用户名: 密码: 验证码:
采场围岩应力壳力学特征的柱宽效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于采场围岩中存在由“高应力束”组成的应力壳理论,运用实验室相似模拟、计算机数值模拟、理论分析等研究方法,以采场大范围围岩为研究对象,开展了非对称开采采场围岩应力场、破坏场及位移场演化特征的煤柱宽度效应研究,进行了采场围岩支承应力形成和发展的分析计算和临空区煤柱宽度变化对其影响规律研究,实例分析表明运用此种方法分析计算采场围岩支承压力、研究煤柱宽度对采场围岩支承压力的影响规律是可行的。
     采用实验室相似模拟试验和计算机FLAC3D数值模拟软件,研究了不同临空区煤柱宽度情况下,采场围岩三维应力场演化特征及几何形态变化规律。研究表明:采场围岩应力分布自前向后应力壳倾向剖面几何形态由n型“单壳”逐渐向m型“复壳”演化,“单壳”壳基应力峰值大于“复壳”壳基应力峰值。对于深部非对称开采,随临空区煤柱宽度增大,工作面前方应力壳壳基位置由风巷下帮煤体逐渐向煤柱侧转移,在煤体和煤柱上的应力峰值逐渐升高,当煤柱宽度增加到一定宽度后,风巷下帮煤体应力峰值升高不再明显,煤柱承担上覆岩层大部分荷载;工作面后方应力壳为“复壳”形态时,随煤柱宽度增大,煤柱上方壳基位置由上提形态逐渐回落,进而与煤柱内应力峰值位置叠加。
     研究了对不同临空区煤柱宽度情况下,采场三维围岩破坏场和位移场演化特征。研究表明:随着煤柱宽度的增大,在上区段工作面和本区段工作面的上覆岩层垮落高度都逐渐减小;在工作面前后不同位置的围岩倾向剖面破坏区范围,在风巷下侧煤体及其上覆岩层中,随煤柱宽度增大此区域逐渐减小;煤柱宽度变化对工作面前方15m处围岩变形破坏影响明显。随着煤柱宽度的增大,风巷上帮垂直位移量逐渐减小,而下帮垂直位移量则逐渐增大;风巷上帮沿倾向水平位移量逐渐增大,而下帮沿倾向水平位移量则逐渐减小;煤壁位移主要发生在工作面上部距风巷15m左右距离处,沿倾向水平位移量逐渐增大,沿走向水平位移量逐渐减小,而垂直位移量先增大后减小,15m煤柱宽度时垂直位移量达到最大。在工作面由前至后不同位置,巷道围岩位移呈现阶段性特征,倾向剖面上覆岩层变形移动最大位置区域由上区段采空区逐渐向本区段工作面中上部采空区转移。
     分析了深部采场推进期间的应力分布演化特点和围岩受力破坏规律。分析得出在采场开切眼形成后及顶板未断裂之前,围岩受力及集中区分布范围较小,顶板岩层经历从稳定状态逐渐向断裂临界状态逼近的过程;随着采煤工作面的持续推进,顶板周期性垮落,采空区顶、底板应力降低区范围在高度和宽度上都不断扩大,围岩应力集中区域形态在走向剖面呈拱形,三维立体形态呈椭球形壳;当工作面推进长度是倾向长度的1~1.2倍左右时,应力壳高度达到最大,并与工作面倾向长度相当。
     基于非对称开采围岩存在应力壳的基本观点,根据深部采场围岩三维应力场的应力分布和覆岩运动破坏特征,建立了采场围岩支承压力与应力壳几何参数关系的计算模型,获得了不同区域支承压力与应力壳几何参数关系表达式,实例分析表明运用此种方法分析计算采场围岩支承压力、研究煤柱宽度对采场围岩支承压力的影响规律是可行的。
     研究成果丰富了矿山压力理论,为有效预防采场围岩应力转移导致的围岩失稳及其他动力灾害提供了理论依据,对煤矿采场布局、工作面支架选型、采场围岩控制、临空区煤柱留设及动力灾害控制和实现安全高效开采具有重要指导意义。
In this paper, comprehensive research methods, including numerical and physical modeling tests, theoretical and case analysis, are carried out to investigate into the following details based on the surrounding rock stress shell theory from large-scale and three-dimensional space:(i) coal pillars width effect on the evolution characteristics of the surrounding rock stress field, damage field and displacement field in asymmetric mining;(ii) the surrounding rock abutment pressure forming and developing in the mining face, and its distribution patterns affecting by the coal pillar width. The results show that it is feasible to analyze and calculate the surrounding rock abutment pressure, study the influence of its distributing laws on the adjacent goaf coal pillars width by the methods.
