处理3h后,无铝条件下,再经不同浓度IAA处理,ET8苹果酸分泌速率随IAA浓度的升高而显著升高,ES8苹果酸分泌速率却无显著变化;ET8和ES8经0或50IAA处理3h后,无IAA条件下,再经铝处理,经IAA预处理过的ET8根苹果酸分泌速率显著高于无IAA预处理根的苹果酸分泌速率,但ES8根经IAA预处理与否,苹果酸分泌速率均无显著变化,进一步说明外源IAA可增加铝胁迫下ET8苹果酸的分泌;3)铝胁迫显著促进ET8和ES8根尖内源ABA及IAA含量的升高,但降低GA含量;IAA分解代谢酶,IAAoxidase相对活性则随铝处理浓度的升高而显著降低;相同处理条件下ET8根内源IAA含量显著高于ES8,IAA oxidase活性显著低于ES8,说明IAA oxidase活性差异与内源IAA含量差异有关;根苹果酸分泌速率同内源IAA含量间显著相关性(R2=0.8532**)表明IAA参与调节铝胁迫下小麦根苹果酸的分泌;4)分根处理条件下,ET8植株两侧根系(part A和part B)分别经0和50μmol/L铝处理后,0μmol/L铝处理一侧未检测到转运自铝处理一侧的铝,但该侧根苹果酸分泌速率及内源IAA含量均显著高于植株两侧均为0μmol/L铝处理(part A,0μmol/L和part B,0μmol/L)条件下的根苹果酸分泌速率及内源IAA含量,表明铝不必直接与根接触即可诱导苹果酸分泌速率和内源IAA含量同时升高,说明IAA参与苹果酸分泌;ET8植株两侧分别经part A (0μmol/L)和part B (50μmol/L Al+50μmol/L IAA)处理后,part A根系苹果酸分泌速率显著高于part A (0μmol/L)和part B (50μmol/L Al)处理中partA的苹果酸分泌速率,该结果更加说明IAA参与调节铝胁迫下小麦根苹果酸的分泌;5)同铝单独处理相比,IAA和铝共处理可显著减少铝在ET8根尖的累积,但对ES8无显著影响;6)IAA极性运输抑制剂NPA或TIBA可以显著抑制铝胁迫下ET8和ES8根苹果酸的分泌,有力说明IAA参与调节铝胁迫下小麦根苹果酸的分泌;7)外源IAA处理可以显著抑制阴离子通道抑制剂对铝胁迫下ET8和ES8根苹果酸分泌的抑制作用,表明IAA可能通过调节阴离子通道参与铝胁迫下小麦根苹果酸的分泌;8)IAA和铝共处理,ET8根尖细胞ALMT1表达量显著升高。综上所述,虽然外源ABA和GA对小麦根苹果酸的分泌无显著影响,但IAA在Al存在条件下,能够通过调节阴离子通道参与铝胁迫下小麦分泌苹果酸,IAA对不同耐铝型小麦品种苹果酸分泌调节作用的差异也是不同耐铝型小麦品种苹果酸分泌差异机理之一。
     5.铝胁迫下不同耐铝型小麦品种有机酸代谢与苹果酸分泌差异的关系
     不同浓度铝处理下ET8和ES8根尖细胞内源苹果酸含量均无显著变化,相同处理条件下ET8和ES8间内源苹果酸含量亦无显著差异,分别为0.48,0.46,0.57,0.52nmol root apex-1和0.45,0.51,0.51,0.54 nmol root apex-1;同无铝处理相比,50或100μmol/L铝处理显著促进ET8和ES8根尖细胞磷酸烯醇式丙酮酸酶(PEPC)活性升高,但各铝浓度处理对柠檬酸合成酶(CS)和苹果酸脱氢酶(MDH)活性均无显著影响;相同处理条件下ET8和ES8根尖细胞PEPC, CS和MDH三种酶活性均无显著差异。综上所述,铝胁迫下根尖细胞内源苹果酸含量及有机酸代谢关键酶活性对不同耐铝型小麦品种苹果酸分泌差异无显著影响。
Aluminum (A1) is believed to be one of the major factors limiting the growth of roots and the overall development of plants in acid soils. So the researches on A1 resistant mechanism are of great importance. The Al resistance mechanism differences of two wheat(Triticum aestivum L.) cultivars ET8 and ES8 that differing in A1 tolerances were studied in this research. Root growth differences of wheat differing in A1 tolerance were reveled by studies of cell wall chemical components metabolism system. A1 resistant mechanisms of wheat differing in Al tolerance were reveled by studies of reactive oxygen species. Rhizosphere pH changing capacities of wheat differing in Al tolerance were reveled by studies of plasma membrane H+-ATPase. Mechanisms of Al-induced efflux of malic acid were revealed by studies of effects of phytohormone on Al-induced malic acid efflux. Malic acid efflux differences of wheat differing in A1 tolerance were revealed by studies of organic acid metabolism system in root apex cell. The main results obtained were summarized as follows:
     1. Mechanisms of root growth differences of wheat differing in Al tolerance
     Relative root elongation (RRE) and relative root cell length (RCL) of ET8 and ES8 decreased with the increasing Al concentrations and time prolonging. A good correlation was obtained between RRE and RCL (R2=0.866**). After 50μmol/L A1 treatment for 24 h, longitudinal sections of ET8 and ES8 both reveal that the cells in the elongation zone became flat, the cell wall folded and ragged, intercellular space was decreased and occluded like gears; in ET8 the nucleolus was degradated, the srtucture of golgi and mitochondria kept integrety, but mitochondria swelled, multilayer secondry cell wall occured within primary cell wall; in ES8 cell contents disappeared, large amount of secondary cell wall occurred. Damages to cell structure of ES8 were more serious than that of ET8. Activities of phenylalanine ammonia-lyase (PAL), cinnamyl alcohol dehydrogenase (CAD) and peroxidase (POD) increased; activities of callase, cellulase decrease; contents of lignin, H2O2 and callose increased; contents of cellulose decreased. Changes of enzyme activities and cell wall chemical components were significant of both lines, but more prominent in the ES8 line. There were a good correlation among RRE and contents of callose, H2O2 and cellulose (R2=0.958**, R2=0.8806**, R2=0.9182**). Analysis indicated that damages to cell structure of ES8 was more serious than that of ET8, and the A1 induced changes of root apex cell wall chemical components regulated by the key enzyme in cell wall chemical components metabolism were significant of ES8 than that of ET8, which caused rigidity of cell wall and followed by significant inhibition of cell elongation.
     2. Active oxygen metabolism differences of wheat differing in Al tolerance and the relation to Al tolerance differences
     With the increasing of Al concentrations, contents of O2·- and H2O2, and activates of antioxidant enzymes in root apexes e.g., supper oxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), catalase (CAT) and glutathione reductase (GR) all increased significantly in both ET8 and ES8. The accumulation of ROS in ET8 was less than that of ES8, and ET8 showed a higher efficiency of active oxygen metabolism systems than that of ES8. Contents of malondialdehyde (MDA) in ET8 and ES8 were increased. Membrane permeability increased with the increasing contents of MDA. Histochemical localization experiments showed that plasma membrane (PM) integrity decreased, consistent with the increasing MDA contents. Location of cells whose PM were destroyed, and the destruction degree of those cells were consistent with the accumulation location and extent of O2·- and H2O2. In conclusion, active oxygen metabolism systems efficiency difference of ET8 and ES8 was one of the mechanisms of Al tolerance difference.
     3. Relation ship between rhizosphere pH differences regulated by PM H+-ATPase and Al tolerant difference of wheat differing in Al tolerance
     Rhizosphere pH of ET8 and ES8 increased with treatment time prolonging, but decreased with increasing Al concentrations. It was much higher of ET8 than that of ES8 under same treatment. Significant correlations were obtained among rhizosphere pH and relative root elongation (R2=0.9209**), or Al content in root apexes (R2=0.9321**). The elevation of rhizosphere pH was inhibited by H+-ATPase specific inhibitor DCCD (dicylcohexylcarbodiimide,25μmol/L). PM (plasma membrane) H+-ATPase activities decreased with increasing Al concentrations. It was 69.8% and 60.0% of ET8 and ES8 respectively, under the treatment of 100μmol/L Al for 24 h. Relative PM H+-ATPase activity of ET8 was significantly higher than that of ES8 under the same treatment. Significant correlation between relative PM H+-ATPase activity and rhizosphere pH (R2=0.8319**) were obtained. Taken together, PM H+-ATPase activities of ET8 were significantly higher than that of ES8, which induced higher rhizosphere pH of ET8 under Al stress. Less Al was accumulated in ET8 than that in ES8, and the Al toxic effects to ET8 was lighter than that of ES8. The Al-tolerant line showed a stronger capacity of up-regulating rhizosphere pH by PM H+-ATPase than the Al-sensitive line, which may explain the observed differences in Al tolerance between the two wheat cultivars.
