用户名: 密码: 验证码:
甜菜亚硝酸还原酶(NiR)基因的克隆及其表达分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甜菜是我国北方特有的糖料作物,在我国北方农业生产中占有重要地位。其产量仅次于甘蔗,甜菜糖占世界食糖总量的30%左右。在世界产糖大国中,我国是少数既产甜菜糖又产甘蔗糖的国家之一,我国甜菜的种植面积最高年份达67万公顷,居世界第3位,总产量居世界第6位。然而,目前黑龙江省乃至全国甜菜单产不高、总产不稳,特别是含糖率呈下降趋势,已成为限制我国甜菜糖业发展的障碍性因子。究其原因,除品种选育滞后外,氮素供应不合理是主要原因之一。由于氮源和氮素代谢在作物产量中发挥着中心作用,确定氮素状态调控的基因网络,鉴定重要基因的功能,阐明该基因表达蛋白生化特性,将对农业发展有着广泛的影响。在甜菜所需的全部营养中,氮素是影响产量的最关键、最活跃因素,氮素过量会造成甜菜产糖量的降低。硝态氮(NO3-)是旱田作物可利用氮素的主要形式, NR是NO3-无机同化的限速酶,NiR是NO3-无机同化的控制酶。与NR相比较,有关NiR研究尚少。
     亚硝酸还原酶(NiR)是氮素同化途径的关键酶,由于NiR活力一般要比NR活力高得多,所以NiR作为硝酸盐还原的限制步骤的可能性就被排除了,致使国内外以往的初级氮素同化研究忽略了NiR的控制酶作用,造成氮的无机同化代谢研究偏重于NR的不平衡局面。本研究借助现代分子生物学手段,首次克隆甜菜亚硝酸还原酶编码基因的cDNA全长序列以及基因组gDNA全长序列;首次确定了甜菜亚硝酸还原酶基因编码蛋白的多肽序列和功能区域;首次推测出甜菜亚硝酸还原酶蛋白的3D构象;并通过实时荧光定量PCR的方法(RT-PCR),在转录水平上研究该基因在NO3--N和NH4+-N两种不同形态氮素条件下以及NO3--N和NH4+-N分别处理不同浓度下的表达变化,揭示氮素条件和甜菜NiR基因表达的关系;另外在氮素诱导的基础上,设置不同浓度蛋白抑制剂放线菌酮处理,以及NO2-处理和NaCl处理,研究甜菜NiR基因的表达;初步研究了环境因子对于亚硝酸还原酶基因表达的影响。具体的研究内容和结论如下:
     1.根据GenBank已知甜菜部分DNA序列(AF173663)和菠菜mRNA(X07568)全长序列,进行同源比对,在保守区设计巢式PCR引物,利用RACE方法扩增得到甜菜亚硝酸还原酶基因的5′和3′未知区域。
     2.依据得到的5′和3′序列设计引物,扩增得到中间片段P0。
     3.将5′端和3′端以及中间片段P0进行拼接,以拼接序列设计引物,成功地从甜菜叶片中首次分离了NiR的全长基因,登录号为HQ224499,长度为2014bp。该序列含有一个长度1830bp的开放读码框(ORF),编码599个氨基酸,经BLAST分析,核苷酸序列及其推导的氨基酸序列与其它植物NiR基因具有较高的同源性。
     4.运用PCR扩增技术首次克隆了甜菜NiR基因组序列,登录号为HQ419065,测序结果表明,基因组DNA长度为2815bp,含有4个外显子和3个内含子,内含子长度分别为531bp,135bp和269bp;4个外显子长度分别为437bp,355bp,289bp和799bp。
     5.采用TopPred在线工具分析了NiR的理化特性,并构建了NiR的系统发育树,结果表明,甜菜NiR为易溶、亲水性强的蛋白,理论等电点pI为7.21,相对分子量为66.88kDa,该蛋白C端存在一个跨膜区。甜菜NiR与菠菜(Spinacia oleracea)NiR的亲缘关系最近。二级结构预测结果显示,NiR包含29.05%的螺旋,21.04%的延伸链和49.92%的自由卷曲。卷曲结构和螺旋结构是甜菜NiR的二级结构的主体。另外,应用同源建模法进行NiR三维结构的预测,3D结构包括352个H-bonds;21个Helices;30处Strands;66个Turns。
     6.分析甜菜NiR基因编码蛋白的结构域,所推导的氨基酸序列具有完整NiR结构,含血红素蛋白β-化合物区域(hemoprotein beta-component, ferrodoxin-like, Domain:氨基酸133~203,氨基酸392~461),4Fe-4S区域(4Fe-4S region, Domain:氨基酸211~371,氨基酸517~580)。甜菜NiR没有信号肽,是非分泌型蛋白。甜菜NiR氨基酸序列的517~533区域的TGCpnsCgqvqvaDIGF为NiR的活性位点。
     7.实时荧光定量PCR结果显示,在以0、10、20、30、40、50、80和160 mmol L–1 NO3–-N处理72 h的试验中,50 mmol L–1处理可使甜菜NiR的表达量达到最大;以0、2、4、8、16、32、64和128 mmol L–1 NH4+-N处理48 h的试验表明,8和64 mmol L–1处理条件下甜菜NiR表达量相对较高。硝态氮和铵态氮不同配比处理48 h的试验中,NO3–-N和NH4+-N比例为80:20可使甜菜NiR的表达量达到最大;在氮素诱导的基础上,蛋白抑制剂放线菌酮处理9 h,随着处理浓度的增大,NiR的表达量逐渐下降;不同浓度NO2–处理的试验中,40 mmol L–1处理下NiR的表达量最大;不同浓度NaCl处理下NiR的基因表达无明显的规律。
Sugar beet (Beta vulgaris L.) was an endemic sugar crop and played an important role in agricultural production in north China.Its yield was secondary to sugarcane, and beet sugar was about 30% of the world’s sugar yield.China was one of the big country which produced beet sugar and cane sugar.Planted area of sugarbeet in China was reached 67 million ha,which ranked 3rd in the world,and.total output was resides the 6st..But yields of sugar beet were not high and the total output was instable, particularly sugar content showed a downward trend in Heilongjiang province and the national. All had become the obstacle factors to the development of sugar beet. Unreasonable application of nitrogen was one of the main reasons besides the breeding lag .As nitrogen source and nitrogen metabolism played an central role in crop yield,determined the gene network of nitrogen regulation, identified the function of important genes, clarified the biochemical characteristics of gene expression protein, all will have a wide range influence on agricultural development.Nitrogen was the key and active factor in the necessary nutrients, and excess nitrogen can cause the reduction of sugar production in the sugar beet.Nitrate (NO3-) was the the main form of available nitrogen in dry crops, NR was the rate-limiting enzyme of NO3- inorganic assimilation,and NiR was the control enzyme of NO3- inorganic assimilation. Compared with the NR, few studies on NiR.
