用户名: 密码: 验证码:
基于SiC_p/Al-Ti体系的TiAl基复合材料板材合成机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了满足我国航天、航空事业对于发动机轻质高强合金板材的迫切需求,TiAl板材的研制具有十分重要的理论和实际意义。本文利用Ti板材和SiC颗粒增强Al基复合材料板材为原材料,采用叠轧-反应退火合成工艺制备得到TiAl基复合材料板材。在制备板材过程中,利用SiC颗粒与Ti及Al高温下的化学反应,原位合成增强相,最终成功制备出同时具有微层(Ti_3AlC+Ti_8C_5)与弥散颗粒Ti_5Si_3两种形态增强体混杂增强的TiAl基复合材料板材。优势在于:一是利用叠轧-反应合成工艺制备TiAl基板材,成功避免了对于脆性TiAl材料进行直接轧制变形,降低了TiAl板材的制备难度;二是利用SiC颗粒与基体元素的高反应活性,制备出多种形态增强体混杂增强的TiAl基复合材料板材,为TiAl基复合材料板材的制备提供了一种新路径。
     本文系统地研究了叠轧-反应退火合成TiAl基复合材料板材的制备工艺,着重分析了叠轧变形过程和反应退火合成两阶段(低温反应退火+高温反应退火)过程中的物相组成,组织演化规律及反应产物的性能特点,并对具有(Ti_3AlC+Ti_8C_5)微层及弥散Ti_5Si_3颗粒混杂增强的TiAl基复合材料板材进行了片层化热处理,最终制备出具有细小全片层组织结构的TiAl基复合材料板材。对其进行了室温和高温力学性能测试,分析了增强体对TiAl基复合材料板材力学性能的影响。
     本文采用纯Ti板与SiC_p/Al板为原料通过叠轧制备得到Ti-(SiC_p/Al)多层复合板。Ti-(SiC_p/Al)多层复合板的轧制试验表明,在高温轧制过程中,SiC_p/Al复合材料板与纯Ti板具有良好的变形协调性。对轧制变形量为40%的Ti-(SiC_p/Al)多层复合板进行微观组织观察,发现在Ti层与SiC_p/Al层之间存在纳米级的TiAl_3界面反应层。力学性能测试表明该种具有纳米TiAl_3界面反应层的Ti-(SiC_p/Al)多层复合板有着优良的综合力学性能。
     利用制备出的Ti-(SiC_p/Al)多层复合板材反应退火合成TiAl基复合材料板材。本文通过DTA试验分析将反应退火合成工艺分为低温反应退火与高温反应退火两个阶段。在低温反应退火过程中,发现当温度为650℃时,在Ti-(SiC_p/Al)界面处有TiAl_3反应层生成。通过EDS/TEM分析发现,在TiAl_3晶粒中固溶了微量的Si元素。并利用纳米压痕与原子力显微技术表征了Si固溶对于TiAl_3相力学性能的影响。同时通过第一性原理计算从理论上分析了Si固溶对TiAl_3模量及电子结构产生的影响。650℃反应退火过程中,随着TiAl_3层的增长,TiAl_3层与SiC_p/Al层之间的应力不断增大,最终导致多层复合板材发生层间开裂。表明在此温度下无法顺利将Al基复合材料中的Al全部转化为TiAl_3相。当低温反应退火温度为700℃时,由于液相Al的参与导致Ti-Al间的反应剧烈,使得TiAl_3反应层的增长速率明显加快。经过700℃/10h低温反应退火后,可将Al基本转化为TiAl_3相。通过EDS及XRD分析发现低温反应退火后只有微量Al残余,这些Al可以有效地将松散的TiAl_3相连接在一起,避免低温反应退火后板材发生层间开裂,有利于进一步高温退火反应的顺利进行。在此过程中,液相Al与SiC颗粒间发生微弱反应,生成少量的Al_4C_3相。
     对经过700℃/10h低温反应退火后的复合材料板材进行高温反应退火,温度选定为1200℃。在高温反应退火过程中,低温反应退火后残余的纯Ti层全部转化为Ti_3Al金属间化合物相。同时在Ti_3Al层与TiAl_3层中间有连续TiAl反应层及非连续TiAl_2层生成。通过物相鉴定发现,增强体SiC颗粒及在低温反应退火阶段生成的Al_4C_3相全部消失,原位合成Ti_3AlC,Ti_8C_5及Ti_5Si_3增强体。通过组织观察发现,Ti_3AlC与Ti_8C_5被推挤到原始SiC_p/Al的中心线区域形成微层结构,而Ti_5Si_3颗粒分布在TiAl及TiAl_2反应层中。通过EDS/TEM分析发现Ti_5Si_3相中有微量Al元素固溶,并通过第一性原理分析了Al固溶导致的Ti_5Si_3形成能,模量及电子结构的变化情况。随着高温反应退火的进行,TiAl_3层及Ti_3Al层不断被消耗,TiAl_2层先增厚后减薄,最终形成具有TiAl,Ti_3Al层状分布结构的TiAl基复合材料板材。
     通过片层化热处理,使得TiAl基复合材料板材基体组织转化为全片层结构。由于Ti_5Si_3颗粒的分布特点,导致形成的全片层结构团簇尺寸细小。通过纳米压痕试验发现,微层(Ti_3AlC+Ti_8C_5)及颗粒Ti_5Si_3的引入使得TiAl板材的硬度及模量进一步提高。同时微层(Ti_3AlC+Ti_8C_5)使得TiAl复合材料板材的断裂韧性性存在方向性,与加载方向相关。高温拉伸试验表明,随着温度升高,TiAl复合材料板的抗拉强度不断增加。
In order to satisfy the requirements of engines in the air field for high-strengthand low-density alloy sheets, it is of theoretical and practical significance fordevelopment and manufacture of TiAl-based alloy sheets. By roll bonding andreaction annealing, TiAl composite sheets with in situ reinforcements of(Ti_3AlC+Ti_8C_5) microlaminates and Ti_5Si_3particles have been successfullyfabricated of Ti sheets and SiC_p/Al composite sheets. On the one hand, thistechnique avoids the direct deformation of the brittle TiAl, decreasing thefabrication costs by using simplified techniques. On the other hand, by the highreactiveity between SiC and based element, the TiAl based composite sheet withdifferent reinforcements was successfully prepared, giving a new path to fabricateTiAl based composite sheet.