     4. Effect of phytohormone on Al-induced malic acid efflux from wheat differing in Al tolerance
     1) ABA, GA or IAA treatments alone did not affect the efflux of mailc acid from 4 or 20 days old wheat of ET8 and ES8; the efflux of malic acid also could not be induced by the co-treatments of ABA or GA and Al, but could be induced by IAA (50,100μmol/L) in ET8, not in ES8 (25,50μmol/L); results above indicated that exogenous ABA or GA treatment did not affect the efflux of malic acid, but exogenous IAA could enhance the efflux of malic acid from ET8 under Al stress; 2) after a pretreatment with Al for 3 h, different concentrations IAA was applied at the Al free condition for 24 h, the efflux of malic acid increased significantly with the increasing concentrations of IAA in the ET8 but not ES8; after a pretreatment with 0 or 50μmol/L IAA for 3 h, the efflux of malic acid of the roots that were pretreated with IAA under Al stress was significantly higher than that without IAA pretreatment in ET8, the pretreatment of IAA did not affect the efflux of malic acid in ES8; results above further confirm that exogenous IAA could enhance the efflux of malic acid from ET8 under A1 stress; 3) Al stress induced the accumulation of ABA and IAA in root apex of ET8 and ES8, but decreased the content of GA; activities of IAA oxidase decreased with increasing A1 concentrations; endogenous IAA contents of ET8 were significantly higher than that of ES8 under the same treatment, which indicated that endogenous IAA content differences related to IAA oxidase activities differences; the highly positive correlation between malic acid efflux rate and endogenous IAA content indicated that IAA was involved in the regulation of A1 induced efflux of malic acid; 4) in split-root Al stress experiments (part A,0μmol/L and part B,50μmol/L Al), Al could not be transported from Al treatment portion (part B) to the control treatment portion (part A) of ET8 and ES8, but the malic acid efflux rate and endogenous IAA content in part A (CK) of ET8 were higher than that both side were treated without Al (part A,0μmol/L and part B,0μmol/L) in ET8 not ES8, which indicated that A1 could induce the efflux of malic acid without interact with root directly. The simultaneously increase of malic acid and endogenous IAA content indicated that IAA was involved in the Al induced efflux of malic acid; when part A and part B were treated with control and A1+IAA (part A, CK and part B, Al+IAA) respectively, the malic acid efflux rate in part A of ET8 was enhanced by the application of IAA in part B compared with the part A in the group that the other part was treated with Al (part A, CK and part B Al); results above proved that IAA was involved in regulating mailc acid efflux much more; 5) compared to Al treatment alone, root apex A1 content of ET8 decreased by the application of IAA, but not ES8; 6) compared to A1 treatments, the efflux rate of malic acid in ET8 and ES8 decreased under the co-treatments of IAA transport inhibitors NAP (or TIBA) and Al, which suggested that IAA was involved in the Al-induced malic acid efflux powerfully; 7) in addition, anion channel inhibitor treatment experiment showed that IAA (50μM) relieved the inhibiting effect of 5μM A9C (or NIF) on malic acid efflux induced by Al (50μM), compared to the co-treatment of A1 (50μM) and 5μM A9C (or NIF) it was thus speculated that the anion channel might have been activated when IAA was involved in malic acid efflux; 8) the expression of ALMT1 was induced significantly under the co-treatments of IAA and Al. In conclusion, although ABA and GA did not affect the efflux of malic acid of ET8 and ES8 under Al stress, IAA could be involved in regulating Al-induced malic acid efflux of wheat ET8 and ES8 via anion channel. The different regulating effects of IAA on the efflux of malic acid of wheat differing in Al tolerance may one of the mechanisms related to malic acid efflux differences.
     5. Relationship between malic acid secretion differences and organic acid metabolism of wheat differing in Al tolerance
     Endogenous malic acid contents of ET8 and ES8 were not affected by Al, and there were no differences between ET8 and ES8 when they received same treatment. Endogenous malic acid contents were 0.48,0.46,0.57,0.52 nmol root apex-1 and 0.45,0.51,0.51,0.54 nmol root apex-1, respectively of ET8 and ES8. Compared with Al free treatment, activities of phosphoenolpyruvate carboxylase (PEPC) were increased significantly under Al treatment, but not citrate synthase (CS) or malate dehydrogenase (MDH). The activities of PEPC (or CS and MDH) of ET8 and ES8 were close to each other under the same treatment. In conclusion, the malic acid secretion differences of different Al-tolerant wheat were independent on the endogenous malic acid content and the organic acid metabolism.
引文
1. 蔡妙珍,邢承华,刘鹏,徐根娣,吴韶辉,何璠.大豆根尖边缘细胞和粘液分泌对铝胁迫解除的响应.植物生态学报.2008,32(5):1007-1014
    2. 何虎翼,何龙飞,黎晓峰,顾明华.铝胁迫对黑麦幼苗活性氧系统的影响.麦类作物学报,2005,25(6):91-95
    3.何虎翼,何龙飞,黎晓峰,顾明华.铝胁迫下硝普钠对黑麦和小麦根尖细胞壁铝吸附的影响.广西农业科学,2007,26:235-239
    4. 何虎翼,何龙飞,黎晓峰,顾明华.硝普钠对铝胁迫下黑麦和小麦根尖线粒体功能的影响.植物生理与分子生物学报,2006,32:239-244
    5.何龙飞,黄咏梅,莫长明,李创珍卢升安.铝对花生根系膜脂过氧化和保护酶活性的影响.广西农业生物科学,2005,24(3):220-224
    6. 何龙飞,黄咏梅,詹洁,李创珍,卢升安,王爱勤,李志刚.铝对花生根尖线粒体膜脂过氧化和有机酸分泌的影响.中国油料作物学报,2006,28(3):293-297
    7.何龙飞,沈振国,刘友良,王爱勤.铝胁迫下钙对小麦根呼吸速率和一些线粒体结合酶活性的影响.广西农业生物科学,2001a,20(3):161-164
    8. 何龙飞,刘友良,沈振国,王爱勤.铝对小麦根细胞质膜ATP酶活性和膜脂组成的影响.中国农业科学,2001b,34(5):465-468
    9. 何龙飞,沈振国,刘友良.铝胁迫下钙对小麦根系细胞质膜ATP酶活性和膜脂组成的效应.中国农业科学,2003,36(10):1139-1142
    10.何龙飞,沈振国,刘友良.铝胁迫下钙对小麦根液泡膜功能和膜脂组成的影响.南京农业大学学报,2000,23(1):10-13
    11.贺永华,沈东升,朱荫湄.根系分泌物及其根际效应.科技通报,2006,22(6):761-766
    12.黄承玲,张道勇,潘响亮.向日葵根分泌物对针铁矿吸附Cd2+的抑制效应.地理科学,2009,29(3):455-460
    13.黄雪琳,李艳英,董登峰.低磷和铝毒胁迫对大豆活性氧代谢的影响.西南农业学报,2009,22(3):615-620
    14.黎晓峰,顾明华.小麦的铝毒及耐性.植物营养与肥料学报,2002,8(3):325-329
    15.李和平,姚家玲.植物显微技术试验指导(硕士生用教材).华中农业大学植物显微技术课程组,2007,pp 10-25
    16.李其星,唐新莲,沈方科,黎晓峰,顾明华.铝胁迫下外源Ca2+对黑麦幼根膜脂过氧化及保护酶活性的影响.广西农业科学,2006,37(3):249-252
    17.林必博,程李香,王蒂,李文建,王玉萍.外源激素对马铃薯试管苗耐盐性的影响.广东农业科学,2010,1:21-23
    18.林海涛,史衍玺.铅、镉胁迫对茶树根系分泌有机酸的影响.山东农业科学,2005, 2:32-34
    19.林咸永,唐剑锋,李刚,章永松.铝胁迫下小麦根细胞壁多糖组分含量的变化与其耐铝性的关系.浙江大学学报(农业与生命科学版),2005,31(6):724-730
    20.林咸永,章永松,罗安程,陶勤南.铝肋迫下不同小麦基因型根际pH的变化,NH4+和N03-吸收及还原与其耐铝性的关系.植物营养与肥料学报,2002,8(3):330-334
    21.刘家友,喻敏,刘丽屏,萧洪东.铝胁迫下豌豆根边缘细胞和根细胞壁多糖组分含量的变化.中国农业科学,2009,42(6):1963-1971
    22.刘鹏,徐根娣,姜雪梅,应小芳.铝对大豆幼苗膜脂过氧化和体内保护系统的影响.农业环境科学学报,2004,23(1):51-54
    23.陆文龙,曹一平,张福锁.根分泌的有机酸对土壤磷和微量元素的活化作用.应用生态学报,1999,10(3):379-382
    24.罗广华,杨爱国.植物体内氧自由基的测定.汤章城主编,现代植物生理学实验指南.北京:科学出版社.2003,pp 308-309
    25.莫丙波,沈春鹏,于智卫,沈宏.铝对大豆根系柠檬酸合成与分泌的影响.生态环境学报,2009,18(3):1037-1041
    26.孙守琴,何明,曹同,程颂,宋洪涛Pb、Ni胁迫对大羽藓抗氧化酶系统的影响.应用生态学报,2009,20(4):937-942
    27.唐剑锋,林咸永,章永松,李刚,郑绍建.小麦根系对铝毒的反应及其与根细胞壁组分和细胞壁对铝的吸附-解吸性能的关系.生态学报,2005,25(8):1890-1897
    28.唐新莲,黎晓峰,凌桂芝,顾明华,于永雄.Ca2+信号参与铝诱导黑麦根系分泌有机酸的调控.中国农业科学,2008,41(8):2279-2285
    29.汪建飞,沈其荣.有机酸代谢在植物适应养分和铝毒胁迫中的作用.应用生态学报,2006,17(11):2210-2216