     Nitrite reductase (NiR) was a key enzyme of nitrogen assimilation pathway.NiR activity generally much higher than NR activity,so NiR as a limiting step of nitrate reduction was ruled out.Resulting in primary nitrogen assimilation studies neglected to its role of control enzyme at home and abroad in the past, and caused an unbalanced situation that emphasis on the NR in inorganic nitrogen assimilation metabolism.Modern molecular biotechnology methods was used in this study.NiR cDNA complete cds and NiR gDNA full length sequence of sugarbeet was first cloned; The peptide sequence and the functional domain of sugar beet NiR was identified for the first time; The 3D conformation of sugar beet NiR was conjectured for the first time;The expression of NiR gene on the transcription level was studied by RT-PCR under different proportion of NO3-N and NH4+-N, different NO3--N , different NH4+-N, then revealed the relationship of nitrogen and NiR gene expression in sugar beet ; Also on the basis of the nitrogen-induced, different concentrations of cycloheximide treatment , NO2- treatment and NaCl treatment was seted, which in order to study the NiR gene expression.The environmental factors on nitrite reductase gene expression was preliminary studied.The specific study contents and conclusions are as follows:
     1.According to the partial DNA sequence of beet (AF173663)and the mRNA sequence of Spinach(X07568)on GenBank , primers was designed in the conserved region, nitrite reductase gene 5′and 3′unknown region was amplified by RACE technique..
     2.Primers was designed according to the nitrite reductase gene 5′and 3′sequence , intermediate part was amplified.
     3.Taked the splicing sequences of 5′, 3′and P0 as the target sequences to design primers, NiR gene was firstly cloned from sugar beet. The accession number was HQ224499. The full length of NiR was 2014bp.The sequence included an ORF with 1830bp, encoded 599 amino acids,The cDNA and amino acid sequences showed high identity with other plant NiR genes by BLAST analysis.
     4.Sugar beet NiR genomic DNA was isolated by PCR and its sequence contained 4 exons and 3 introns. The accession number was HQ419065. The full length of genomic DNA was 2815bp, and the lengths of introns were respectively 531bp, 135bp and 269bp; the lengths of exons were respectively 437bp,355bp,289bp and 799bp.
     5.Physical and chemical properties of NiR was predicted with different methods,and the NiR phylogenetic tree was constructed.The results of primary structure analysis showed that NiR was soluble and hydrophobic, with a pI (isoelectric point) of 7.21 and MW (molecular weight) of 66.88kDa. A transmembrane region was found in C-end . The homology of spinach NiR and sugar beet NiR was the highest.Secondary structure analysis indicated that NiR contained 29.05% alpha helix, 21.04% extended strand and 49.92% random coil. Helix and coil structures were the main body of secondary structure .3D structure was constructed by homology method and contained 352 H-bonds,21 Helices,30 Strands,66 Turns.
     6.Protein structure was analysed, the amino acid sequence had a complete structure .The predicted NiR protein found to have a hemoprotein beta-component (ferrodoxin-like), and 4Fe-4S region, NiR was non-secreted protein with no signal peptide. The region TGCpnsCgqvqvaDIGF was the active site of NiR.
     7.Real time PCR analysis showed that, 0, 10, 20, 30, 40, 50, 80, and 160 mmol L–1 NO3–-N processing 72 hours experiments, the expression of NiR was higher at 50 mmol L–1; 0, 2, 4, 8, 16, 32, 64, and 128 mmol L–1 NH4+-N processing 48 hours experiments, the expressions of NiR were higher at 8 mmol L–1and 64 mmol L–1, respectively; Furthermore, in different nitrogen forms and ratios treatment 48 hours experiments, The expression of NiR gene was higher when the ratio of NO3–-N and NH4+-N was 80:20; Cycloheximide treatment nine hours experiments showed that NiR expression decreased with increasing treatment concentration; NO2– treatments indicated that the maximum expressions of NiR was induced by 40 mmol L–1NO2–; The expression of NiR had no significant law under different concentration NaCl treatment.
引文
H.Marschner著.李春俭等译.2001.高等植物的矿质营养[M].北京:中国农业学.159~177
    M.布尔巴.1986.植物尤其甜菜对氮的同化.德意志联邦共和国艾·因贝克KWS股份公司植物育种研究所
    Toth T.1998.应用荧光PCR定量分析羊水细胞进行三体性13型产前诊断[J].Prent. Diagn [英].18: 669
    白祥和等.1998.光合作用与甜菜产质量研究综述[J].中国糖料.(1):58~61
    曹翠玲.2002.氮素及形态对作物的生理效应.西北农林科技大学博士学位论文
    柴小清,印莉萍,刘祥林,等.1996.不同浓度的NO3-和NH4+对小麦根谷氨酞胺合成酶及其相关酶的影响[J].植物学报.38(10):803~808.
    陈建魁.1997.定量PCR技术的研究进展[J].临床检验杂志.15(2)
    陈锦强等.1984.高等植物绿叶中的氮素代谢与光合作用的关系[J].植物生理学通讯.(1)1~3
    陈连江.2003.新世纪我国甜菜生产与科研所面临的任务与挑战.中国糖料.(4):46~50
    陈卫平等.1991.NO2-、Fe2+对稻苗亚硝酸还原酶和硝酸还原酶活性的影响[J].西南农业大学学报.13(2):207~209
    陈新华,龚松旺. 2003.黄瓜畸形的成因与防治措施[J].新疆农业科技
    陈志杰,杨世选,张淑莲,张锋.2006.黄瓜苦味形成原因及预防措施明[J].西北园艺.1
    陈志英.2008.甜菜氮素同化与蔗糖代谢机理研究及其人工调控.东北农业大学博士学位论文
    崔健.1997.甜菜叶片硝酸还原酶纯化及其活力与氮素营养关系的研究.东北农业大学硕士学位论文.