     The surrounding rock3D stress field evolution characteristics and geometry change rules around coal mining face are demonstrated with different adjacent goaf coal pillars width. The results indicate that the surrounding rock stress distribution geometrical morphology in dip section tended to evolve gradually from the n type "single-shell" to the m type "duplicate-shell" by the former backward. The "single-shell" peak stress is obvious greater than the "duplicate-shell" peak stress. And with the increase of adjacent goaf coal pillars width, the shell base location transfer gradually from the lying side coal of return airway to the coal pillar side. The peak stress in coal and coal pillar are gradually rise, when the coal pillar width is7m, the stress peak value is higher in the lying side coal of return airway, the peak location is located from the lying side of return airway around10m. when the coal pillar width is7m, the stress peak value is higher in the20m ahead of working face along the strike direction. When the coal pillar width is15m, the peak stresses is higher in the coal pillar. Behind the working face, with the increase of the coal pillar width, the shell base position above the coal pillar fall back gradually, and superimposed with the stress peak position of the coal pillar.
     The evolution characteristics of the3D surrounding rock damage field and displacement field in the different adjacent goaf coal pillar width are obtained. The results indicate that the caving height of overlying rock decrease gradually with the increase of coal pillar width. With the coal pillar width increase, the surrounding rock damage zone in the dip section before and behind the working face decrease gradually in the lying side coal of return airway and overlying rock. The change of coal pillar width has a great influence to the surrounding rock deformation and fracture in15m front of the working face. With the increase of coal pillar width, the vertical displacement of the return airway upper side decrease gradually, and the vertical displacement of the return airway lying side increase gradually, the tendency horizontal displacement of the return airway upper side increase gradually, and the horizontal displacement of the return airway lying side increase gradually; the coal wall displacement occurs mainly in the upper face15m distance away from the return airway, along the tendency to horizontal displacement increase gradually, along the strike the horizontal displacement decrease, while the vertical displacement first increase then decrease, when the coal pillar width are15m the vertical displacement reach the maximum value.In the different position of the working fac from before to behind, the displacement of surrounding rock appear the stage characteristics, in the dip section the largest deformation location area of overlying rock transfer from the upper sector goaf to the middle and upper goaf of the working face.
     Stress evolution distribution characteristics and surrounding rock mechanical failure laws are analyzed with the face advance in deep mining.After open-off cutting and before roof breaking, surrounding rock mechanical distribution range is less, it mainly presents the characteristics that regional range is small and coal seam and strata gradually approach critical state of roof breaking from stable state. With face advancing, roof periodically caves, stress-relaxed area of goaf roof and floor constantly enlarges in height and width, regional morphology of stress concentration presents an arch of strike profile and its3-dimensional morphology presents an arched shell. When working surface advancement length is1~1.2times than width, height of stress shell reaches the maximum and is to equal width of working face. Goaf gangue and strata which is not completely broken in stress shell and stress-relaxed area undertake strata in stress-relaxed area above goaf, which goaf gangue undertakes most of strata in stress-relaxed area
     Based on the basic viewpoint of stress shell in surrounding rock of asymmetric mining, calculation model of relationships between geometrical parameters of abutment pressure and stress shell are established according to stress distribution of3D stress field of surrounding rock and overburden movement failure characteristics in deep mining, and relational expression of geometrical parameters of theirs in different regions are obtained. The example analysis shows that it is feasible to calculate surrounding rock abutment pressure and study influence law of surrounding rock abutment pressure affected by coal-pillar width with this method.