    30.王爱国,罗广华,邵从本.活性氧对大豆下胚轴线粒体结构与功能的损伤.植物生理学报,1990,16(1):13-18
    31.王保义,李朝苏,刘鹏,徐根娣,张文君,朱佳.荞麦叶内抗氧化系统对铝胁迫的响应.生态环境,2006,15(4):816-821
    32.王建波,李阳生,利容千.铝胁迫下小麦根尖分生细胞中Ca2+分布变化.生态学报,2001,21(8):1246-4250
    33.王松华,杨志敏,吕波,林国庆,李少琼,卢亚萍,徐朗莱.印度芥菜对Cu诱导的氧化胁迫响应.南京农业大学学报,2004,27(1):24-27
    34.魏爱丽,陈云昭.IAA对盐胁迫下大豆幼苗膜伤害及抗盐力的影响.西北植物学报,2000,20(3):410-414
    35.熊毅,李庆魁.中国土壤.北京,科学出版社,1987
    36.杨建峰,贺立源.缺磷诱导植物分泌低分子量有机酸的研究进展.安徽农业科学, 2006,34(20):5171-5175
    37.杨建立,俞雪辉,刘强,郑绍建.铝胁迫对小麦根尖细胞蛋白质及苹果酸分泌的影响.植物营养与肥料学报,2005,11(3):390-3931
    38.袁祖丽,吴中红.镉胁迫对烟草根抗氧化能力和激素含量的影响.生态学报2010,30(15):4109-4118
    39.苑学亮,杨春蕾,周建斌.水分胁迫下不同化学物质浸种对小麦发芽及幼苗生长的影响.干旱地区农业研究,2009,27(3):184-187
    40.张永先,杨培权,许涛,玉永雄,黎晓峰.硅对柱花草铝毒的解毒作用.基因组学与应用生物学,2009,28(1):57-61
    41.张志良.植物生理学实验指导(第三版).北京,高等教育出版社,2003,pp210-212
    42.赵福庚,何龙飞,罗庆云.植物逆境生理生态学.北京:化学工业出版社.2004,pp 154
    43.朱雪竹,黄耀,宗良纲,孔繁翔.活性铝对小麦根生长及酶活性的影响.应用生态学报,2005,16(6):1043-1046
    44. Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd N P. Integration of plant responses to environmentally activated phytohormonal signals. Science,2006,311:91-94
    45. Achary V M, Jena S, Panda K K., Panda B B. Aluminium induced oxidative stress and DNA damage in root cells of Allium cepa L. Ecotox Environ Safe,2008,70: 300-310
    46. Ahn S J, Sivaguru M, Chung G C, Rengel Z, Matsumoto H. Aluminium-induced growth inhibition is associated with impaired efflux and influx of H+ across the plasma membrane in root apices of squash(Cucurbita pepo). J Exp Bot,2002,53: 1959-1966
    47. Alva A K, Edwards D G, Asher C J, Blarney, F P C. Relationships between root length of soybean and calculated activities of aluminum monomers in nutrient solution. Soil Sci Soc Am J,1986,50:959-962
    48. Armstrong F, Leung J, Grabov A, Brearley J, Giraudat J, Blatt M R. Sensitivity to abscisic-acid of guard-cell K+ channels is suppressed by abil-l, a mutant arabidopsis gene encoding a putative protein phosphatase. Proc Natl Acad Sci USA,1995,92: 9520-9524
    49. Arroyo-Serralta G A, Ku-Gonzalez A, Hernandez-Sotomayor S M T, Aguilar J J Z. Exposure to toxic concentrations of aluminum activates a MAPK-like protein in cell suspension cultures of Coffea arabica. Plant Physiol Bioch,2005,43:27-35
    50. Barbara K, Michael R B. Protein phosphorylation activates the guard cell Ca2+ channel and is a prerequisite for gating by abscisic acid. Plant J,2002,32:185-194
    51. Barcelo J, Guevara P, Poschenrieder C. Silicon amelioration of aluminium toxicity in teosinte(Zea mays L. ssp. Mexicana). Plant Soil,1993,154:249-255
    52. Barcelo J, Poschenrieder C. Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance:A review. Env Exp Bot,2002,48:75-92
    53. Barone P, Rosellini D, LaFayette P, Bouton J, Veronesi F, Parrott W. Bacterial citrate synthase expression and soil aluminum tolerance in transgenic alfalfa. Plant Cell Rep, 2008,27:893-901
    54. Baylis A D, Gragopoulou C, Davidson K J, Birchall J D. Effect of silicon on the toxicity of aluminium to soybean. Commun Soil Sci Plant Anal,1994,25:537-546
    55. Bhuja P, McLachlan K, Stephens J, Taylor G. Accumulation of 1,3-beta-D-glucans, in response to aluminum and cytosolic calcium in Triticum aestivum. Plant Cell Physiol, 2004,45:543-549
    56. Birchall, J D. The role of silicon in biology. Chem Britain,1990,26:141-144
    57. Blarney F P C, Nishizawa N K, Yoshimura E. Timing, magnitude, and location of initial soluble aluminum injuries to mungbean roots. Soil Sci Plant Nutr,2004,50(1): 67-76
    58. Blamey F P C. A role for pectin in the control of cell expansion. Soil Sci Plant Nutri, 2003,49:775-783
    59. Blevins D G, Lukaszewski K M. Boron in plant structure and function. Annu Rev Plant Physiol Plant Mol Biol,1998,49:481-500
    60. Boscolo P R S, Menossi M, Jorge R A. Aluminum-induced oxidative stress in maize. Phytochemistry,2003,62:181-189
    61. Bose J, Babourina O, Shabala S, Rengel Z. Aluminum-dependent dynamics of ion transport in Arabidopsis:specificity of low pH and aluminum responses. Physiol Plant,2010a,139:401-412
    62. Bose J, Babourina O, Shabala S, Rengel Z. Aluminium-induced ion transport in Arabidopsis:the relationship between Al tolerance and root ion flux. J Exp Bot, 2010b,61(11):3163-3175
    63. Bouazizi H, Jouili H, Geitmann A, Ferjani E E. Structural changes of cell wall and lignifying enzymes modulations in bean roots in response to copper stress. Biolo Trace Elem Res,2010,136(2):232-240
    64. Boudet A M. Lignins and lignification:selected issues. Plant Physiol Biochem,2000, 38:81-96
    65. Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976,72:248-254
    66. Brown P H, Bellaloui N, Wimmer M A, Bassil E S, Ruiz J, Hu H, Pfeffer H, Danne F, Romheld V, Pfeffer H, Dannel F, Romheld V. Boron in plant biology. Plant Biol,2002, 4:205-223
    67. Bruce R J, West C A. Elicitation of lignin biosynthesis and isoperoxidase activity by pectic fragments in suspension cultures of castor bean. Plant Physiol,1989,91: 889-897
    68. Cai C, Xu C, Li X, Freguson I, Chen K. Accumulation of lignin in relation to change in activities of lignification enzymes in loquat fruit flesh after harvest. Postharvest Biol Tec,2006,40:163-169
    69. Cervilla L M, Blasco B, Rios J J, Romero L, Ruiz J M. Oxidative stress and antioxidants in tomato (Solanum lycopersicum) plants subjected to boron toxicity. Ann Bot,2007,100:747-756
    70. Chaffai R, Seybou T N, Marzouk B, Ferjani E E. Changes induced by aluminum stress in the organic acid content of maize seedlings:The crucial role of exogenous citrate in enhancing seedling growth. Biologia,2009,64:1129-1135
    71. Chen W H, Xu C M, Zhao B, Wang X D, Wang Y C. Improved Al tolerance of saffron (Crocus sativus L.) by exogenous polyamines. Acta Physiol Plant,2008,30: 121-127
    72. Ciamporova M. Morphological and structural responses of plant roots to aluminium at organ, tissue, and cellular levels. Biol Plant Prague,2002,45:161-171
    73. Clarkson D T. The effect of aluminum and other trivalent mental cations on cell division in the root apices of Alliumcepa. Ann Rev Plant Physiol,1980,31:239-298
    74. Corrales I, Poschenrieder C, Barcelo J. Boron-induced amelioration of aluminium toxicity in a monocot and a dicot species. J Plant Physiol,2008,165:504-513
    75. Cumming J R, Weinstein L H. Nitrogen source effects Al toxicity in nonmycorrhizal and mycorrhizal pitch pine (Pinusrigida) seedlings. I. Growth and nutrition. Can J Bot,1990,68:2644-2652
    76. Debolt S, Gutierrez R, Ehrhardt D W, Melo C V, Ross L, Cutler S R, Somerville C, Bonetta D. Morlin, an inhibitor of cortical microtubule dynamics and cellulose synthase movement. Proc Natl Acad Sci USA,2007,104:5854-5859
    77. Degenhardt J, Larsen P B, Howell S H, Kochian L V. Aluminum resistance in the arabidopsis mutant alr-104 is caused by an aluminum-induced increase in rhizosphere pH. Plant Physiol,1998,117:19-27