    戴建军.2003.甜菜当年抽苔差异表达基因的克隆及特性研究[D].东北农业大学博士学位论文:27~28
    戴廷波,曹卫星,孙传范,等.2003.增铵营养对小麦光合作用及硝酸还原酶和谷氨酞胺合成酶的影响[J].应用生态学报.14(9):1529~1532.
    邓胤,申鸿,罗文倩,郭涛.2009.不同氮素形态比例条件下接种AMF对玉米氮同化关键酶的影响[J].植物营养与肥料学报.15(6): 1380~1385
    丁广洲.2008.甜菜硝酸还原酶基因的克隆及其特性研究,东北农业大学博士学位论文.1~2
    冯伟,王永华,谢迎新,康国章,朱云集,郭天财.2008.作物氮素诊断技术的研究综述[J].中国农学通报.24(11),179~185
    高廷东. 2003.光和不同形态氮互作对小麦幼苗碳、氮同化的影响.山东农业大学硕士研究生论文
    高祖明等.1986.以NADH、NADPH、MV作为电子供体的亚硝酸还原酶的分离研究[J].南京农业大学学报.12(4):121~124
    韩燕来,徐芳森,段海燕等.2003.拟南芥养分离子运转蛋白研究进展.植物学通报.20(1):23~30
    何念相,孟赐福.1987.植物营养原理.上海:科技出版社.59~124
    何文寿,孟赐福. 1987.植物营养原理.上海:科技出版社.59~124
    何文寿.1994.集中作物对铵态氮和硝态氮的相对吸收能力.西北农业人学硕士学位研究生学位论文.
    侯宇.2009.荧光定量PCR技术研究进展及其应用[J].贵州农业科学.37(6):29~32
    胡延吉. 2003.植物育种学[M].北京:高等教育出版社. (1): 220~227.
    雷学忠,陈守春. 2002.定量PCR技术研究进展[J].四川医学.21(11): 991
    李彩凤,马凤鸣,赵越,李文华.2003.不同氮素形态对甜菜氮代谢关键酶活性及相关产物的影响.作物学报,29(1):128~132.
    李彩凤.2000.甜菜高同化氨途径及其与蔗糖代谢关系的初步研究.东北农业大学硕士学位论文.
    李影,何蕴韶.2005.用荧光定量PCR方法检测转染细胞中外源基因的拷贝数[J].中山医科大学学报.22(1):8~10.
    李育红.2005.水稻苗期氮素吸收利用效率的QTL定位与遗传分析.南京农业大学硕士学位论文.1~2
    林振武,郑朝峰.1986.硝酸还原酶活力与作物耐肥性的研究(Ⅱ).作物学报.12(1):9~14.
    林忠平. 2000.走向21世纪的植物分子生物学.北京:科学出版社.271~287
    刘忠.2004.菠菜品种间叶柄硝态氮累积差异的营养生理基础研究.西北农林科技大学硕士学位论文.
    陆景陵等. 2003.植物营养学(上册)「M].中国农业大学出版社
    陆景陵主编. 1994.植物营养学.北京:北京农业大学出版社.17~25.
    吕虹,康熙雄. 2004.基因扩增仪器的发展历史与展望[J].世界医疗器械.
    罗超权,杨英浩. 1996.人DNA指纹的研究及其应用[J].医学研究通讯.25(5): 18~19.
    马凤鸣,高继国,姜福臣.1996b.甜菜子叶期幼苗硝态氮吸收特性及其与硝酸还原酶活性的关系,作物学报.22(6):681~687.
    马凤鸣,高继国.1996a.硝酸还原酶活力作为甜菜氮素营养诊断及预测产糖量指标的研究.中国农业科学,29(5):16~22.
    马宗斌.007.不同形态氮素配施对专用小麦籽粒产量和品质形成的调控研究.湖南农业大学博士学位论文
    莫良玉等.2001.高等植物GS/GOGAT循环研究[J].植物营养与肥料学报.7(2):223~231
    倪洪涛,孙元,黄雅曦.2008.甜菜氮代谢的研究进展[J].中国甜菜糖业.4,35-38
    宁建凤.2005.氮对盐胁迫下库拉索芦荟生长及生理特性的影响.南京农业大学硕士学位论文
    潘耀谦,金春彬. 1999.聚合酶链反应(PCR)技术体系研究进展[J].动物医学进展.20(4): 11~17.
    普良尼施尼柯夫(前苏).1956.在植物生活和苏联农业中的氮素.北京:科学出版社.
    祁勇. 2006.黑龙江省甜菜产业发展研究.中国农业科学院硕士论文
    曲文章,崔杰,李滨胜.1992.施氮量与甜菜产量的形成[J].中国甜菜,(4):29~34
    任祖淦,邱孝煊,蔡元呈等. 1997.化学氮肥对累积硝酸盐的影响[J].植物营养与肥料学报. 3(1):81~84
    师进霖,姜跃丽,宋云华.2009.氮素形态对黄瓜幼苗生长及氮代谢酶活性影响[J].中国农学通报.25(22):225~227
    宋志军,宋长绪,杨增岐,等. 2006.猪生殖与呼吸综合征病毒Taq-Man荧光定量RT-PCR检测方法的建立[J].中国兽医科学.36 (2) :98~102
    孙菲菲,侯喜林,李英等.2006.不结球白菜硝酸还原酶基因的克隆及序列分析.南京农业大学学报.29(2):15~19
    孙菲菲,蒋芳玲,侯喜林,李英,杨学东.2009.白菜亚硝酸还原酶基因BcN iR的克隆及表达分析[J].园艺学报.36(10): 1511~1518
    孙凤舞. 1985.作物栽培学.哈尔滨:黑龙江朝鲜出版社.242
    孙瑞琴,门光耀.2007.环境因素对植物硝态氮代谢的影响[J].阴山学刊. 21(1),6~67
    孙曦.1986.水稻的氮素营养.见:我国土壤氮素研究工作的现状与展望.中国土壤氮素工作会议论文集.北京:科学出版社.1~3
    邰翔.2007.氮素对温室黄瓜叶面积影响的模拟研究.南京农业大学硕士学位论文.