     Research results enrich the theory of strata pressure, it provides theoretical basis for the effective prevention of surrounding rock instability and other dynamic disasters. It has important guiding significance to the coal minng face layout, supports selection, the surrounding rock control, coal pillar width choice, dynamic disasters control and achieve to the safe and efficient mining.
引文
[1]中国工程院重大咨询项目.中国能源中长期(2030、2050)发展战略研究:节能·煤炭卷[M].北京:科学出版社,2011
    [2]李德忠,夏新川等.深部矿井开采技术[M].徐州:中国矿业大学出版社,2005
    [3]陈炎光,陆士良.中国煤矿采场围岩控制[M].徐州:中国矿业大学出版社,1994
    [4]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003
    [5]钱鸣高,缪协兴,许家林.岩层控制的关键层理论[M].徐州:中国矿业大学出版社,2000
    [6]宋振骐.实用矿山压力控制[M].徐州:中国矿业大学出版社,1988
    [7]吴士良.对采场矿山压力有明显影响的覆岩破坏运动演化规律[D].山东科技大学博士学位论文,2002
    [8]翟英达.采场上覆岩层中的面接触块体结构及其稳定性力学机理[M].北京:煤炭工业出版社,2005
    [9]谢广祥.综放工作面及其围岩宏观应力壳力学特征[J].煤炭学报,2005,30(3):309-313
    [10]谢广祥.综放采场围岩三维力学特征[M].北京:煤炭工业出版社,2007
    [11]谢广祥,杨科.采场围岩宏观应力壳演化特征[J].岩石力学与工程学报,2010,S(1):017
    [12]刘开云,乔春生,滕文彦.上覆岩层组合运动的力学解析特征研究[J].工程地质学报,2003,11(4):372-377
    [13]冯国瑞,王鲜霞,康立勋.采场上覆岩层面接触块体结构的力学机理分析[J].煤炭学报,2008,33(1):33-37
    [14]张后全,赵德深,赵兴东等.采场上覆岩层运动范围与顶板事故可视化研究[J].矿业研究与开发,2004,26(4):79~83
    [15]张建全,戴华阳.采动覆岩应力发展规律的相似模拟实验研究[J].矿山测量,2003(4):49-51
    [16]吴侃,王悦汉,邓喀中.采空区上覆岩层移动破坏动态力学模型的应用[J].中国矿业大学学报,2000,29(1):34-36
    [17]刘开云,乔春生,周辉等.覆岩组合运动特征及关键层位置研究[J].岩石力学与工程学报,2004,23(8):1301~1306
    [18]T. P. MEDHURST, E. T. BROWN. A Study of the Mechanical Behavior of Coal for Pillar Design. Int[J]. J. Rock Mech. Min. Scr,1998,35(8):1087-1105
    [19]QU Qundi. Study on destressing technology for a roadway driven along goaf in a fully mechanized top coal caving face[J]. Journal of Coal Science & Engineering,2003,9(1):33-37
    [20]张宏伟等著.淮南矿区地质动力区划[M].北京:煤炭工业出版社,2004
    [21]钱鸣高,李鸿昌.采场上覆岩层活动规律及其对矿山压力的影响[J].煤炭学报,1982,(2):1-12
    [22]钱鸣高,缪协兴.采场上覆岩层结构的形态与受力分析[J].岩石力学与工程学报,1995,(2):97-106
    [23]钱鸣高.采场上覆岩层岩体结构模型及其应用[J].中国矿业大学学报,1982(2):1-11
    [24]缪协兴,钱鸣高.采场围岩整体结构与砌体梁力学模型[J].矿山压力与顶板管理,1995,3(4):3~12
    [25]宋振骐,蒋金泉.煤矿岩层控制的研究重点与方向[J].岩石力学与工程学报,1996,15(2):128~134