    78. Delhaize E, Ryan P R, Hebb D M, Yamamoto Y, Sasaki T, Matsumoto H. Engineering high-level aluminum tolerance in barley with the ALMT1 gene. Proc Natl Acad Sci USA,2004,101(42):15249-15254
    79. Delhaize E, Ryan P R, Randall P J. Aluminum tolerance in wheat (Triticum aestivum L.) (I. uptake and distribution of aluminum in root apices). Plant Physiol,1993a,103: 685-693
    80. Delhaize E, Ryan P R, Randall P J. Aluminum tolerance in wheat (Triticum aestivum L.) (Ⅱ. aluminum-stimulated excretion of malic acid from root apices). Plant Physiol, 1993b,103:695-702
    81. Delhaize E, Ryan P R. Aluminum toxicity and tolerance in plants. Plant Physiol,1995, 107:315-321
    82. Delhaize E, Taylor P, Hocking P J, Simpson R J, Ryan P R, Richardson A E. Transgenic barley(Hordeum vulgare L.) expressing the wheat aluminium resistance gene (TaALMTl) shows enhanced phosphorus nutrition and grain production when grown on an acid soil. Plant Biotechnol J,2009,7(5):391-400
    83. Delmer D P. CELLULOSE BIOSYNTHESIS:Exciting times for a difficult field of study. Ann Rev Plant Physiol Plant Mol Biol,1999,50:245-276
    84. Deng W, Luo K M, Li Z G, Yang Y, Hu N, Wu Y. Overexpression of Citrus junos mitochondrial citrate synthase gene in Nicotiana benthamiana confers aluminum tolerance. Planta,2009,230:355-365
    85. Dhindsa R S, Plumb-Dhindsa P, Thorpe T A. Leaf senescence:correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot,1981,32:93-101
    86. Ding H, Tan M, Zhang C, Zhang Z, Zhang A, Kang Y. Hexavalent chromium (VI) stress induces mitogen-activated protein kinase activation mediated by distinct signal molecules in roots of Zea mays L. Environ Exp Bot,2009,67:328-334
    87. Donaldson L A. Lignification and lignin topochemistry-an ultrastructural view. Phytochemistry,2001,57:859-873
    88. Epstein E. Silicon. Annu Rev Plant Physiol Plant Mol Biol,1999,50:641-664
    89. Estelle M. Polar auxin transport:new support for an old model. Plant Cell,1998,10: 1775-1778
    90. Eticaha D, Satss A, Horst W J. Cell wall pectin and its degree of methylation in the maize root apex:significance for genotypic differences in aluminium resistance. Plant Cell Environ,2005,28:1410-1420
    91. Eticha D, The C, Welcker C, Narro L, Sta A, Horst W J. Aluminium-induced callose formation in root apices:inheritance and selection trait for adaptation of tropical maize to acid soils. Field Crop Res,2005,93:252-263
    92. Fan L, Linker R, Gepstein S, Tanimoto E, Yamamoto R, Neumann P M. Progressive inhibition by water deficit of cell wall extensibility and growth along the elongation zone of maize roots is related to increased lignin metabolism and progressive stelar accumulation of wall phenolics. Plant Physiol,2006,140:603-612
    93. Farmer V C, Russell J D, Berrow M L. Imogolite and protoimogolite allophane in spodic horizons:evidence for a mobile aluminium silicate complex in podzol formation. J Soil Sci,1980,31:673-684
    94. Fecht-Christoffers M M, Fuhrs H, Braun H P, Horst W J. The role of hydrogen peroxide-producing and hydrogen peroxide-consuming peroxidases in the leaf apoplast of cowpea in manganese tolerance. Plant Physiol,2006,140:1451-1463
    95. Filek M, Zembala M, Hartikainen H, Miszalski Z, Kornas A, Wietecka-Posluszny R, Walas P. Changes in wheat plastid membrane properties induced by cadmium and selenium in presence/absence of 2,4-dichlorophenoxyacetic acid. Plant Cell Tiss Org Cult,2009,96:19-28
    96. Forde B G. The role of long-distance signaling in plant responses to nitrate and other nutrients. J Exp Bot,2002,53(363):39-43
    97. Foy C D, Armiger W H, Briggle L W, Fleming A L. Differential aluminum tolerance of wheat and barley varieties in acid soils. Agrono J,1965,57:413-417
    98. Foy C D, Carter T E J, Duke J A, Devine T E. Correlation of shoot and root growth and its role in selecting for Al tolerance in soybean. J Plant Nutr,1993,16:305-325
    99. Foy C D, Fleming A L. Aluminum tolerance of two wheat genotyes relatd to nitrate reductase activities. Plant Nutr,1982,5(11):1313-1333.
    100.Foy C D. General principles involved in screening plants for aluminum and manganese tolerance. In proceedings of workshop on plant adaptation to mineral stress in problem soils. Wright M J (eds). Cornell University, New York,1976, pp 255-267
    101.Frantzios G, Galatis B, Apostolakos P. Aluminum effects on microtubule organization in dividing root apex cells of Triticum turgidum. Ⅱ. Cytokinetic cells. J Plant Res, 2001,114:157-170
    102.Fu X, Harberd N P. Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature,2003,421:740-743
    103.Fukuda H, Komamine A. Lignin synthesis and its related enzymes as markers of tracheary-element differentiation in single cells isolated from the mesophyll of Zinnia elegans. Planta,1982,155:423-430
    104.Galvez L, Clark R B, Gourley L M, Maranville J W. Silicon interactions with manganese and aluminum toxicity in sorghum. J Plant Nutr,1987,10:1139-1147
    105.Galvez L, Clark R B. Nitrate and ammonium uptake and solution pH changes for Al-tolerant and Al-sensitive sorghum genotypes grown with and without aluminum. Wright R J et al (eds). Plant-soil interactions at low pH. Kluwer Academic Publishere, 1991, pp 805-814
    106.Galvez L, Clark R B. Nitrate and ammonium uptake and solution pH changes for Al-tolerant and Al-sensitive sorghum (Sorghum bicolor) genotypes grown with and without aluminum. Plant Soil,1991,134:179-188
    107.Ghanati F, Morita A, Yokota H. Effects of aluminum on the growth of tea plant and activation of antioxidant system. Plant Soil,2005,276:133-141
    108.Giannopolitis C N, Ries S K. Superoxide dismutases:I. occurrence in higher plants. Plant Physiol,1977,59:309-314
    109.Gruber B D, Ryan P R, Richardson A E, Tyerman S D, Ramesh S, Hebb D M, Howitt S M, Delhaize E. HvALMTl from barley is involved in the transport of organic anions. J Exp Bot,2010,61(5):1455-1467
    110.Haling R E, Simpson R J, Delhaize E, Hocking P J, Richardson A E. Effect of lime on root growth, morphology and the rhizosheath of cereal seedlings growing in an acid soil. Plant Soil,2010,327:199-212
    111.Hammond K E, Evans D E, Hodson M J. Aluminium/silicon interactions in barley (Hordeum vulgare L.) seedlings. Plant Soil,1995,173:89-95
    112.Han Z H, Han C Q, Xu X F, Wang Q. Relationship between iron deficiency stress and endogenous hormones in iron-efficient versus inefficient apple genotypes. J Plant Nutri,2005,28(11):1887-1895
    113.Hasenstein K H, Evans M L. Effects of cations on hormone transport in primary roots of Zea mays. Plant Physiol,1988,86:890-894
    114.Hawes M C, Brigham L A, Wen F, Woo H H, Zhu Z. Function of root border cells in plant health:Pioneers in the rhizosphere. Ann Rev Phytopathol,1998,36:311-327
    115.Hayes J E, Ma J F. Al-induced efflux of organic acid anions is poorly associated with internal organic acid metabolism in triticale roots. J Exp Bot,2003,54(388): 1753-1759.