     This paper investigated the preparation technology of the TiAl basedcompostite sheet, excepecially researching the phases, microstructure evolution andproperties of the products in the roll bonding and reaction annealing. The fulllamellar structure with the fine lamellars was fabricated. Then the mechanicalproperties were tested and the influence of the reinforcements was studied。
     Due to the good strength of the SiC_p/Al composites at high temperature, thedeformation of the SiC_p/Al layers was uniform and coherent with the Ti layers atinitial rolling. The constituent dissimilar foils reduced gradually with the increasedcycles until a reduction of40%. The nano-sized TiAl_3interface layer was found bythe microstructure analysis. The multi-laminated Ti-(SiC_p/Al) composite with anano-sized TiAl_3was successfully fabricated by roll bonding. It shows good inmechanical properties by tests.
     By DTA tests, the reaction annealing was divided into Low-temperaturereaction annealing and High-temperature reaction annealing. In the present work,TiAl_3layers were synthesized by reaction annealing of a multi-laminatedTi-(SiCP/Al) composite sheet at650oC. It was found that Si dissolved in the TiAl_3layers during annealing. The effect of Si in the TiAl_3layers on mechanicalproperties was investigated both by experiment and theory. It was found that about6at.%Si was solved into TiAl_3, which leads to the lattice distortion of TiAl_3. Theelastic modulus and nanohardness of TiAl_3with Si increased and was verified byfirst-principles calculation of the theoretical elastic properties and can be explainedfrom the electronic structure. The interfacial debonding was brought by theincreaseing stress with the reaction annealing time between SiC_p/Al layer and TiAl_3layer. It prevents the reaction between Ti and Al. At700oC, liquid Al prefers to strongly react with Ti, which can prominently shorten the reaction time comparedwith the solid-solid reaction. After the reaction annealing at700oC/10h, Al matrixwas changed into TiAl_3. But a little of ‘Al was left and was found to connect TiAl_3phase. SiC can slightly react with liquid Al. Free [Si] and Al_4C_3are the two majorreaction products.
     The reaction annealing temperature was elevated to1200oC for the Hightemperature reaction annealing. In this processing, all SiC particles can beconsumed and transformed into new in-situ reinforcements. It can be seen the Ti andSiC_p/Al foils were completely consumed in reaction annealing at1200oC for2h, andthe peaks of the new reinforcements, i.e.: Ti_5Si_3, Ti_3AlC and Ti_8C_5phases can bedetected. By EDS/TEM analysis, some Al was solved in to Ti_5Si_3, the formationenergy, modulus and electronic structure were inveatigated by first-principlescalculation. With the high temperature, TiAl_3andTi_3Al consume, and the thicknessof TiAl_2was increased and then decressed. Finally the TiAl based composite sheetwas composed of TiAl and Ti_3Al layers.