    汤玉玮,林振武,陈敬祥.1985.硝酸还原酶活力与作物耐肥性的相关及其在生化育种上应用的探讨[J].中国农业科学.18(6): 39~45.
    汪建飞,刑素芝等.2005.设施黄瓜干物质累积与NPK吸收规律[J].土壤通报.36(5):708~711
    王朝晖,李生秀,田宵鸿. 1998不同氮肥用量对蔬菜硝态氮累积的影响[J].植物营养与肥料学报.4 (1 ): 22~28
    王光霞.2004.氮素形态对甜菜生长发育及营养代谢的影响.内蒙古农业大学硕士学位论文.
    王恒樑,谭天伟,苏国富译(G. Gary walsh著).2006.蛋白质生物化学与生物技术.北京:化学工业出版社.11~15
    王华静,吴良欢,陶勤南. 2005.氮形态对植物生长和品质的影响及其机理[J].科技通报. (21)50~55.
    王淑春.2007.甜菜谷氨酰胺合成酶基因的克隆[D].黑龙江大学硕士学位论文:1~12
    王甜,陈庆富.2007.荧光定量PCR技术研究进展及其在植物遗传育种中的应用[J].种子.26(2)56~61
    王小纯,熊淑萍,马新明,张娟娟,王志强.2005.不同形态氮素对专用型小麦花后氮代谢关键酶活性及籽粒蛋白质含量的影响.生态学报.25(4)802~807
    王玉琴.1988.内外生理条件下对小麦黄化幼苗叶片亚硝酸还原酶活力的影响[J].植物生理学通讯.(4):18~20
    王忠.2000.植物生理学[M].北京:中国农业出版社
    温明章,陈悦,谷锐升,罗晶,杜生明. 2008.植物学通报..25(6):633~637
    吴平,印莉萍,张立平等.2001.植物营养生理学.北京科学出版社.1-51
    吴平,印莉萍,张立平等.2001.植物营养分子生理学.北京:科学出版社:15~17
    邢学荣等.1995.有机酸对蔬菜硝酸还原酶亚硝酸还原酶活性的影响[J].植物学通报.12:156~162
    徐坤范,艾希珍,张晓慧,徐康乐. 2005.氮素水平对日光温室黄瓜品质的影响[J].西北农业学报.14(1):162~166
    许如意.2006.氮素营养对网纹甜瓜生长和品质的影响,华中农业大学硕士学位论文
    许振柱,周广胜.2004.植物氮代谢及其环境调节研究进展[J].应用生态学报.15(3):511~516
    闫桂萍,马凤鸣,李文华,等.1995.不同供氮水平甜菜氨同化酶活性动态的研究[J].东北农业大学学报.2(1):17~24.
    闫桂萍.1994.不同供氮水平甜菜GS、GOGAT、GDH活性动态的研究.东北农业大学硕士学位论文:12~14.
    阳成波,印遇龙,龚建华. 2003.实时定量PCR研究进展及其应用[J].中国预防兽医学报.25 (5):395
    杨亮.2006.氮素用量对春玉米谷氨酰胺合成酶活性及蛋白组分的影响.东北农业大学硕士学位论文.1~2
    杨肖娥,孙曦.1991.不同水稻品种NH4+-N和NO3--N吸收的动力学.土壤通报. 22(5):222 ~224
    杨旭,邹志荣,贺忠群等. 2003.蔬菜无土栽培营养液中的氮素及其调控[J].西北植物学报.白
    碧君. 1992.蔬菜硝酸盐积累和调控的研究[J].中国农业文摘一园艺.8 (6) :8~15
    印莉萍,黄勤妮,吴平.2006.植物营养分子生物学及信号转导.北京:科学出版社.3~4
    印莉萍等.2000.非固氮植物初级氮同化相关的基因及其基因表达调控.
    林忠平等编著:《走向21世纪的植物分子生物学》.北京.科学出版社.271~287
    于海彬,蔡葆,等.1995.甜菜氮营养对蔗糖积累转化及有关酶活性的调节.中国甜菜糖业, (6):6~11,45.
    于海彬,孙立英,蔡葆.1988.甜菜氮糖代谢特点的研究[J].中国甜菜,(4):11~17
    于海彬,周芹,刘娜,董贵敏.2001.不同氮磷营养水平对甜菜叶片光合速率的影响[J].中国糖料. 3,19~21
    于海彬..蔡葆.孙国琴.王秋. 1993.甜菜硝酸还原酶活性研究.中国甜菜.(3): 18~23
    张夫道. 1998.氮素营养研究中几个热点问题[J].植物营养与肥料学报.4(4):331~338.
    张福锁,樊小林,李晓林主编. 1995,土壤与植物营养研究新动态(第二卷)[M],北京:中国农业出版社, 42-75
    张鹤晓,赖平安,刘环,等. 2004,荧光RT-PCR检测活禽和禽组织中禽流感病毒的研究[J].检验检疫科学.14(1):125
    张一利.2007.不同氮素形态对黄瓜和水稻光合电子传递及叶黄素循环的影响.浙江大学硕士学位论文
    张振华.2007.油菜体内氮素再分配与氮素生理效率的关系研究.湖南农业大学硕士学位论文.
    赵越.2001.氮调控对甜菜(Betavulgaris.L)氮同化和蔗糖代谢关键酶的影响.湖南农业大学博士学位论文
    郑朝峰.1986.氮素形态对小麦叶片谷氨酸合成酶的影响[J].植物生理学通讯.(4):46~48
    郑朝峰.1986.植物的谷氨酸合成酶.植物生理学通讯.(3):5~12.