    [26]钱鸣高,赵国景.老顶断裂前后的矿山压力变化[J].中国矿院学报,1986(4)
    [27]姜福兴.薄板力学解在坚硬顶板采场的应用范围[J].西安矿业学院学报,1991(2)
    [28]茅献彪,缪协兴,钱鸣高.采动覆岩中关键层的破断规律研究[J].中国矿业大学学报,1998,27(1):39~42
    [29]钱鸣高,茅献彪,缪协兴.采场覆岩中关键层上载荷的变化规律[J].煤炭学报,1998,23(2):135~230
    [30]康建荣,王金庄.采动覆岩力学模型及断裂破坏条件分析[J].煤炭学报,2002,27(1):16-20
    [31]宋振骐,梁盛开,汤建泉等.综采工作面煤壁片帮影响因素研究[J].湖南科技大学学报,2011,26(1):1-4
    [32]杜晓丽.采矿岩石压力拱演化规律及其应用的研究[D].中国矿业大学博士学位论文,2011
    [33][苏]A.A.鲍里索夫著.王庆康译.矿山压力原理与计算[M].北京:煤炭工业出版社,1986.11
    [34][俄]H.M.佩图霍夫等著.段克信译.冲击地压和突出的力学计算方法[M].北京:煤炭工业出版社,1994.12
    [35][波兰]]Henryk Gil著.张玉卓译.岩层力学理论[M].北京:中国科学技术出版社,2001.11
    [36]宋振骐,卢国志,夏洪春.一种计算采场支承压力分布的新算法[J].山东科技大学学报,2006,25(1):1-4
    [37]贾喜荣编著.矿山岩层力学[M].北京:煤炭工业出版社,1997.9
    [38]贾喜荣编著.岩石力学与岩层控制[M].徐州:中国矿业大学出版社,2010.10
    [39]史元伟著.采煤工作面围岩控制原理和技术[M](上、下).徐州:中国矿业大学出版社,2003.6
    [40]史元伟,郭潘强,康立军等著.矿井多煤层开采围岩应力分析与设计优化[M].北京:煤炭工业出版社,1995.9
    [41]史红,姜福兴.采场上覆岩层结构理论及其新进展[J].山东科技大学学报,2005,24(1):21~25
    [42]姜福兴,马其华.深部长壁工作面动态支承压力极值点的求解[J].煤炭学报,2002,27(3):273~275
    [43]李洪,代进.支承压力的弹性基础梁解算初探[J].矿山压力与顶板管理,2005(2):4~6
    [44]靳钟铭,魏锦平,靳文学.放顶煤采场前支承压力分布特征[J].太原理工大学学报,2001,32(3):216~218
    [45]陈忠辉,谢和平.综放采场支承压力分布的损伤力学分析[J].岩石力学与工程学报,2000,19(4):436~439
    [46]侯朝炯,李学华等.综放沿空掘巷围岩大、小结构稳定性原理[J].煤炭学报,2001,26(1):1--6
    [47]成云海,姜福兴,张兴民等.微震监测揭示的C型采场空间结构及应力场明.岩石力学与工程学报,2007,26(1):102-107
    [48]谢广祥.采高对工作面及围岩应力壳的力学特征影响[J].煤炭学报,2006,31(1):6-10
    [49]谢广祥,杨科,常聚才等.综放采场围岩支承压力分布及动力灾害的层厚效应[J].煤炭学报,2006,31(6):731-735
    [50]谢广祥,杨科,常聚才.煤柱宽度对综放回采巷道围岩破坏场影响分析[J].辽宁工程技术大学学报,2007,26(2):173~176
    [51]谢广祥,杨科,常聚才.煤柱宽度对综放面围岩应力分布规律影响[J].北京科技大学学报,2006,28(11):1005-1008
    [52]谢广祥,王磊.采场围岩应力壳力学特征的工作面长度效应[J].煤炭学报,2008,33(12):1336-1340
    [53]谢广祥,王磊.综放工作面煤层及围岩破坏特征的采厚效应[J].煤炭学报,2010,35(2):177-181
    [54]谢广祥,常聚才,华心祝.开采速度对综放面围岩力学特征影响研究[J].岩土工程学报,2007,29(7):963-966
    [55]XIE Guang-xiang, LUO Yong. Study on the countermeasures against methane outburst of mining multiple upper protective layers in coal seams cluster. JOURNAL OF COAL SCIENCE & ENGINEERING,2005,11 (1):31-35