    116.Hedrich R, Schroeder J I. The physiology of ion channels and electrogenic pumps in higher plants. Annu Rev Plant Biol,1989,40:539-569
    117.Hiradate S, Taniguchi S, Sakurai K. Aluminum speciation in aluminum-silica solutions and potassium chloride extracts of acidic soils. Soil Sci Soc Am J,1998,62: 630-636
    118.Hirano Y, Pannatier E G, Zimmermann S, Brunner I. Induction of callose in roots of Norway spruce seedlings after short-term exposure to aluminum. Tree Physiol,2004, 24:1279-1283
    119.Hoekenga O A, Maron L G, Pineros M A, Cancado G M A, Shaff J, Kobayashi Y, Ryan P R, Dong B, Delhaize E, Sasaki T, Matsumoto H, Yamamoto Y, Koyama H, Kochian L V. AtALMTl, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc Natl Acad Sci USA,2006,103(25):9738-9743
    120.Horst W J, Puschel A K, Schmohl N. Induction of callose formation is a sensitive marker for genotypic aluminium sensitivity in maize. Plant Soil,1997,192:23-30
    121.Horst W J, Schmohl N, Kollmeier M, BaluLska F, Sivaguru M. Does aluminium affect root growth of maize through interaction with the cell wall-plasma membrane-cytoskeleton continuum? Plant Soil,1999,215(2):163-174
    122.Horst W J, Wagner A, Marschner H. Mucilage protects root meristems from aluminium injury. Z Pflanzenphysiology.1982,105:435-444
    123.Hossain A K M Z, Ohno T, Koyama H, Hara T. Effect of enhanced calcium supply on aluminum toxicity in relation to cell wall properties in the root apex of two wheat cultivars differing in aluminum resistance. Plant Soil,2005,276:193-204
    124.Hossain A K M Z, Koyama H, Hara T. Sugar composition and molecular mass distributions of hemicellulosic polysaccharides in wheat plants under aluminum stress at higher level of calcium supply. Asian J Plant Sci,2005,4(1):11-16
    125.Hossain M A, Hossain A, Kihara T, Koyama H, Hara T. Aluminum-induced lipid peroxidation and lignin deposition are associated with an increase in H2O2 generation in wheat seedlings. Soil Sci Plant Nutr,2005,51:223-230
    126.Hou N N, You J F, Pang J D, Xu M Y, Chen G, Yang Z M. The accumulation and transport of abscisic acid in soybean (Glycine max L.) under aluminum stress. Plant Soil,2010,330:127-137
    127.Imberty A, Goldberg R, Catesson A-M. Isolation and characterization of Populus isoperoxidases involved in the last step of lignin formation. Planta,1985,164: 221-226
    128.Iqbal M, Ashraf M. Seed treatment with auxins modulates growth and ion partitioning in salt-stressed wheat plants. J Integr Plant Biol,2007,49(7):1003-1015
    129.Ishii T, Matsunaga T, Pellerin P, O'Neill M A, Darvill A G, Albersheim P. The plant cell wall polysaccharide rhamnogalacturonan II self-assembles into a covalently cross-linked dimmer. J Biol Chem,1999,274:13098-13104
    130.Johansson F, Olbe M, Sommarin M, Larsson C. Brij 58, a polyoxyethylene acyl ether, creates membrane vesicles of uniform sideness:a new tool to obtain inside-out (cytoplasmic side-out) plasma membrane vesicles. Plant J,1995,7:165-173
    131.Jones A. Does the plant mitochondrion integrate cellular stress and regulate programmed cell death. Trends Plant Sci,2000,5:225-230
    132.Jones D L, Blancaflor E B, Kochian L V, Gilory S. Spatial coordination of aluminium uptake, production of reactive oxygen species, callose production and wall rigidification in maize roots. Plant Cell Environ,2006,29:1309-1318
    133.Jones D L, Shaff J S, Gilroy S. Aluminum induces a decrease in cytosolic calcium concentration in BY22 tobacco cell cultures. Plant Physiol,1998,116:81-89
    134.Jorge R A, Menossi M. Effect of anion channel antagonists and La3+ on citrate release, Al content and Al resistance in maize roots. J Inorg Biochem,2005,99:2039-2045
    135.Justino G C, Cambraia J, Oliva M A, Oliveira J A. Uptake and reduction of nitrate in two rice cultivars in the presence of aluminum. Pesqui Agropecu Bras,2006,41: 1285-1290
    136.Kasail M, Sasaski M, Tanakamaru S, Yamamoto Y, Matsumoto H. Possible involvement of abscisic acid in increases in activities of two vacuolar H+-Pumps in barley roots under aluminum stress. Plant Cell Physiol,1993,34:1335-1338
    137.Kidd P S, Llugany M, Poschenrieder C, Gunse'B, Barcelo'J. The role of root exudates in aluminum resistance and silicon-induced amelioration of aluminum toxicity in three varieties of maize (Zea mays L.). J Exp Bot,2001,52:1339-1352
    138.Kikui S, Sasaki T, Osawa H, Matsumoto H, Yamamoto Y. Malate enhances recovery from aluminum-caused inhibition of root elongation in wheat. Plant Soil,2007,290 (1-2):1-15
    139.Kinraide T B, Parker D R. Assessing the phytotoxicity of mononuclear hydroxyl aluminum. Plant Cell Environ,1989,12:479-487
    140.Kinraide T B, Parker D R. Cation amelioration of aluminum toxicity in wheat. Plant Physiol,1987,83:546-551
    141.Kisnieriene V, Sakalauskas V. The effect of aluminum on bioelectrical activity of the Nitellopsis obtusa cell membrane after H+-ATPase inhibition. Cent Eur J Biol,2007, 2(2):222-232
    142.Klimashevsky E L, Bernadskaya M L.The activity of ATPase acid phosphatase in the root growth zones of two pea varieties with different tolerance to toxic Al ions. Sov Plant Physiol,1973,20:257-263
    143.Kobayashi M, Matoh T, Azuma J. Two chains of rhamnogalacturonan Ⅱ are cross-linked by borate-diolester bonds in higher plant cell walls. Plant Physiol,1996, 110:1017-1020
    144.Kobayashi Y, Hoekenga O A, Itoh H, Nakashima M, Saito S, Shaff J E, Maron L G, Pineros M A, Kochian L V, Koyama H. Characterization of AtALMTl expression in aluminum-inducible malate release and its role for rhizotoxic stress tolerance in Arabidopsis. Plant Physiol,2007,45:843-852
    145.Kobayashi Y, Yamamoto Y, Matsumoto H. Studies on the mechanism of aluminum tolerance in pea (Pisum sativum L.) using aluminum-tolerant cultivar'Alaska'and aluminum-sensitive cultivar'Hyogo'. Soil Sci Plant Nutr,2004,50:197-204
    146.Kochian L V, Hoekenga O A, Pineros M A. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol,2005,55:459-493
    147.Kollmeier M, Dietrich P, Bauer C S, Horst W J, Hedrich R. Aluminum activates a citrate-permeable anion channel in the aluminum-sensitive zone of the maize root apex. A comparison between an aluminum-sensitive and an aluminum-resistant cultivar. Plant Physiol,2001,126:397-410
    148.Kollmeier M, Felle H H, Horst W J. Genotypical differences in aluminum resistance of maize are expressed in the distal part of the transition zone. Is reduced basipetal auxin flow involved in inhibition of root elongation by aluminum? Plant Physiol, 2000,122:945-956
    149.Kombrink E, Hahlbrock K. Responses of cultured parsley cells to elicitors from phytopathogenie fungi:timing and dose dependency of elicitor-induced reactions. Plant Physiol,1986,81:216-221
    150.Konarska A. Toxicity influence of aluminum on root microstructure of red pepper (Capsicum annuum L.). Elect J Polish Agric Univ,2008,11:4
    151.Koukol J, Conn E E. The metabolism of aromatic compounds in higher plants. IV. Purification and properties of the phenylalanine deaminase of Hordeum vulgare. J Biol Chem,1961,236:2692-2698
    152.Kovermann P, Meyer S, Hrtensteiner S, Picco C, Scholz-Starke J, Ravera S, Lee Y, Martinoia E. The Arabidopsis vacuolar malate channel is a member of the ALMT family. Plant J,2007,52:1169-1180
    153.Krzeslowska M, Lenartowska M, Samardakiewicz S, Bilski H, Wozny A. Lead deposited in the cell wall of Funaria hygrometrica protonemata is not stable-A remobilization can occur. Environ Pollut,2010,158:325-338
    154.Lee J S, Wang S, Sritubtim S, Chen J G, Ellis B E. Arabidopsis mitogen-activated protein kinase MPK12 interacts with the MAPK phosphatase IBR5 and regulates auxin signaling. Plant J,2009,57:975-985
    155.Lenoble M E, Blevins D G, Sharp R E, Cumbie B G. Prevention of aluminium toxicity with supplemental boron. I. Maintenance of root elongation and cellular structure. Plant Cell Environ,1996a,19:1132-1142
    156.Lenoble M E, Blevins D G, Miles J R. Prevention of aluminium toxicity with supplemental boron.2. Stimulation of root growth in an acidic, high-aluminium subsoil. Plant Cell Environ,1996b,19:1143-1148
    157.Li X F, Ma J F, Matsumoto H. Pattern of Aluminum-induced secretion of organic acids differs between rye and wheat. Plant Physiol,2000a,123:1537-1543
    158.Li X F, Ma J F, Hiradate S, Matsumoto H. Mucilage strongly binds aluminum but does not prevent roots from aluminum injury in Zea mays. Physiol Plant,2000b,108: 152-160
    159.Ligaba A, Katsuhara M, Ryan P R, Shibasaka M, Matsumoto H. The BnALMTl and BnALMT2 genes from rape encode aluminum-activated malate transporters that enhance the aluminum resistance of plant cells. Plant Physiol,2006,142:1294-1303
    160.Ligaba A, Kochian L, Pineros M. Phosphorylation at S384 regulates the activity of the TaALMTl malate transporter that underlies aluminum resistance in wheat. Plant J, 2009,60:411-423
    161.Liu Q, Yang J, He L, Li Y, Zheng S. Effect of aluminum on cell wall, plasma membrane, antioxidants and root elongation in triticale. Biol Plant,2008,52:87-92
    162.Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-AACT method. Methods,2001,25:402-408
    163.Llugany M, Poschenrieder C, Barcelo J. Monitoring of aluminium-induced inhibition of root elongation in four maize cultivars differing in tolerance to aluminium and proton toxicity. Physiol Plant,1995,93(2):265-271
    164.Lopez-Bucio J, Nieto-Jacobo M F, Ramirez-Rodriguez V, Herrera-Estrella L. Organic acid metabolism in plants:from adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Sci,2000,160:1-13
    165.Lu Y, Liu Y, Chen C. Stomatal closure, callose deposition, and increase of LsGRPl-corresponding transcript in probenazole-induced resistance against Botrytis elliptica in lily. Plant Sci,2007,172:913-919
    166.Ma B H, Wan J M, Shen Z G. H2O2 production and antioxidant responses in seeds and early seedlings of two different rice varieties exposed to aluminum. Plant Growth Regul,2007,52:91-100
    167.Ma J F, Furukawa J. Recent progress in the research of external Al detoxification in higher plants:a mini review. J Inor Biochem,2003,97:46-51
    168.Ma J F, Hiradate S, Nomoto K, Iwashita T, Matsumoto H. Internal detoxification mechanism of Al in hydrangea, (identification of Al form in the leaves). Plant Physiol, 1997a,113:1033-1039.