     TiAl composite sheets containing fine lamellar structure were obtained bylamellar treatment at1400oC for20min after the High-temperature reactionannealing. The nanohardness and modulus were enhanced by the introduction of thein-situ reinforcements. Testing for fracture toughness shows that with addition ofceramic layers, the fracture toughness increases. Furthermore, the value of fracturetoughness depends on the loading direction. High temperature tensile testing showsthat with raising temperature, the strength of the TiAl composite sheets increases.
引文
[1]傅恒志.未来航空发动机材料面临的挑战与发展趋向[J].航空材料学报,1998,18(14):52-61.
    [2]唐见茂.航空航天材料发展现状及前景[J].航天器环境工程,2013,30(2):115-121.
    [3]李爱兰,曾燮榕,曹腊梅,等.航空发动机高温材料的研究现状[J].材料导报,2003,17(2):26-28.
    [4]陈旭,洪智亮,鲁琳静,等.环境障碍涂层研究综述[J].材料导报,2011,25(10):32-38.
    [5]胡萍.结构金属间化合物的国内外研究分析及其超塑性的研究[D].吉林大学硕士论文,2004.
    [6]陈国良.金属间化合物结构材料研究现状与发展[J].材料导报,2000,14(9):1-5.
    [7]王庆伟.微层TiB2-NiAl复合材料板材的制备及组织控制与力学行为[D].哈尔滨工业大学博士论文,2013.7.
    [8] Clemens H, Kestler H. Processing and Applications of Intermetallicγ-TiAl-Based Alloys[J]. Advanced Engineering Materials,2000,2(9):551-570.
    [9] Yamaguchi M, Inui H, Ito K. High Temperature Structural Intermetallics[J].Acta Materialia,2000,48(1):307-322.
    [10]张树志.高Nb-TiAl合金高温变形及组织性能研究[D].哈尔滨工业大学博士论文,2013.7.
    [11] Draper S L, Krause D, Lerch B, et al. Development and evaluation of TiAlsheet structures for hypersonic applications[J]. Materials Science andEngineering: A,2007,464(1-2):330-342.
    [12] Apple F, Beaven P A, Wagner R. Deformation processes related to interfacialboundaries in two-phase γ-titanium aluminides[J]. Acta Metallurgica etMaterialia,1993,41(6):1721-1732.
    [13] Jiang Y, He Y H, Xu N P, et al. Effects of the Al content on pore structures ofporous TiAl alloys[J]. Intermetallics,200816:327-332.
    [14] Yamaguchi M, Johnson D R, Lee H N, et al. Directional solidification ofTiAl-base alloys[J]. Intermetallics,2000,8:511-517.
    [15] Ward-Close C M, Minor R, Doorbar P J. Intermetallics,1996,4:217-229
    [16] Wu X H. Review of alloy and process development of TiAl alloys[J].Intermetallics,2006,14:1114-1122.
    [17] Jeffrey, Fergus W. Review of the effect of alloy composition on thegrowth rates of scales formed during oxidation of gamma titaniumaluminide alloys[J]. Materials Science and Engineering: A,2002,338:330-342.
    [18] Smith P R, Rosenberger. A P/M approach for the fabrication of anorthorhombic titanium aluminide for MMC applications[J]. Journal ofMaterials Science2000,35:3169-3179.
    [19] Imayev V M, Imayev R M, Khismatullin T G. Mechanical Properties of theCast Intermetallic Alloy Ti–43Al–7(Nb,Mo)–0.2B (at%) after HeatTreatment[J]. The Physics of Metals and Metallography,2008,105(5):516-522.
    [20] Xu X J, Lin J P, Wang Y L, et al. Effect of forging on microstructure andtensile properties of Ti-45Al-(8–9)Nb-(W,B,Y) alloy[J]. Journal of Alloysand Compounds,2006,414:175–180.
    [21] Zhang S Z, Kong F T, Chen Y Y, et al. Evolution of grain boundary andtexture in as-forged Ti-45Al-9Nb-Y alloy during tensile test at differenttemperature[J]. Intermetallics,2012,27:31-37.
    [22] Zhang S Z, Kong F T, Chen Y Y, et al. J.P. Lin. Phase transformation andmicrostructure evolution of differently processed Ti-45Al-9Nb-Y alloy[J].Intermetallics,2012,31:208-216..