    [56]XIE Guang-xiang, LIU Quan-ming, ZHA Wen-hua eta. Patterns governing distribution of surrounding-rock stress and strata behaviors of fully-mechanized caving faces. JOURNAL OF COAL SCIENCE & ENGINEERING,2004,10 (1):5-8
    [57]谢广祥,杨科,常聚才.非对称综放开采煤层三维应力分布特征及其层厚效应研究[J].岩土工程学报,2007,26(4):775-779
    [58]杨科,王树全,刘全明.煤柱宽度对综放回采巷道围岩力学特征影响分析[J].煤炭工程,2005,12:50~52
    [59]谢广祥,杨科,刘全明.综放面倾向煤柱支承压力分布规律研究[J].岩石力学与工程学报,2006,25(3):545~549
    [60]谢广祥,杨科,刘全明.综放回采巷道围岩变形规律的现场实测研究[J].煤炭工程,2004,8:50~52
    [61]谢广祥,杨科,常聚才.综放回采巷道围岩力学特征实测研究[J].中国矿业大学学报,2006,35(1):94~98
    [62]谢广祥,杨科,常聚才.综放开采煤层支承压力分布规律现场实测分析[J].煤炭科学技术,2006,34(3):1-3
    [63]陈绍杰.深部条带煤柱长期稳定性基础实验研究[1D].山东科技大学,2009
    [64]杨科,谢广祥.窄煤柱综放巷道围岩应力场特征[J].采矿与安全工程学报,2007,24(3):311-315
    [65]杨科.围岩宏观应力壳和采动裂隙演化特征及其动态效应研究[D].安徽理工大学博士学位论文,2007,6
    [66]王磊.综放采场宏观应力壳与关键层的联系[J].矿业工程,2006,4(1):25-26
    [67]王磊.应力场和瓦斯场采动耦合效应研究[D].安徽理工大学博士学位论文,2010,6
    [68]吴立新,王金庄,郭增长.煤柱设计与检测基础[M].徐州:中国矿业大学出版社,2000
    [69]陈绍杰.深部条带煤柱长期稳定性基础实验研究[D].山东科技大学博士学位论文,2009,11
    [70]张开智,韩承强,李大勇.大小护巷煤柱巷道采动变形与小煤柱破坏演化规律[J].山东科技大学学报,2006,25(4):6-9
    [71]秦四清,王思敬.煤柱-顶板系统协同作用的脆性失稳与非线性演化机制[J].工程地质学报,2005,13(4):437-446
    [72]李忠华,潘一山.煤柱冲击地压的解析分析[J].地质灾害与环境保护,2001,12(2):62~65
    [73]贺广零,黎都春,翟志文等.采空区煤柱-顶板系统失稳的力学分析[J].煤炭学报,2007,32(9):897~901
    [74]孙学阳,夏玉成.采煤工作面内及区段间煤柱宽度的理论计算[J].西安科技大学学报, 2008,28(1):15-18
    [75]赵国旭,谢和平,马伟民.宽厚煤柱的稳定性研究[J].辽宁工程技术大学学报,2004,3(1):38-40
    [76]王连国,缪协兴.煤柱失稳的突变学特征研究[J].中国矿业大学学报,2007,36(1):7-11
    [77]王永秀,齐庆新,陈兵等.煤柱应力分布规律的数值模拟分析[J].煤炭科学技术,2004,32(10):59~62
    [78]翟所业,张开智.煤柱中部弹性区的临界宽度[J].矿山压力与顶板管理,2003,4:14-16
    [79]韩承强,张开智,徐小兵等.区段小煤柱破坏规律及合理尺寸研究[J].采矿与安全工程学报,2007,24(3):370-373
    [80]郭文兵,邓喀中,邹友峰.条带煤柱的突变破坏失稳理论研究[J].中国矿业大学学报,2005,34(1):77~81
    [81]张耀荣,高慧,高进等.影响护巷煤柱宽度的因素分析[J].煤,2001,10(1):11-13
    [82]刘爱国,苗田,王云方等.综放工作面回采巷道煤柱应力分析与参数优化[J].煤炭科学技术,2002,30(1):52~54
    [83]李顺才,柏建彪,董正筑.综放沿空掘巷窄煤柱受力变形与应力分析[J].矿山压力与顶板管理,2004,3:17-19
    [84]彭加强,王金安,韦文兵等.综放沿空异形煤柱广义尺寸效应研究[J].中国矿业,2006,15(12):73-76
    [85]王金安,韦文兵,冯锦艳.综放沿空异形煤柱留巷系统力学场演化规律[J].北京科技大学学报,2006,28(4):317-323
    [86]王磊.采厚对支承压力分布及动力灾害的影响研究[]D].安徽理工大学硕士学位论文,2006,6