    周仁喜.1986.论甜菜氮代谢与糖代谢的关系[J].甜菜糖业. 4:12~14
    邹小鲁,宋鸿遇,等.1991.浑球红假单胞菌氨同化途径的研究[J].热带植物通讯.20(1):6~11.
    Adriana C, Hermenegildo T, Alberto M. et al. 2000. Role of GOGAT in carbon and nitrogen partitioning in Rhizobiumetle. Microbiology. 146: 1627~1637
    Alloush GA, Bot J-Le, Sanders-FE,et al. 1990.Mineral Nutrition of Chickpea Plants Supplied with NO3 or NH4-NⅠ. Ionic Balance in Relation to Iron Stress.Journal of Plant Nutrition, 13(12):1575~1590.
    AndreaM, Christiane B, Diger H R. 2000, Negative Regulation of Nitrate Reductase Gene Expression by Glutamine or as Paragine Accumulating in Leaves of Sulfur2 Deprived Tobacco. Planta, 211: 587~595
    Arnold K, Bordoli L, Kopp J, Schwede T. 2006.The SWISS-MODEL Workspace: a web-based environment for protein structure homology modelling. Bioinformatics.22: 195~201 Aslam M,Travis R L and Rains D W. 1996. Evidence for Substrate Induction of a Nitrate Efflux System in Barley Roots.Plant Physiol.112:1167~1175
    Aslam M,Travis RL,Uffaker RC.1993.Comparative Induction of Nitrate and Nitrite Uptake and Reduction Systems by Ambient Nitrate and Nitrite in Intact Roots of Barley (Hordeum vulgare L.)Seedlings.Plant Physiology 102.811~819
    Back E, Dunne W, Schneiderb A, et al. 1991.Isolation of the Spinach Nitrate Reductase Gene Promoter which Confers Nitrate Inducibility on Gus Gene Expression in Transgenic Tobacco. Plant. Mol. Biol. 17:9~18
    Barber S A. 1984.Nitrogen[M].In Soil Nutrient Bioavilability,A Mechanistic Approach. Wiley-Inter-science,New York,NY. 179~197
    Barron A C, Tobin T H, Wallsgrove R W, et al. 1994. A metabolic control analisis of the glutamine synthetase/glutamate synthase cycle in isolated barley(Hordeum vulgare L.) Plant physiol. 105: 415~424
    Bengtsson M, Karlsson H J, Westman G, et al. 2003.A New Minor Groove Binding Asymmetric Cyanine Reporter Dye for Real-time PCR[J]. Nucleic Acids Res.31 (8):145
    Beusichem ML-VAN, Kirkby-EA, Baas-R .1988.Influence of Nitrate and Ammonium Nutrition on the Uptake Assimilation,and Distribution of Nutrients in Ricinus Communis.Plant Physiology.86(3):914~921.
    Bo-Ra Kim, Hee-Young Nam, Soo-Un Kim, et al. 2003.Normalization of Reverse Transcription Quantitative-PCR with House Keeping Genes in Rice. [J]. Biotechnol Lett. 25(21):1869~1872
    Cashaw L,Mugwira L M. 1981.Ammonium-N and Nitrate-N Effeets on the Growth and Mineral Compositions of Triticale,Wheat,and Rye[J].Agron J,73:47~51
    Chen W.Luo J K,Shen QR. 2005.ffect of NH4+-N/NO3--Nratios on Growth and Some Physiological Parameters of Chinese Cabbage Caltivars[J].Pedosphere, 15(3):310~318.
    Chen Weimin, Zhang Qingmin, Dai Shunhai.2009.Effect of Nitrite on Intracellular Nitrite and Growth of Microcystis Aeruginosa.J Appl Phycol
    Cheng C L, Dewdney J, kleinhofs A, et al. 1988. A new locus (NIAI) in Arabidopsis thaliana encoding nitrate reductase EMBO J. 7: 3309~3314
    Chiharu Kato,et al. 2004. Differential Expreesion of the Nitrite Reductase Genefamily in Tobacco as Revealed by Quantitative Competitive RT-PCR, Journal of Experimental Botany. 55(403),pp,1761~1763
    Christian S, Wood C C, Roeb G W, et aL. 2002.Characterization of Arabidopsis At AM T2, a High-affinity Ammonium Transporter of the Plasma Membrane [J]. Plant Physiology. 130:1788~ 1796
    Clark R B, Duncan R R.1991.Improvement of Plant Mineral Nutrition Through Breeding[J]. Field Crop Res.27:219~240
    Cristina C,Herman Lips S,Maria Amelia Martins-Loucao.1993.Interactions between Nitrate and Ammonium during Uptake by Carob Seedlings and the Effect of the Form of Earlier Nitrogen Nutrition.Physiotogia Plantarum89,544~551
    Dietmaier W., Wittwer C., Sivasubramanian N. 2002.Rapid Cycle Real-Time PCR Methods and Applications: Genetics and Oncology[M]. Springer-Verlag.
    Dose M M, et al. 1997. The Ferredoxin-binding Site of Ferredoxin: Nitrite Oxidoreductase Differential Chemical Modification of the Free Enzyme and its Comlex with Ferredoxin. Plant Physiol. 114(3): 1047~1053
    Dougall D. K. 1974. Evidence for the Presence of Glutamate Synthase in Extracts of Carrot Cell Cultures. Biochem. Biophys. Res. Commun,58:639~646.
    Epstein E. 1972.Principles and Perspectives.In:Wiley and Sonseds.Mineral Nutrition of Plants.New york, 23(9):1644~1647
    Evan.1983.Nitrogen and Photosynthesis in the Flag Leaf of Wheat (Triticum aestivum L.).[J].Plant Physiology. 72:297~302
    Faure, J D et al.1991. Co-regulated Expression of Nitrate and Nitrite Reductase. Plant J,1:107~113
    Ferrario-Mery S, Suzuki A, Kunz C, et al. 2000. Modulation of Amino Acid Metabolism in Transformed Tobacoo Plants Deficient in Fd-GOGAT. Plant Soil 221:67~79.