    [23] Zhang W J, Lorenz U, Appel F. Recovery, recrystallization and phasetransformations during thermomechanical processing and treatment ofTiAl-based alloys[J]. Acta Materialia,2000,48(11):2803-2813.
    [24] Fukutomi H, Nomoto A, Osuga Y, et al. Analysis of dynamic recrystallizationmechanism in γ-TiAl intermetallic compound based on texturemeasurement[J]. Intermetallics,1996,4(Supplement1):49-55.
    [25] Kim Y W. Strength and ductility in TiAl alloys[J]. Intermetallics,1998,6(78):623-628.
    [26] Cao G H, Kl den B, Rybacki E, et al. High strain torsion of a TiAl-basedalloy[J]. Materials Science and Engineering: A,2008,483-484:512-516.
    [27] Jabbar H, Monchoux J P, Houdellier F, et al. Microstructure and mechanicalproperties of high niobium containing TiAl alloys elaborated by spark plasmasintering[J]. Intermetallics,2010,18(12):2312-2321.
    [28] Appel F, Paul J D H, Oehring M. Phase transformations during creep of amultiphase TiAl-based alloy with a modulated microstructure[J]. MaterialsScience and Engineering: A,2009,510–511:342-349.
    [29] Chladil H F, Clemens H, Zickler G A, et al. Experimental studies andthermodynamic simulation of phase transformations in high Nb containingγ-TiAl based alloys[J]. International Journal of Materials Research,2007,11:1131-1137.
    [30] Cheng L, Chang H, Tang B, et al. Deformation and dynamic recrystallizationbehavior of a high Nb containing TiAl alloy[J]. Journal of Alloys andCompounds,2013,552(0):363-369.
    [31] Hu D, Wu X. Tensile ductility of cast TiAl alloys[J]. Material Science Forum,2010,38-642:1336-1341.
    [32] Bartels A, Hartig C, Willems S, et al. Influence of the deformation conditionson the texture evolution in γ-TiAl[J]. Materials Science and Engineering: A,1997,239-240:14-22.
    [33] Acoff V L, Wilkerson S, Arenas M. The effect of rolling direction onthe weld structure and hardnessof gamma-TiAl sheet material[J].Materials Science and Engineering: A,2002,329-331:763-767.
    [34]刘江平.箔冶金法制备γ-TiAl基合金板材技术基础研究[D].哈尔滨工业大学博士论文,2012.1.
    [35] Goda D J, Richards N L, Caley W F, et al. The effect of processingvariables on the structure and chemistry of Ti-aluminide based LMCSMaterials Science and Engineering: A,2002,334:280-290.
    [36] Luo J G, Acoff V L. Processing gamma-based TiAl sheet materials by cycliccold roll bonding and annealing of elemental titanium and aluminum foils[J].Materials Science and Engineering A,2006,433:334-342.
    [37]崔喜平.轧制及反应退火制备微叠层TiB2-TiAl复合材料板组织与性能[D].哈尔滨工业大学博士学位论文,2012.7.
    [38]王银.叠轧及热处理制备钛铝基复合材料板的微观组织与性能[D].哈尔滨工业大学硕士学位论文,2010.7.
    [39]黄陆军.增强体准连续网状分布钛基复合材料研究[D].哈尔滨工业大学博士学位论文,2010.1.
    [40]王博. TiBw/Ti6Al4V复合材料挤压变形与热处理研究[D].哈尔滨工业大学硕士学位论文,2010.7.
    [41] Kumpfert J, Kim Y W, Dimiduk D M. Effect of microstructure on fatigue andtensile properties of the gamma TiAl alloy Ti-46.5Al-3.0Nb-2.1Cr-0.2W[J]Materials Science and Engineering A,1995,192-193:465-473.
    [42]黄旭,齐立春,李臻熙. TiAl基复合材料的研究进展[J].稀有金属材料与工程,2006,35(11):1845-1846
    [43] Paul J D H, Lorenz U, Oehring M, et al. Up-scaling the size of TiAlcomponents made via ingot metallurgy[J]. Intermetallics,2013,32:318-328.
    [44] Biamino S, Penna A, Ackelid U, et al. Electron beam melting ofTi-48Al-2Cr-2Nb alloy: Microstructure and mechanical propertiesinvestigation[J]. Intermetallics,2011,19(6):776-781.
    [45] Appel F, Oehring M, Paul J D H, et al. Physical aspects of hot-workinggamma-based titanium aluminides[J]. Intermetallics,2004,12(7-9):791-802.
    [46]李臻熙. TIAI基合金组织控制对力学性能的影响[D].北京航空材料研究院博士论文,2000.7.