    [87]史红,姜福兴.基于微地震监测的覆岩多层空间结构倾向支承压力研究[J].岩石力学与工程学报,2008,27(增1):3274~3280
    [88]尹增德.采动覆岩破坏特征及其应用研究[D].山东科技大学博士学位论文,2007,6
    [89]Wu Qixing. Calculation of Shield Tunnel Vertical Surrounding Rock Pressure Based on Dimensional Analysis. Advanced Science Letters.2011, Vol.4, No.8-10:3136-3139
    [90]M. Reuter;V. Kurfurst;K. Mayrhofer;J. Veksler. Undulant rock pressure distribution along a longwall face[J]. Journal of Mining Science.2009, Vol.45, No.2:130-136
    [91]高延法,曲祖俊,牛学良等.深井软岩巷道围岩流变与应力场演变规律[J].煤炭学报,2007,32(12):1244-1252
    [92]ZHOU Xiao-jun;YANG Chang-yu. Asymmetric Rock Pressure on Shallow Tunnel in Strata with Inclined Ground Surface[J]. Journal of Southwest Jiaotong University.2007, Vol.15,NO.3: 203-209
    [93]贾喜荣,刘国利,徐林生.采场矿压计算分析方法[J].煤炭学报,1993,18(5):13~18
    [94]O. P. Alekseenko;A.M. Vaisman. direct measurement of rock pressure in mine conditions by hydraulic fracturing method[J]. Journal of Mining Scinece.2003, Vol.39, NO.5:475-481
    [95]浦海,缪协兴.采动覆岩中关键层运动对围岩支承压力分布的影响[J].岩石力学与工程学报,2002,21(增2):2366-2369
    [96]Jianye Ching;Zon-Yee Yang;Jang-Quang Shiau;Chien-Jung Chen. Estimation of rock pressure during an excavation/cut in sedimentary rocks with inclined bedding planes[J]. Structural Safety. 2013, Vol.41:11-19
    [97]蔡来生.地下开采围岩稳定性及控制技术研究[D].兰州大学博士学位论文,2009,10
    [98]史元伟.采场支承压力的解析计算研究[J].煤炭学报,1993,18(6):1-10
    [99]李伟利,张学会.动载作用下采场前支承压力分布特征研究[J].煤炭技术,2010,29(12):62~64
    [100]Xiao Ya-Xun, Feng Xia-Ting, etc. Rockburst risk of tunnel boring machine part-pilot excavation in very strong rockburst section of deep hard tunnel [J]. Yantu Lixue/Rock and Soil Mechanics,2011,32(10):3111-3118
    [101]张后全,赵德深,赵兴东等.采场上覆岩层运动范围与顶板事故可视化研究[J].矿业研究与开发,2004,24(6):79~83
    [102]茅献彪,缪协兴,钱鸣高.采动覆岩中关键层的破断规律研究[J].中国矿业大学学报,1998,27(1):39~42
    [103]R.A.Stewart, W.U.Reimold,.etc The nature of a deformation zone and fault rock related to a recent rockburst at Western Deep Levels Gold Mine, Witwatersrand Basin, South Africa [J].TECTONOPHYSICS,2001,337:173-193
    [104]苏仲杰.采动覆岩离层变形机理研究[1D].阜新:辽宁工程技术大学博士学位论文,2001