    Forde B G, Gullimore J V. 1989. The Molecular Biology of Glutamine Synthetase in Higher Plants. In: Miflin B. J.ed, Oxford Surveys of Plant Molecular and Cell Biology. Oxford University Press. 6: 247~296
    Forde B G. 2002. Local and Long-range Signaling Pathways Regulating Plant Response to Nitrate. Annu Rev Plant Biol. 53: 203~224
    Fried M,zsoldos F,vose PB ,shatokhin I L. 1965.Characterising the NO3- and NH4+ Uptake Process in Rice Roots by Use of 15N Labed NH4NO3.Physiol Pant. l8:313~320
    Gazzarrini S, Legay L, Gojon A et al. 1999.Three Functional Transporters for Constitutive,
    Diurnally Regulated, and Starvation-induced Uptake of Ammonium into Arabidopsis Roots. Plant Cell, 1(5): 937~948.
    Gian B . 1999. Trepp NADH-glutamate Synthase in Alfalfa Root NodulesGenetic Regulation and Cellular Expression. Plant physiology, 119: 817~828
    Glass A D W,Siddiqui M Y. 1995.Nitrogen Absorption by Plant Roots.ln Nitrogen Nutrition in Higher plants.Edited by Srivastava HS,Singh RP.New Dehli:Associate Publishers.21~56.
    Grawford N M,Glass A D M. 1998.Molecular and Physiological Aspects of Nitrate Uptake in Plants.Trends in Plant Science.3(10):389~395
    Gregerson R G, Miller S S, Twary S N, et al. 1993. Molecular Characterization of NADH- Dependent Glutamate Synthase from Alfalfa Nodules. The Plant Cell, 5:215~226
    Grouzis J-P et al. 1997.In Vitro Study of Passive Nitrate Transport by Native and Reconstituted Plasma Membrane Vesicles from Corn Root Cells.Biochim.Biophys.Acta.1325:329~ 342
    Heber J, Kirk M.R, Gimmler H, Schafter G. 1974.Uptake and Reduction of Glycerate by Isolated Chlorloplasts.Planta, 120:32~36
    Higuchi R, Fockler C, et a.l .1993. Kinetic PCR Analysis: Real-timemonitoring of DNA Amplification Reactions[J]. Biotechnology.11(9): 1026~1030.
    Hirel B, et al. 1993. In: Control of Plant Gene Expression, CRC Press Inc, 425~470 Johnson D W,Cheng W,Ball J T. 2000.Effects of CO2 and N Fertilization on Decomposition and Immobilization in Ponderosa Pine Litter[J].Plant and Soil, 224:115~122.
    Joseph JV, Zhuo DG, Siddiqi MY.2000.Regulation of High Affinity Nitrate Transporter Genes and High-affinity Nitrate Influx by Nitrogen Pools in Roots of Barley.Plant Physiology.123,307~ 318
    Kelley J R, Duggan J M. 2003, Gastric Cancer Epidemiology and Risk Factors. J Clinical Epidemiol, 56(1): 1~9
    Kiehey,Thomas Heumez,Emmanuel Poeholle,DelPhine et al. 2006.Combined Agronomic and Physiological Aspects of Nitrogen Management in Wheat Highlight a Central Role for Glutamine Synthetase.New Phytologist.169(2):265~278
    Kozaki A, Sakamoto A, Tanaka GI. 1992 .Plant Cell Physiol,33:233~238
    Kozaki A, Sakamoto A, Tanaka K,et al. 1991 .Plant Cell Physiol,31:353~358
    Lahners K,Kramer V, Back E et al.1988. Molecular Cloning of Complementary DNA
    Encoding Maize Nitrite Reductase. Plant Physiol.88:741~746
    Laine P, Ourry A, Boucaud J, Salette J. 1998.Effects of a Localized Supply of Nitrate on NO3 Uptake Rate and Growth of Roots in Lolium Multiflorum Lam.Plant and Soil.202(1):61~67
    Lam H M, Coschigano K T, Oliveiva I C. 1996.The Molecular Genetics of Nitrogen Assimilation into Amino Acids in Higher Plants.Annu.Rev.Plant Physiol Plant Mol.Bio.47:569~ 593
    Lawlor DW. 2002.Carbon and Nitrogen Assimilation in Relation to Yield:Mechanisms Are the
    Key to Understanding Production System[J].ExP.Botany. 23:773~787 Lea P J, Miflin B J.1979. The Assimilation of Ammonium Nitrogen by Chlorophylious
    Tissue.Nitrogen Assimilation of Plant,475~486. Lea P J, Miflin BJ.1974. Alternative Route for Nitrogen Assimilation in Higher Plants. Nature, 251:614~616.
    Lea P J,Miflin B J.2003. Glutamate Synthase and the Synthesis of Glutamate in Plants .Plants Physion Biochem.41:555~564.
    Lea P. J.,Robinson S. A.,Stewart G. R.1990. The Enzymology and Metabolism of Glutamine, Glutamate, and Asparagine. In: Miflin B.J, Lea P. J eds. The Biochemistry of Plants. NewYork: Academic Press.l16:121~159.
    Lee R B. 1993.Control of Net Uptake of Nutrients by Regulation of Influx in Barley Plants Recovering from Nutrient Deficiency.Annals of Botany. 72:223~230
    Lewis O A M, et al.1979. A Comparison of Nitrogen Assimilation Pathways in Nitrophilous and Non-nitrophilous Plants. Nitrogen Assimilation of Plant:435~440.
    Li C F, Ma F M, Zhao Y,et al. 2003.Effects of Nitrogen Forms on Key Enzyme Activities and Related Products in Sugar and Nitrogen Metabolism of Sugar Beet (BetavulgarisL.).Acta Agrono- mica Sinica, 29(1):128~132.
    Li Wenhua et. al.1994.Studies on some Characteristics of Nitrate Reductase from Sugar beet Leaves. The Journal of Northeast Agricultural University.1(1):20~25.
    Loulakakis K A, et al.1992. Ammonium-induced Increase in NADH-glutamate Dohydrogena- se Activity is Caused by Denovo Synthesis of theα-subunit. Planta.187:322~327.