    169.Ma J F, Zheng S J, Matsumoto H, Hiradate S. Detoxifying aluminum with buckwheat. Nature,1997b,390:569-570
    170.Ma J F, Sasaki M, Matsumoto H. Al-induced inhibition of root elongation in corn, Zea mays L. is overcome by Si addition. Plant Soil,1997c,188:171-176
    171.Ma J F. Role of organic Acids in detoxification of aluminum in higher plants. Plant Cell Physiol,2000a,41:383-390
    172.Ma J F, Hiradate S. Form of aluminium for uptake and translocation in buckwheat (Fagopyrum esculentum Moench). Planta,2000b,211:355-360
    173.Ma J F, Ryan P R, Delhaize E. Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci,2001a,6:273-278
    174.Ma J F, Zhang W, Zhao Z. Regulatory mechanisms of Al induced secretion of organic acids anions-involvement of ABA in the Al-induced secretion of oxalate in buckwheat. Horst W J (eds). Plant nutrition-food security and sustainability of agro-ecosystems. Kluwer Academic, Netherlands,2001b, pp 486-481
    175.Ma J F, Shen R F, Nagao S, Tanimoto E. Aluminum targets elongating cells by reducing cell wall extensibility in wheat roots. Plant Cell Physiol,2004,45(5): 583-589
    176.Ma J F, Hiradate S, Matsumoto H. High aluminium resistance in buckwheat Ⅱ. oxalic acid detoxifies aluminium internally. Plant Physiol,1998,117:753-759
    177.Ma T J, Liu Q L, Liu Z, Zhang X J. Tonoplast H+-ATPase in response to salt stress in Populus euphratica cell suspensions. Plant Sci,2002,163:499-505
    178.Mao C Z, Yi K K, Yang L, Zheng B S, Wu Y R, Liu F, Wu P. Identification of aluminium-regulated genes by cDNA-AFLP in rice (Oryza sativa L.): Aluminium-regulated genes for the metabolism of cell wall components. J Exp Bot, 2004,55:137-143
    179.Marten I, Lohse G, Hedrich R. Plant growth hormones control voltage-dependent activity of anion channels in plasma membrane of guard cells. Nature,1991,353: 758-762
    180.Martinez-Estevez M, Loyola-Vargas V M, Hernandez-Sotomayor S M T. Aluminum increases phosphorylation of particular proteins in cellular suspension cultures of coffee (Coffea arabica). J Plant Physiol,2001,158:1375-1379
    181.Matsumoto H, Hirasava E, Morimura S, Takahashi E. Localization of aluminum in tea leaves. Plant Cell Physiol,1976,17:627-631
    182.Matsumoto H, Senoo Y, Kasai M, Maeshima M. Response of the plant root to aluminum stress:analysis of the inhibition of the root elongation and changes in membrane function. J Plant Res,1996,109:99-105
    183.Matsumoto H. Biochemical mechanism of the toxicity of aluminium and the sequestration of aluminum in plant cells. Wright R J et al. (eds). Plant-soil interactions at low pH. Kluwer Academic Publ, Dordrecht,1991, pp 825-838
    184.Matsumoto H. Cell biology of aluminum toxicity and tolerance in higher plants. Int Rev Cytol,2000,200:1-46
    185.Meriga B, Reddy B K, Rao K R, Reddy L A, Kishor P B K. Aluminium-induced production of oxygen radicals, lipid peroxidation and DNA damage in seedlings of rice (Oryza sativa). J Plant Physiol,2004,161:63-68
    186.Milivojevic D, Stojanovic D. Role of calcium in aluminum toxicity on content of pigmments and pigment-protein complexes of soybean. Inter J Dairy Tech,2003,26: 341-350
    187.Miyasaka S C, Hawes M C. Possible role of root border cells in detection and avoidance of aluminum toxicity. Plant Physiol,2001,125:1978-1987
    188.Mizoguchi T, Irie K, Hirayama T, Hayashida N, Yamaguchi-Shinozaki K, Matsumoto K, Shinozaki K. A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. Proc National Acad Sci USA,1996,93:765-769
    189.Mockaitis K, Howell S H. Auxin induces mitogenic activated protein kinase (MAPK) activation in roots of Arabidopsis seedlings. Plant J,2000,24:785-796
    190.Mohanty S, Das A B, Das P, Mohanty P. Effect of a low dose of aluminum on mitotic and meiotic activity,4C DNA content, and pollen sterility in rice, Oryza sativa L. cv. Lalat. Ecotox Environ Safe,2004,59:70-75
    191.Mohapatra S, Cherry S, Minocha R, Majumdar R, Thangavel P, Long S, Minocha S C. The response of high and low polyamine-producing cell lines to aluminum and calcium stress. Plant Physiol Biochem,2009,48:612-620
    192.Mor I R, Gokani S J, Chanda S V. Effect of mercury toxicity on hypocotyls elongation and cell wall loseing in Phaseolus seedlings. J Plant Nutri,2002,25(4): 843-860
    193.Mugai E N, Agong S G, Matsumoto H. Aluminium tolerance mechanisms in Phaseolus vulgaris L.:citrate synthase activity and TTC reduction are well correlated with citrate secretion. Soil Sci Plant Nutri,2000,46:939-950
    194.Omran R G. Peroxide levels and the activities of catalase, peroxidase, and indoleacetic acid oxidase during and after chilling cucumber seedlings. Plant Physiol, 1980,65:407-408
    195.Osawa H, Matsumoto H. Possible involvement of protein phosphorylation in aluminum-responsive malate efflux from wheat root apex. Plant Physiol,2001,126: 411-420
    196.Osawa H, Kojima K. Citrate-release-mediated aluminum resistance is coupled to the inducible expression of mitochondrial citrate synthase gene in Paraserianthes falcataria. Tree Physiol,2006,26:565-574
    197.Ouzounidou G, Ilias I. Hormone-induced protection of sunflower photosynthetic apparatus against copper toxicity. Biol Plant,2005,49(2):223-228
    198.Pagnussat G C, Lanteri M L, Lombardo M C, Lamattina L. Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development. Plant Physiol,2004,135(1):279-286
    199.Palmgren M G, Askerlund P, Fredrikson K, Widell S, Sommarin M, Larsson C. Sealed inside-out plasma membrane vesicles:optimal conditions for formation and separation. Plant Physiol,1990:92:871-880
    200.Pan J, Zheng K, Ye D, Yi H, Jiang Z, Jing C, Pan W, Zhu M. Aluminum-induced ultraweak luminescence changes and sister-chromatid exchanges in root tip cells of barley. Plant Sci,2004,167:1391-1399
    201.Panda S K, Yamamoto Y, Kondo H, Matsumoto H. Mitochondrial alterations related to programmed cell death in tobacco cells under aluminium stress. C R Biol,2008, 331:597-610
    202.Pandey S, Zhang W, Assmann S M. Roles of ion channels and transporters in guard cell signal transduction. Febs Lett,2007,581:2325-2336
    203.Pantoja O, Smith J A C. Sensitivity of the plant vacuolar malate channel to pH, Ca2+ and anion-channel blockers. J Membrane Biol,2002,186:31-42
    204.Paolacci A R, Tanzarella O A, Porceddu E, Ciaffi M. Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Mol Biol, 2009,10:11
    205.Passardi F, Cosio C, Penel C, Dunand C. Peroxidases have more functions than a Swiss army knife. Plant Cell Rep,2005,24:255-265
    206.Passardi F, Penel C, Dunand C. Performing the paradoxical:how plant peroxidases modify the cell wall. Trends Plant Sci,2004,9:534-540
    207.Pellet D M, Papernik L A, Kochian L V. Multiple aluminum-resistance mechanisms in wheat (roles of root apical phosphate and malate exudation). Plant Physiol,1996, 112:591-597
    208.Peltier A J, Hatfield R D, Grau C R. Soybean stem lignin concentration relates to resistance to sclerotinia sclerotiorum. Plant Dis,2009,93(2):149-154
    209.Pereira J F, Zhou G, Delhaize E, Richardson T, Zhou M, Ryan P R. Engineering greater aluminium resistance in wheat by over-expressing TaALMTl. Ann Bot,2010, 106(1):205-214