    [105]Paterson, L. A model for outburst in coal [J]. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1986,23,327-332
    [106]姜福兴,马其华.深部长壁工作面动态支承压力极值点的求解[J].煤炭学报,2002,27(3):273~275
    [107]贾喜荣,刘国利,徐林生.采场矿压计算分析方法[J].煤炭学报,1993,18(5):13-18
    [108]马庆云,赵晓东,宋振骐.采场老顶岩梁的超前破断与矿山压力[J].煤炭学报,2001,26(5):473-477
    [109]Price H S, McCulloch R C, Edwards J C, etal. Computer model study of methane migration in coal beds [J].Can Min Metall Bull,1973,66(737):103-112
    [110]徐圆圆,于光明,李长江等.采动覆岩的叠层板—卸荷拱模型研究[J].采矿安全与环保,2006,33(3):7-10
    [111]缪协兴.自然平衡拱与巷道围岩的稳定v.1992,矿山压力与顶板管理,1990,2:55~57
    [112]Zhao Chongbin, Valliappan S. Finite element modeling of methane gas migration in coal seams [J]. Computers& Structures,1995,55(40):625-629
    [113]陈士林,钱七虎,王明洋.深部坑道围岩的变形与承载能力问题[J].岩石力学与工程学报,2005,24(13):2203-2211
    [114]王云飞,李长洪,郑晓娟.等不同开挖方式地下硐室压力拱的演变机理研究[J].矿业研究与开发,2009,29(6):12-14,20
    [115]杨天鸿,赵东兴,冷雪峰等.地下开挖引起围岩破坏及其渗透性演化过程仿真[J].岩石力学与工程学报,2003,22(s1):2386-2389
    [116]郜近海,康天合,靳钟铭等.矩厚薄层状顶板回采巷道围岩裂隙演化规律的相似模拟试验研究[J].岩石力学与工程学报,2004,23(19):3292-3297
    [117]王宏岩,王猛.深部矿井开采与发展前景研究[J].煤炭技术,2008,27(1):3-5
    [118]何满潮,吕晓俭,景海河.深部工程围岩特性及非线性动态力学设计理念[J].岩石力学与工程学报,2002,21(8):1215-1224
    [119]刘辉,宋卫东,付建新等.基于相似材料模拟实验的留矿法开采围岩稳定性分析[J].矿业研究与开发,2012,32(6):75~78,88
    [120]卞跃威,夏才初,肖维民等.考虑围岩软化特性和应力释放的圆形隧道黏弹塑性解[J].岩土力学,2013,34(1):211~220
    [121]唐礼忠,周建雄,张君等.动力扰动下深部采空区围岩力学响应及充填作用效果[J].成都理工大学学报(自然科学版),2012,39(6):623-628
    [122]马正龙,邵化振,周伟等.微震监测技术在浅埋深采场顶板破坏研究中的应用[J].煤矿开采,2012,17(6):79~81,55
    [123]潘立友,张立俊,刘先贵.冲击地压预测与防治实用技术[M].徐州:中国矿业大学出版社,2006
    [124]齐庆新,窦林名.冲击地压理论与技术[M].徐州:中国矿业大学出版社,2008
    [125][俄]H.M.佩图霍夫等著.段克信译.冲击地压和突出的力学计算方法[M].北京:煤炭工业出版社,1994.12
    [126]He Manchao, Miao Jinli, Li Dejian, Wang Chunguang. Experimental study on rockburst processes of granite specimen at great depth [J]Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering,2007,26(5):865-876
    [127]Beck D A, Brady B H G, Grant D R. Induced stress and microseismicity in the 3000 Orebody, Mount Isa. Geotech Geol Eng,1997 (15):221