    [47]刘东戎. TiAl合金锭凝固组织形成的数值模拟[D].哈尔滨工业大学博士学位论文,2006.7.
    [48]彭超群.循环热处理对TiAl基合金组织与性能的影响[D].中南大学博士学位论文,2001.3.
    [49]董利民,崔玉友,杨锐,等.元素Si对TiAl合金抗氧化性能的影响[J].金属学报,2004,40(40):383-387.
    [50]林均品,陈国良. TiAl基金属间化合物的发展[J].中国材料进展,2009,28(1):31-37.
    [51] Okamoto H. Al-Ti(Aluminum-Titanium)[J]. Journal of Phase Equilibria,1993,14(1):120-128.
    [52]张永刚,韩雅芳,陈国良,等.金属间化合物结构材料[M].北京:国防工业出版社,2001:707-783.
    [53]曲恒磊,周廉,魏海荣. TiAl高温氧化表面分析[J].稀有金属材料与工程,2000,29(2):90-93.
    [54]周毅. Mof/TiAl复合材料的制备及变形断裂行为研究[D].哈尔滨工业大学博士论文,2013.7.
    [55] Nieh T G, Hsiung L M, Wadsworth J. Superplastic behavior of a powdermetallurgy TiAl alloy with a metastable microstructure[J]. Intermetallics,1999,7(2):163-170.
    [56] Huang Z W, Zhu D G. Thermal stability of Ti-44Al-8Nb-1B alloy[J]Intermetallics,2008,16(2):156-167.
    [57] Stark A, Bartels A, Clemens H, et al. On the Formation of Ordered ω-phase inHigh Nb Containing γ-TiAl Based Alloys[J]. Advanced EngineeringMaterials,2008,10:929-934.
    [58] Hecht U, Witusiewicz V, Drevermann A, et al. Grain refinement by low boronadditions in niobium-rich TiAl-based alloys[J]. Intermetallics,2008,16:969-978.
    [59] Park H S, Nam S W, Kim N J, et al. Refinement of the lamellar structure inTiAl-based intermetallic compound by addition of carbon[J]. ScriptaMaterialia,1999,41(11):1197-1203.
    [60] Gray S, Jacobs M H, Ponton C B, et al. A method of heat-treatment ofnear γ-TiAl to enhance oxidation resistance by the formation of a Ti5Si3layer[J]. Materials Science and Engineering A,2004,384:77-82.
    [61] Bower R W. Characteristics of aluminum-titanium electoral contacts onsiicon[J]. Applied physics letters1973,23(2):99-101.
    [62]李宝辉.含钇的TiAl基合金显微组织及性能的研究[D].哈尔滨工业大学博士学位论文,2007.6.
    [63] MecCullough C, Valencia J J, Levi C G, et al. Phase Equilibria andSolidification in Ti-Al Alloys[J]. Acta Metallurgica,1989,37(5):1321-1336.
    [64]孙涛.原位自生Ti2AlN/TiAl复合材料[D].哈尔滨工业大学博士学位论文.2012.6
    [65] Yeh C L, Su S H. In situ formation of TiAl-TiB2composite by SHS[J].Journal of Alloys and Compounds,2006,407:150-156.
    [66]吕祥鸿,杨延青,马志军.纤维增强TiAl金属间化合物基复合材料的发展[J].材料导报,2005,19(3):60-62.
    [67] Wang Y H, Lin J P, He Y H, et al. Microstructural characteristics ofTi-45Al-8.5Nb/TiB2composites by powder metallurgy[J]. Journal of Alloysand Compounds,2009,468:505-511.
    [68] Travitzky N, Gotman I, Claussen N. Alumina-Ti Aluminide InterpenetratingComposites: Microstructure and Mechanical Properties[J]. Materials Letters,2003,57(22-23):3422-3426.
    [69] Yang F, Kong F T, Chen Y Y, et al. Effect of Spark Plasma SinteringTemperature on the Microstructure and Mechanical Properties of aTi2AlC/TiAl Composite[J]. Journal of Alloys and Compounds,2010,496(1-2):462-466.
    [70] Sun F S, SeungEon, Kim, Cao C X, Lee Y T, Yan M G. A study of Ti5Si3/γinterface in TiAl alloys[J]. Scripta Materialia,2001,45:383-389.
    [71]贺连龙,叶恒强,徐仁根,等. TiAl-V-Si合金中Ti5Si3析出相与基体相的取向关系[J].金属学报,1994,4(4): A145-A148.
    [72]赵斌.含硅TiAl基合金的应用基础研究[D].上海交通大学博士学位论文,2002.