    210.Pineros M A, Cancado G M A, Kochian L V. Novel properties of the wheat aluminum tolerance organic acid transporter(TaALMTl) revealed by electrophysiological characterization in Xenopus Oocytes:functional and structural implications. Plant Physiol,2008,147:2131-2146
    211.Pintro J, Barloy J, Fallavier P. Uptake of Aluminium by the root tips of an Al-sensitive and Al-tolerant cultivar of Zea mays. Plant Physiol Biochem,1998,36: 463-467
    212.Puschenreiter M, Horak O, Friesl W, Haitl W. Low-cost agricultural measures to reduce heavy metal transfer into the food chain-a review. Plant soil Environ,2005, 51(1):1-11
    213.Rangel A F, Rao I M, Braun H, Horsta W J. Aluminum resistance in common bean (Phaseolus vulgaris) involves induction and maintenance of citrate exudation from root apices. Physiol Plant,2010,138:176-190
    214.Rao I M, Zeigler R S, Vera R, Sarkarung S. Selection and breeding for acid-soil tolerance in crops. Bioscience,1993,43:454-465
    215.Rao M V, Paliyath G, Ormrod D P. Ultraviolet-B- and zone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol,1996,110: 125-136
    216.Rao M V, Paliyath G, Ormrod D P, Murr D P, Watkins C B. Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzymes (salicylic acid-mediated oxidative damage requires H2O2). Plant Physiol,1997,115:137-149
    217.Rastogi S, Dwivedi U N. Manipulation of lignin in plants with special reference to O-methyltransferase. Plant Sci,2008,174:264-277
    218.Rengel Z D, Robinson D L. Determination of cation exchange capacity of ryegrass roots summing exchangeable cations. Plant Cell Physiol.1995,36:1493-1502
    219.Rengel Z, Zhang W H. Role of dynamics of intracellular calcium in aluminium-toxicity syndrome. New Phytol,2003,159:295-314
    220.Richter C, Schweizer M. Oxidative stress in mitochondria. Scandalios J G (eds). Oxidative stress and the molecular biology of antioxidant defenses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor,1997,34:pp 169-200
    221.Roy A K, Sharma A, Talukder G. A time-course study on effects of aluminium on mitotic cell division in Allium sativum. Mutat Res,1989,227:221-226
    222.Ruiz J M, Rivero R M, Romero L. Boron increases synthesis of glutathione in sunflower plants subjected to aluminum stress. Plant Soil,2006,279:25-30
    223.Ryan P R, Delhaize E, Randall P J. Characterization of Al-stimulated efflux of malate from the apical cells of wheat roots. Planta,1995a,196:103-110
    224.Ryan P R, Delhaize E, Randall P J. Malate efflux from root apices and tolerance to aluminum are highly correlated in wheat. Aust J Plant Physiol,1995b,22:531-536
    225.Ryan P R, Ditomaso J M, Kochian L V. Aluminum toxicity in roots:an investigation of spatial sensitivity and the role of the root cap. J Exp Bot,1993,44:437-446
    226.Ryan P R, Dong B, Watt M, Kataoka T, Delhaize E. Strategies to isolate transporters that facilitate organic anion efflux from plant roots. Plant Soil,2003,248:61-69
    227.Ryan P R, Reid R J, Smith F A. Direct evaluation of the Ca2+ -displacement hypothesis for Al toxicity. Plant Physiol,1997,113:1351-1357
    228.Ryder M, Gerard F, Evans D E, Hodson M J. The use of root growth and modeling data to investigate amelioration of aluminium toxicity by silicon in Picea abies seedlings. J Inorg Biochem,2003,97:52-58
    229.Saheed S A, Larsson K A E, Delp G, Botha C E J, Jonsson L M V, Bradley G. Wound callose synthesis in response to Russian wheat aphid and Bird cherry-oat aphid feeding on barley cv Clipper. S Afr J Bot,2007,73:310-451
    230.Sakurai N. Cell wall functions in growth and development-A physical and chemical point of view. J Plant Res,1991,104:235-251
    231.Sasaki M, Yamainoto Y, Matsumoto H. Lignin deposition induced by aluminum in wheat (Triticum aestivum) roots. Physiol Plant,1996,96:193-198
    232.Sasaki T, Ryan P R, Delhaize E, Hebb D M, Ogihara Y, Kawaura K, Noda K, Kojima T, Toyoda A, Matsumoto H, Yamamoto Y. Sequence upstream of the wheat(Triticum aestivum L.) ALMTl gene and its relationship to aluminum resistance. Plant Cell Physiol,2006,47(10):1343-1354
    233.Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn S J, Ryan P R, Delhaize E, Matsumoto H. A wheat gene encoding an aluminum-activated malate transporter. Plant J,2004,37(5):645-653
    234.Schmidt C, Schelle Ⅰ, Liao Y J, Schroeder J I. Strong regulation of slow anion channels and abscisic-acid signaling in guard-cells by phosphorylation and dephosphorylation events. Proc Natl Acad Sci USA,1995,92:9535-9539
    235.Schopfer P, Lapierre C, Nolte T. Light-controlled growth of the maize seedling mesocotyl:Mechanical cell-wall changes in the elongation zone and related changes in lignification. Physiol Plant,2001,111:83-92
    236.Schopfer P, Liszkay A, Bechtold M, Frahry G, Wagner A. Evidence that hydroxyl radicals mediate auxin-induced extension growth. Planta,2002,214:821-828
    237.Seo S, Sano H, Ohashi Y. Jasmonate-based wound signal transduction requires activation of WIPK, a tobacco mitogen-activated protein kinase. Plant Cell,1999,11: 289-298
    238.Shah K, Kumar R G, Verma S, Dubey R S. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci,2001,161:1135-1144
    239.Shen H, Ligaba A, Yamaguchi M, Osawa H, Shibata K, Yan X, Matsumoto H. Effect of K-252a and abscisic acid on the effux of citrate from soybean roots. J Exp Bot, 2004,55(397):663-67
    240.Shen R F, Ma J F, Kyo M, Iwashita T. Compartmentation of aluminium in leaves of an Al-accumulator, Fagopyrum esculentum Moench. Planta,2002,215:394-398
    241.Shen R F, Ma J F. Distribution and mobility of aluminium in an Al-accumulating plant, Fagopyrum esculentum Moench. J Exp Bot,2001,52 (361):1683-1687
    242.Silva I R, Smyth T J, Raper C D, Carter T E, Rufty T W. Differential aluminum tolerance in soybean:an evaluation of the role of organic acids. Physiol Plant,2001, 112:200-210
    243.Silva I, Smyth T, Moxley D, Carter T, Allen N, Rufty T. Aluminum accumulation at nuclei of cells in the root tip. Fluorescence detection using lumogallion and confocal laser scanning microscopy. Plant Physiol,2000,123:543-552
    244.Sivaguru M S, Horst W J. The distal part of the transition zone is the most aluminum-sensitive apical root zone of maize. Plant Physiol,1998,116:155-163
    245.Stab A, Horst W J. Effect of aluminium on membrane properties of soybean (Glycine max) cells in suspension culture. Plant Soil,1995,171:113-118
    246.Stass A, Kotur Z, Horst W J. Effect of boron on the expression of aluminium toxicity in Phaseolus vulgaris. Physiol Plant,2007,131:283-290
    247.Stass A, Wang Y, Eticha D, Horst W J. Aluminium rhizotoxicity in maize grown in solutions with Al3+ or Al(OH)4- as predominant solution Al species. J Exp Bot,2006, 57:4033-4042
    248.Tabuchi A, Matsumoto H. Changes in cell-wall properties of wheat(Triticum aestivum) roots during aluminum-induced growth inhibition. Physiol Plant,2001,112: 353-358
    249.Tahara K, Yamanoshita T, Norisada M. Aluminum distribution and reactive oxygen species accumulation in root tips of two Melaleuca trees differing in aluminum resistance. Plant Soil,2008,307:167-178
    250.Tamas L, Budikova S, Huttova J, Mistrik Ⅰ, Simonovicova M, Siroka B. Aluminum-induced cell death of barley-root border cells is correlated with peroxidase-and oxalate oxidase-mediated hydrogen peroxide production. Plant Cell Rep,2005,24:189-194