    M.Guescini,S.Zeppa,R.Pierleoni et al.2007.The Expression Profile of the Tuber Borchii Nitrite Reductase Suggests its Positive Contribution to Host Plant Nitrogen Nutrition.Curr Genet.51:31~41
    Mack G, Tischer R. 1994. Constitutive and inducible net NH4+ uptake of barly (Hordeum vulgare L.) seedlings, J.plant. physiol. 144: 351~357
    MagalhaesJR,Huber DM. 1991.Response of Ammonium Assimilation Enzymes to Nitrogen form Treatments in Different Plant Species[J].J Plant Nutr.14(2):175~185.
    Margaret G, Redinbaugh, Wilbur H, Campbell. 1993. Glutamate synthases and ferredoxin- dependent glutamate synthase expression in the maize(zea mays) root primary response to nitrate. Plant physiol., 101:1249~1255
    Margreet W,Ter Steege,Ineke Stulen,Peter K,Freek Posthumus ,Wim Vaalburg. 1999.Effici- ency of Nitrate Uptake in Spinach:Impact of External Nitrate Concentration and Relative Growth Rate on Nitrate Influx and Efflux.Plant and Soil.208:125~134
    Meers J L. et al.1970. J. Gen. Microbio1.,64:187~193
    Melo-oliveira R, Oliveira I C,Coruzzi G M. 1996.Arabidopsis Mutant Analysis and Gene Regulation Define a Nonredundant Role for Glutamate Dehydrogenase in Nitrogen Assimilation [J]. Proc. Natl. Acad. Sci. USA. 93:4718~4723.
    Mengel DB, Barber SA.1974.Rate of Nutrient Uptake Per Unit of Conr under FieldConditions.Agorn J. 66:399~402.
    Mengel K , Klrkby E A. 1982.Principles of Plnat Nutrition.3dr ed Switzerland:Intemational Potash Institute. 303~387.
    Mengel K, Viro M, Heml G. 1976.Effect of Potassium on Uptake and Incorporation of Ammonium-nitrogen by Rice Plants.Plant Soil, 43:479~486.
    Miflin B J, Lea P J.1980.Ammonia Assimilation. The Biochemistry of Plants:Amino Acids and Derivatives. New York: Academic Press.169~202.
    Miller R E, Stadtman E R.1972. Glutamate Synthase from Escherichia Coli. Jounal of bilolgy chemistry.247:7407~7419.
    Misa Takahashi,et al .2001.Nitrite Reductase Gene Enrichment Improves Assimilation of NO2- in Arabidopsis.Plant Physiology,June Vol.126,pp.731~741
    Munos S, Cazettes C, Fizames C et al. 2004. Transcript Profiling in the Chl1-5 mutant of
    Arabidopsis reveals a Role of the Nitrate Transporter NRT1.1 in the Regulation of another Nitrate Transporter NRT2.1. Plant Cell, 16 (9): 2433~2447
    Naik M S, Abrol Y P, Nair T R, Ramarao C S. l982,Nitrate Assimilation its Regulation and Relationship to Reduced Nitrogen in Higher Plants. Phytochemistry, 21: 495~504
    Nigel M C, Jack Q W, Samuel T.1992. Control of Nitrate Reduction in Plants Aust J Physiol.19:377~385.
    Ninnemann O, Jauniaux J C, Frommer W B. 1994. Identification of a high affinity NH4+ transporter from plants. EMBO J, 13: 3464~3471
    Oaks A, et al.1985. Nitrogen Metabolism in Roots. Annual Review of Plant Physiology.36: 345~365.
    Osaki M,Tyoda M,Yamada S,et al. 1995.Effect of Mutual Shading on Carbon Distribution in Rice Plant[J].Soil Science&Plant Nutrition, 41(2):235~244.
    P. Kogovsek, L. Gowb. 2008.Single-step RT Real-time PCR for Sensitive Detection and Discrimination of Potato Virus Yisolates [J]. Virol Met, 149:1~11.
    Palich, E., Joy, K. W. 1971. Glutamate. Dehydrogenase from Pea Roots: Purification and Properties otthe Enzyme. Can. J. Biocherr,49:127~38.
    Pcuke A D, Hartung W, Jeschke W D. 1994.The Uptake and Flow of C,N and Ions between Roots and Shoots in Ricinus Commvnis L.II.Grown with Low or High Nitrat Supply[J].Journal of Experimental Botany, 45(275):733~740
    Pcuke A D,Jeschke W D. 1993.The Uptake and how of C,N Andions between Roots and Shoots in Ricinus Commvnis L.I.Grown with Ammonium or Nitrate as Nitrogen Source[J].Journal of Experimental Botany.449(264):1167~1176
    Phillips W E J. 1971,Naturally Occurring Nitrate and Nitrite in Foods in Relation to Infantmethaemoglobinaemia. Food Cosmetics Toxicol, 9(2): 219~228
    Polcyn W, Lucinski R. 2009. Effect of N Oxyanions on Anaerobic Induction of Nitrite Reductase in Subcellular Fraction of Bradyrhizobium sp.(Lupinus). Antonie van Leeuwenhoek, 95:159~164
    Rajeev Rastogi, et al.1997. Footprinting of the Spinach Nitrite Reductase Gene Promoter Reveals the Preservation of Nitrate Regulatory Elements between Fungi and Higher Plants. Plant Molecolar Biology. 34: 465~476
    Raven J A,Smith P A. 1976.Nitrogen Assimilation and Transport in Vascular Land Plants in Relation to Tracellular PH Regulation[J].New Phytologist.76:415~431
    Rhodes D, et a1.1976. The Regulation of Ammonia Assimilating Enzymes in Lemna. Minor. Planta,129:203~210.
    Rhodes D, Sims A P.1972.Glutamate Synthase and The Control of Nitrogen Assimilation in Lemma Minor L. Nitrogen Assimilation of Plant:501~520.
    Richardson, D. J. Berks, B.C. Russell, et al. J..2001.Functional Biochemical and Genetic Diversity of Prokaryotic Nitrate Reductase . CMLS,Cell, Mol, Life Sci. 58:165~178
    Rios-Gonzalez K, Erdei L, Lips S H. 2002.The Activity of Antioxidant Enzymes in Maizeand Sunflower Seedlings as Affected by Salinity and Different Nitrogen Sources. Plant Science.162:923~930
    Robinson S A, et al.1991. The Role of Glutamate Dehydrogenase in Plant Nitrogen Metabolism. Plant Physiology.95:509~516.