    [73] Rao K P, Zhou J B. Characterization and mechanical properties of in situsynthesized Ti5Si3/TiAl composites[J]. Materials Science and, Engineering A,2003,356:208-218.
    [74] Klassen T, Suryanarayanab, Bormann R. Low-temperature superplasticity inultrafine-grained Ti5Si3–TiAl composites[J]. Scripta Materialia,2008,59:455-458.
    [75] Leyens C, Hausmann J, Kumpfert J. Continuous Fiber Reinforced TitaniumMatrix Composites: Fabrication, Properties and Applications[J]. AdvancedEngineering Materials,2003,5(6):399-410.
    [76] Nicolaou P D, Piehler H R. Fabrication of Metal-Matrix Composites byHot-Triaxial-Compaction of Foil/Fiber/Foil Lay-Ups[J]. Scripta Materialia,1998,39(8):1077-1082.
    [77] Luo X, Yang Y Q, Liu Y C, et al. The Fabrication and Property of SiC FiberReinforced Copper Matrix Composites[J]. Materials Science and Engineeringa-Structural Materials Properties Microstructure and Processing,2007,459(1-2):244-250.
    [78] Shu S L, Qiu F, Jin S B, et al. Compression properties and work-hardeningbehavior of Ti2AlC/TiAl composites fabricated by combustion synthesis andhot press consolidation in the Ti–Al–Nb–C system[J]. Materials and Design,2011,32:5061-5065.
    [79] Ramaseshan R, Kakitsuji A, Seshadri S K. Microstructure and someproperties of TiAl-Ti2AlC composites produced by reactive processing[J].Intermetallics,1999,7(5):571-578.
    [80] Semiatin S L, Seetharaman V. Deformation and microstructure developmentduring hot-pack rolling of near-gamma titanium aluminide alloy[J].Metallurgical and Materials Transactions A: Physical Metallurgy andMaterials Science,1995,26:371-381.
    [81]杨非.机械合金化与等离子烧结制备Ti2AlC/TiAl复合材料的组织性能研究[D].哈尔滨工业大学硕士,2006.6.
    [82] Kim Y W. Gamma Titanium Aluminides[J]. Journal of the Minerals Metalsand Materials Society,1995,47:39-41.
    [83] Semiatin S L,Vollmer D C,EI-Soudani S. Understanding Failure of Near-Gamma Titanium Aluminides during Rolling[J]. Scripta Metallurgica etMaterialia,1990,24:1409-1413.
    [84] Semiatin S L, Ohls M, Kerr W R. Temperature Transients during Hot PackRolling of High Temperature Alloys [J]. Scripta Metallurgica et Materialia,1991,25:1851-1856.
    [85] Clemens H,Lorich A,Eberhardt N,et al. Technology,Properties andApplications of Intermetallic γ-TiAl Based Alloys[J]. Zeitschrift furMetallkunde,1999,90:569-580.
    [86]金永元,大雕·卡内洛.铌高温合金[M].北京:冶金工业出版社,2005,225.
    [87] Clemens H, Kestler H. Processing and Applications of Intermetallicγ-TiAl-Based Alloys[J]. Advanced Engineering Materials,2000,9:551-552.
    [88] Clemens H. Intermetallic γ-TiAl based alloy sheet materials processing andmechanical properties. Zeitschrift Fur Metallkunde,1995,86:814-822.
    [89] Kim Y W, Dimiduk D M, Loretto M H.Gamma Titanium Aluminides1999[C].The Minerals, Metals and Materials Society, Warrendale, PA,1999:25-33.
    [90]章德铭,陈贵清,韩杰才,等. EB-PVD制备γ-TiAl基合金薄板的研究[J].航空材料学报,2006,46(4):35-38.
    [91]王志韬.大尺寸TiAl基合金板材制备技术的研究[D].哈尔滨工业大学硕士论文,2009.7.
    [92]缪家士,林均品,王艳丽,等.高铌钛铝基合金板材的高温包套轧制[J].稀有金属材料与工程,2004,33(4):436-438.
    [93]徐磊,于德军,柏春光,等. TiAl合金板材的洁净雾化预合金粉末冶金制备技术.第一届高超声速科技学术会议, CSTAM-2008-0024.
    [94]张伟,刘咏,黄伯云,等.钛铝合金薄板成形技术的发展及应用研究[J].稀有金属快报,2008,27(5):1-7.
    [95]信木捻,高桥顺次,迁本得藏. TiAl金属间化合物大型溶制材高温变形[J].日本金属学会杂志,1989,53(8):809-813.