    251.Tamas L, Dudikova J, Durcekova K, Haluskova L, Huttova J, Mistrik Ⅰ. Effect of cadmium and temperature on the lipoxygenase activity in barley root tip. Protoplasma,2009,235:17-25
    252.Tamas L, Huttov J, Mistrik Ⅰ, Simonovicov M, Sirok B. Aluminium-induced drought and oxidative stress in barley roots. J Plant Physiol,2006,163:781-784
    253.Taylor G J. Current views of the aluminum stress response:the physiological basis of tolerance. Current Top Plant Bioch Physiol,1991,10:57-93
    254.Taylor G J, Foy C D. Mechanisms of aluminum tolerance in Triticum aestivum L. (wheat). Ⅱ. Differential pH induced by spring cultivars in nutrient solutions. Amer J Bot,1985,72(5):695-701
    255.Taylor, G K. Current views of the aluminum stress response the physiological basis of tolerance. Curr Top Plant Biochem Physiol,1991,10:57-93
    256.Teraoka T, Kaneko M, Mori S, Yoshimura E. Aluminum rapidly inhibits cellulose synthesis in roots of barley and wheat seedlings. J Plant Physiol,2002,159:17-23
    257.Thomine S, Lelievre F, Boufflet M, Guern J, BarbierBrygoo H. Anion-channel blockers interfere with auxin responses in dark-grown Arabidopsis hypocotyls. Plant Physiol,1997,115:533-542
    258.Thordal-Christensen H, Zhang Z, Wei Y, Collinge D B. Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley—powdery mildew interaction. Plant J,1997,11:1187-1194
    259.Uexkull H R, Mutert E. Global extent, development and economic impact of acid soils. Plant Soil,1995,171:1-15
    260.Van L H, Huraishi S, Sakurai N. Aluminum-induced rapid root inhibition and changes in cell-wall components of squash seedlings. Plant Physiol,1994,106(3):971-976
    261.Wang Y S, Wang J, Yang Z M, Wang Q Y, Lu B, Li S Q, Lu Y P, Wang S H, Sun X. Salicylic acid modulates aluminum-induced oxidative stress in roots of Cassia tora. Acta Bot Sinica,2004,46:819-828
    262.Wang Y S, Yang Z M. Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L. Plant Cell Physiol,2005,46:1915-1923
    263.Wang Y, Stass A, Horst W J. Apoplastic binding of aluminum is involved in silicon-induced amelioration of aluminum toxicity in maize. Plant Physiol,2004,136: 3762-3770
    264.Watanabe T, Okada K. Interactive effects of Al, Ca and other cations on root elongation of rice cultivars under low pH. Ann Bot,2005,95:379-385
    265.Watanabe, T, Osaki M, Yoshihara T, Tadano T. Distribution and chemical speciation of aluminum in the Al accumulator plant, Melastoma malabathricum L. Plant Soil,1998,201:165-173
    266.Weiss D, Ori N. Mechanisms of cross talk between gibberellin and other hormones. Am Soc Plant Biol,2007,144:1240-1246
    267.Wright R J. Soil aluminum toxicity and plant growth. Com Soil Sci Plant Anal,1989, 20(15):1479-1497
    268.Xu J, Wang W, Yin H, Liu X, Sun H, Mi Q. Exogenous nitric oxide improves antioxidative capacity and reduces auxin degradation in roots of Medicago truncatula seedlings under cadmium stress. Plant Soil,2010,326:321-330
    269.Xu M Y, You J F, Hou N N, Zhang H M, Chen G, Yang Z M. Mitochondrial enzymes and citrate transporter contribute to the aluminium-induced citrate secretion from soybean (Glycine max) roots. Funct Plant Biol,2010,37(5):478-478
    270.Xue Y J, Tao L, Yang Z M. Aluminum-induced cell wall peoxidase activity and lignin synthesis are differentially regulated by jasmonate and nitric oxide. J Agr Food Chem, 2008,56:9676-9684
    271.Yamamoto Y, Hachiya A, Matsumoto H. Oxidative damage to membranes by a combination of aluminum and iron in suspension-cultured tobacco cells. Plant Cell Physiol,1997,38:1333-1339
    272.Yamamoto Y, Kobayashi Y, Devi S R, Rikiishi S, Matsumoto H. Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. Plant Physiol,2002,128:63-72
    273.Yamamoto Y, Kobayashi Y, Matsumoto H. Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. Plant Physiol,2001,125:199-208
    274.Yan B, Dai Q, Liu X, Huang S, Wang Z. Flooding-induced membrane damage, lipid oxidation and activated oxygen generation in corn leaves. Plant Soil,1996,179: 261-268
    275.Yang Y H, Zhang H Y. Effect of citric acid on aluminum toxicity in the growth of mungbean seedlings. J Plant Nutri,1998.21(5):1037-1044
    276.Yang Y J, Cheng L M, Liu Z H. Rapid effect of cadmium on lignin biosynthesis in soybean roots. Plant Sci,2007,172:632-639
    277.Yang Y H, Gu H J, Fan W Y, Abdullahi B A. Effects of boron on aluminum toxicity on seedlings of two soybean cultivars. Water Air Soil Poll,2004,154(1-4):239-248
    278.Yang Y H, Chen S M, Abdullahi B. Alleviation effect of different ratios of Al to Ca on Al toxicity for morphological growth of mungbean seeding. J Plant Nutri,2001, 24(3):573-583
    279.Yang Z M, Nian H, Sivaguru M, Tanakamaru S, Matsumoto H. Characterization of aluminium-induced citrate secretion in aluminium-tolerant soybean (Glycine max) plants. Physiol Plant,2001,113:64-71
    280. Yang Z M, Wang J, Wang S H, Xu L L. Salicylic acid-induced aluminum tolerance by modulation of citrate efflux from roots of Cassia tor a L. Planta,2003,217:168-174
    281.Yang Z M, Yang H, Wang J, Wang Y S. Aluminum regulation of citrate metabolism for Al-induced citrate efflux in the roots of Cassia tora L. Plant Sci,2004,166: 1589-1594
    282.Yu M, Feng Y, Goldbach H E. Mist culture for mass harvesting of root border cells: aluminum effects. J Plant Nutri Soil Sci,2006,169(5):670-674
    283.Yu M, Shen R, Xiao H, Xu M, Wang H, Wang H, Zeng Q, Bian J. Boron alleviates aluminum toxicity in pea (Pisum sativum). Plant Soil,2009,314:87-98
    284.Zanardo D I L, Lima R B, Ferrarese M L L, Bubna G A, Ferrarese-Filho O. Soybean root growth inhibition and lignification induced by p-coumaric acid. Environ Exp Bot, 2009,66:25-30
    285.Zhang H, Li Y H, Hu L Y, Wang S H, Zhang F Q, Hu K D. Effects of exogenous nitric oxide donor on antioxidant metabolism in wheat leaves under aluminum stress. Russ J Plant Physiol,2008,55:469-474
    286.Zhang W H, Ryan P R, Sasaki T, Yamamoto Y, Sullivan W, Tyerman S D. Characterization of the TaALMTl protein as an Al3+ -activated anion channel in transformed tobacco (Nicotiana tabacum L.) cells. Plant Cell Physiol,2008,49(9): 1316-1330
    287.Zhang W H, Ryan P R, Tyerman S D. Malate-permeable channels and cation channels activated by aluminum in the apical cells of wheat roots. Plant Physiol, 2001,125:1459-1472
    288.Zhao H, Wang B C, Wang J B. Stress stimulus induced resistance to Cladosporium cucumerinumin cucumber seeding. Coll Surf B,2005,44:36-40
    289.Zhao Z, Ma J F, Sato K, Takeda K. Differential Al resistance and citrate secretion in barley (Hordeum vulgare L.). Planta,2003,217:794-800
    290.Zheng S J, Yang J L. Target sites of aluminum phytotoxicity. Biol Plant,2005,49: 321-331
    291.Zhu M Y, Ahn S, Matsumoto H. Inhibition of growth and development of root border cells in wheat by Al. Physiol Plant,2003,117:359-367
    292.Zhu Y, Di T, Xu G, Chen X, Zeng X, Yan F, Shen Q. Adaptation of plasma membrane H+-ATPase of rice roots to low pH as related to ammonium nutrition. Plant Cell Environ,2009,32:1428-1440

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700