    [128]窦林名,何学秋.冲击矿压防治理论与技术[M].徐州:中国矿业大学出版社,2001
    [129]李忠华,潘一山,继海汛等.瓦斯煤层冲击地压防治技术及应用[M].北京:国防工业出版社,2009
    [130]Liu Bin, Liu Quan-Sheng. Space evolution regularity of microseism during the development of rockburst [J].Journal of Mining and Safety Engineering,2011,28(2):174-180
    [131]潘一山.冲击地压发生和破坏过程研究[D].清华大学博士学位论文,1999
    [132]潘立友.冲击地压前兆信息的可识别性研究及应用[D].山东科技大学博士学位论文,2003,4
    [133]Pan Junfeng, Lan Hang, Mao Debing etc.Study of hierarchical recognition theory of hazard source of rockburst [J].Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering,2011,30(s):2843-2849
    [134]周光文,刘文岗,姜耀东等.采场冲击地压的能量积聚释放特征分析[J].采矿与安全工程学报,2008,25(1):73-76
    [135]李忠华,潘一山.采煤工作面冲击地压的解析分析[J].辽宁工程技术大学学报,2002,21(1):40-42
    [136]徐曾和,李刚常.狭窄煤柱冲击地压发生的判别准则[J].力学与实践,1993,15(1):44~47
    [137]P.C.JHA.R.Chovhan, Long Range Rockburst Prediction:A Seismological Approach, Int.J.Rock Meoh,1994,3(1):71-77
    [138]王存文,姜福兴,王平等.煤柱诱发冲击地压的微震事件分布特征与力学机理[J].煤炭学报,2009,34(9):1169-1173
    [139]高明仕,窦林名,张农等.煤(矿)柱失稳冲击破坏的突变模型及应用[J].中国矿业大学学报,2005,34(4):433-437
    [140]张新荣,刘文岗,姜耀东等.深井冲击地压特征及煤岩结构动力失稳分析[J].中国矿业,2008,17(1):93-97
    [141]李江腾,曹平.非对称开采时矿柱失稳的尖点突变模型[J].应用数学和力学,2005,26(8):1003-1008
    [142]尹光志,鲜学福,金立平等.地应力对冲击地压的影响及冲击危险区域评价的研究[J]. 煤炭学报,1997,22(2):132~137
    [143]孙振武,代进,杨春苗等.矿山井巷和采场冲击地压危险性的弹性能判据[J].煤炭学报,2007,32(8):794~798
    [144]李文,纪洪广,武玉梁.深井冲击地压发生机理分析及预测方法研究[J].中国矿业,2007,16(7):105-107
    [145]张新荣,刘文岗,姜耀东等.深井冲击地压特征及煤岩结构动力失稳分析[J].中国矿业,2008,17(1):93~97
    [146]谢和平,鞠杨,黎立云.基于能量耗散与释放原理的岩石强度与整体破坏准则[J].岩石力学与工程学报,2005,24(17):3003-3010
    [147]李树忱,李术才,朱维申等.能量耗散弹性损伤本构方程及其在围岩稳定分析中的应用[J].岩石力学与工程学报,2005,24(15):2646-2653
    [148]姚精明,何富连,徐军等.冲击地压的能量机理及其应用[J].中南大学学报,2009,40(3):808-813
    [149]刘滨.基于最小耗能原理的岩爆孕育发生机理研究[D].中国科学院研究生院博士学位论文,2009,6
    [150]赵毅鑫,姜耀东,田素鹏.冲击地压形成过程中能量耗散特征研究[J].煤炭学报,2010,35(12):1979-1983
    [151]谢和平,彭苏萍,何满潮.深部开采基础理论与工程实践[M].北京:科学出版社,2006
    [152]陈忠辉,谢和平.综放采场支承压力分布的损伤力学模型分析[J].岩石力学与工程学报,2000,19(4):436-439
    [153]宋振骐.煤矿重大事故预测和控制的岩层动力信息基础的研究[M].北京:煤炭工业出版社,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700