    [96] Semiatin S L, Seetharaman V. Deformation and microstructure developmentduring hot-pack rolling of near-gamma titanium aluminide alloy[J].Metallurgical and Materials Transactions A: Physical Metallurgy andMaterials Science,1995,26:371-381.
    [97] Semiatin S L, Ohls M, Kerr W R. Temperature Transients during hot packrolling of high temperature alloys[J]. Scripta Metallurgica et Materialia,1991,25:1851-1856.
    [98] Takeyamaa M, Kobayashi S. Physical metallurgy for wrought gammatitanium aluminides Microstructure control through phase transformations[J].Intermetallics,2005,13:993-999.
    [99] Hanamura T, Hashimoto K. Improvement of microstructure and mechanicalproperties in TiB2-droped TiAl alloy by direct sheet casting[J]. MaterialsTransactions,1998,39:724-730.
    [100]章德铭,任先京,马江虹等. TiAl基合金薄板制备技术的研究进展[J].宇航材料工艺,2009,2:15-20.
    [101]江垚,贺跃辉,汤义武,等.元素粉末冷轧成形及反应合成制备TiAl合金板材[J].中国有色金属学报,2004,14(9):1501-1507.
    [102] Alman D E, Hawk J A, Rawers J C. Processing intermetallic composites byself-propagating, high-Temperature Synthesis[J]. Journal of the MineralsMetals and Materials Society,1994,3:31-35.
    [103] Zhang R G, Acoff V L. Processing sheet materials by accumulative rollbonding and reaction annealing from Ti/Al/Nb elemental foils[J]. MaterialsScience and Engineering A,2007,463(1-2):67-73.
    [104] Chaudhari G P, Acoff V L. Titanium aluminide sheets made using rollbonding and reaction annealing[J]. Intermetallics,2010,18:472-478.
    [105] Zhang J L, Synthesis of γ-TiAl foils and sheets by innovative reactivediffusion methods from elemental Ti and Al[J]. Intermetallics,2010,18:2292-2300.
    [106] Yang R, Cui Y Y, Dong L M, Jia Q. Alloy development and shell mouldcasting of gamma TiAl[J]. Journal of Materials Processing Technology,2003,135:179-188.
    [107] Peng L M, Wang J H, Li H, et al. Synthesis and microstructuralcharacterization of Ti-Al3Ti metal-intermetallic laminate (MIL) composites[J].Scripta Materialia,2005,52:243-248.
    [108] Peng L M, Li H, Wang J H. Processing and mechanical behavior of laminatedtitanium-titanium tri-aluminide (Ti-Al3Ti) composites[J]. Materials Scienceand Engineering A,2005,406:309-318.
    [109] Wang L J, Jiang W, Qin C, Chen L D. Effect of starting SiC particle size onin situ fabrication of Ti5Si3/TiC composites[J]. Materials Science andEngineering A,2006,425:219–224.
    [110] Kooi B J, Kabel M, Kloosterman A B, et al. Reaction lauers around SiCparticles in Ti: an electron microscopy study[J]. Acta Material,1999,47(10):3105-3116.
    [111] Fu Y C, Shi N L, Zhang D Z, et al. Effect of C coating on the interfacialmicrostructure and properties of SiC fiber-reinforced Ti matrix composites[J].Materials Science and Engineering A,2006,426:278–282.
    [112] Yang Y Q, Ma Z J, Lv X H, et al. Studies on Interface of SiCf/Ti-6Al-4VComposites[J]. Rare Metal Materials and Engineering,2006,35(10):50-56.
    [113] Djanarthany S, Claude J, Bouix V J, Development of SiC:TiAl composites:processing and interfacial phenomena[J]. Materials Science and EngineeringA,2001,300:211-218.
    [114] Silvain J F, Bihr J C, Lepetitcorps Y. EPMA and XPS studies of TiAl-SiCinterfacial chemical compatibility [J]. Composites Part A,1996,2lA:691-695.
    [115] Liu H J, Feng J C, Qian Y Y. Interface structure and formatin mechanism ofdiffusion-bond joins of SiC ceramic to TiAl-based alloy[J]. Scripta Mater.2000,3:49–53.
    [116] Tenyama1K,Masakatsu M,Toshiya S,et al. Interfacial microstructure ofsilicon carbide and titanium aluminide Joints produced by solid-statediffusion bonding materials transaction,2004,45:2734-2739.
    [117]杨梅君. SiCp/Al电子封装复合材料的SPS烧结及性能研究[D],武汉理工大学硕士论文,2006,4.