    Robinson S A.1992. Regulation of Glutamate Dehydrogenase Activity in Relation to Carbon Limitation and Protein Catabolism in Carrot Cell Supspension Cultures.Plant Physiology.98:1190 ~1195
    Sakakibara H, Kawabara S, Takahashi H. et al. 1992. Molecular Cloning of the Family of Glutamine Synthase and Ferredoxin-dependent Glutamate Synthase in Photosynthetic and Non- photosynthetic Tissue.Plant Cell Physiol. 33(1):49~58
    Sakakibara H. 1991. Molecular Cloning and Characterization of Complementary DNA Encoding for Ferredoxin-dependent Glutamate Synthase in Maize Leaf. J. Biol. Chem.,266: 2028~2035
    Schmittgen T D, Zakrajsek B A,MillsA G .2000. Quantitative Reverse Transcription Polymerase Chain Reaction to Study mRNA Decay: Comparis on of Endpoint and Real Time Methods. Anal Biochem.285: 194~204
    Schrader L E, Rilenour G L, Eilrich G L.1968.Some Characteristics of Nitrate Reduatase from Higher Plants. Plant Physiology.13:930~934. Seith B, Sherman A, Wray J L, Mohr H.1994.Photocontrol of Nitrite Reduetase Gene
    Expression in the Barley Seedling (Hordeum vulgare L.).Planta.192:110~117
    Sevall J S, Prince H, Garratty G, O′Brien W A, Zack JA.1993.Clinical Chemistry.39: 433.
    Siddiqi M Y,Glass A D M,Ruth T J.1990.Studies of the Uptake of Nitrate Inbarley:LKinetics of NO3- influx.Plant Physiology.93,1426~1432
    SinclairT R, Horie T. 1989.Crop Pjysiology & Metabolism:Leaf Nitrogen,Photosynthesis and Crop Radiation Use Effieiency :a Review[J].Crop science. 29:90~98
    Smirnoff N, Stewarf G R. 1985.Nitrate Assimilation and Transportion by Higher Plants; Comparative Physicology and Ecological Consequences[J].Physiologia Plantarum, 64:133~140
    Sobhana Sivasankar ,et al. 1988. Analysis of Cis-acting DNA Elements Mediating Induction and Repression of the Spinach Nitrite Reductase Gene. Planta. 206:66~71 Stewart G R, et a1.1980. The similarity between Changes of this Enzyme. The Biochmistry of Plants.(5):301~309.
    Suzuki A, Gadal P,1982. Glutamate Synthase from Rice Leaves.Plant Physiol.,69:848~852. Tempest D W. et al. 1970. Synthesis of Glutamate in Aerobacter Aerogenes by a Hither to Unknown Route.Biochem J,117 :405~407.
    Thomas H.1978. Emzymes of Nitrogen Mobilization in Detached Leaves of Lolium Temulentum During Senescence.Planta.142:161~169.
    Tischner R. 2000,Nitrate Uptake and Reduction in Higher and Lower Plants.Plant,Cell and Environment,23:1005~1024
    Toth V R,Meszkarosl,Verse S,et al. 2002.Effeets of the Available Nitrogen on the Photosynthetic Activity and Xanthophylls Cycle Pool of Maize in Field[J].Plant Physiol. 159:627~634.
    Tsay Y-F, Schroeder J I, Feldmann K A, et al. 1993. The Herbicide Sensitivity Gene CHL1 of Arabidopsi Encodes a Nitrate-in ducible Nitrate Transporter. Cell, 72:705~713
    Vance C P, Miller S S, Gregerson R G, et al. 1995. Alfalfa NADH-dependent glutamate synthase: structure of the gene and importance in symbiotic N2 fixation. The plant Joirnal, 8(3):345~358
    Verma D P S.1993. Control of Plant Gene Expression. Boca Batom. CRC Press:443~458.
    Verma DPS. 1993. Control of Gene Expression. Boca Ratom: CRC Press.425~479.
    Villa MS,Gonzalez GA,Torres J L T,et al. 1992.Effeet of the NH4+/NO3-ratio on GS and PEPease Activities and on Dry Matter Production in Wheat[J].J·Plant Nutr. 15:2545~2557
    Vose PB.1984.Effeets of Genetic Factors on Nutritional Requiremenis of Plants[M]. In:P.BVose and S.G.Blixt eds.Crop Breeding.A Comtemporary Basis.Pergamon Press.Oxford,PP.67~14
    Wang Y F, Yu Z W, Li S X,et al. 2002.Effect of Nitrition on the Change of Key Enzyme Activity during the Nitrogen Metabolism and Kernel Protent in Winter Wheat.Acta Agronomica Sinica.28(6):743~748.
    Wladyslaw Polcyn,Robert Lucinski.2009.Effect of N Oxyanions on Anaerobic Induction of Nitrite Reductase in Subcellular Fraction of Bradyrhizobium sp.(Lupinus).Antonie van Leeuwenhoek.95:159~164
    Yamaya, et al.1987. Synthesis of Glutamate by Mitochondria-An anaplerotic Function for Glutamate Dehydrogenase. Plant Physiology.70: 749~756.
    Yan G, Ma F, Li Wet al. 1998.Research on Glutamate Synthase Activity in Sugar Beet (Beta vulgarisL.) under Different Levels of Nitrogen [J]. NEAU.5(1): 5~11
    Zelmer L, Guenther G.1988. Activities of Glutamate Dehydrogenase(GDH),Glutamine Synthetase(GS) and Gulutamate Synthetase(GOGAT) in Suspension Cultures of Beta Vulgaris L.(sugar beet) and Chenopodium Album (goosefoot).Biochem Physiol Pflanz (BPP).183(5):397~ 405
    Zhou D G, Mamoru O,Vidmar J J, et al. 1999. Regulation of a Putative High-affinity Nitrate Transporter(AtNRT2.1) in Roots of Arabidopsis thaliana. Plant J,17:563~568

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700