    [118]王蕾,王静,包磊,等.颗粒增强Al基复合材料组织和性能的研究[J].武汉科技大学学报,2008,31(3):328-332.
    [119] Peng J T,Liu Z Y,Xia P, et al. On the interface and mechanical property ofTi/Al-6%Cu-0.5%Mg-0.4%Ag bimetal composite produced by cold-rollbonding and subsequent annealing treatment[J]. Material Letter.2012,74:89–92.
    [120] Jiang L, Li Z Q, Fan G L, et al. A flake powder metallurgy approach toAl2O3/Al biomimetic nanolaminated composites with enhanced ductility[J].Script Material,2011,65:412-415.
    [121] Yue X, He P, Feng J C, et al. Microstructure and interfacial reactions ofvacuum brazing titanium alloy to stainless steel using an Ag Cu Ti fillermetal[J]. Materials characterization,2008,59:1721-1727.
    [122] Cui X P, Fan G H, Geng, L, Wan Y, et al. Growth kinetics of TiAl3layer inmulti-laminated Ti-(TiB2/Al) composite sheets during annealing treatment[J].Materials Science and Engineering A,2012,539:337-343.
    [123] Peng J, Liu Z, Xia P, et al. On the interface and mechanical property ofTi/Al-6%Cu-0.5%Mg-0.4%Ag bimetal composite produced by cold-rollbonding and subsequent annealing treatment[J]. Materials Science andEngineering A,2012,74:89-92.
    [124] Mizuuchi K, Inoue K, Sugioka M, et al. Microstructure and mechanicalproperties of Ti-aluminides reinforced Ti matrix composites synthesized bypulsed current hot pressing[J]. Materials Science and Engineering A,2004,368:260-268.
    [125] Gu C,Lian J,Jiang Z, et al. Enhanced tensile ductility in an electrodepositednanocrystalline Ni[J]. Scripta Materialia,2006,54:579-584.
    [126] Koch C C, Morris, D G, Lu K, Ductility of nanostructured materials[J].MRS Bulletin,1999,24:54-58.
    [127] Rawers J C,Wrzesinski W R, Roub E K, et al. TiAl–SiC composites preparedby high temperature synthesis[J]. Materials Science and Technology,1990,6(2):187-191.
    [128]祝国梁,疏达,戴永兵,等. Si在TiAl3中取代行为的第一性原理研究[J].物理学报,2006,58: s210-s215.
    [129] Wu Y F, Kim G Y, Iver E, et al. Fabrication of Al6061composite with highSiC particle loading by semi-solid powder processing[J]. Acta Materialia,2010,58:4398–4405.
    [130] Zhu G L, Dai Y B, Shu D, et al. Substitution behavior of Si in Al3Ti(DO22): afirst-principles study [J] Journal of Physics: Condensed Matter,2009,21:415-503.
    [131] Takeshi I, Takayuki Y, Shigenari H, et al. Sulfidation properties of TiAl–2at.%X (X=Si, Mn, Ni, Ge, Y, Zr, La and Ta) alloys at1173K and1.3Pasulfur pressure in an H2S–H2gas mixture[J]. Intermetallics,2002,10:353–360.
    [132] Gooken M, Kempf M, Nix W D, Hardmess amd Moduus of the LamellarMiicrostructure in PS-TiAl Studied by Nanoindentations and AFM[J]. ActaMater,2001,49:903–911.
    [133] Mackowiak J, Shreir L L. Kinetics of the interaction of Ti(s) with Al [J].1968,15(3):341-346.
    [134] Frommeyer G, Wunderlich W, Kremser T, et al. Strength properties andenhanced plasticity of intermetallic Ti-Al-(CrSi) alloys[J]. Materials Scienceand Engineering A,1992,152(1-2):166-172.
    [135] Yue Y L, Gong Y S, Wu H T. Fabrication and Mechanical Properties ofTiC/TiAI Composites[J]. Journal of Wuhan University ofTechnology-Material Science Edition,2004,19:1-4.
    [136] Mei B C, Lin J S, Miyamoto Y, et al. Microstructures and MechanicalProperties of TiAl/Ti2AIC Composites Prepared by Pulsed-Electric CurrentSintering[J].2000,40: S77-S81.
    [137] Suzata M, Bhargava S, Sangal S. On the formation of TiAl3during reactionbetween solid Ti and liquid Al[J]. Journal of Matreials Science Letters,1997,16:1175-1178.
    [138] Cnrkstopher R, Jeffery H, EMMA C, et al. Properties of Ti8C5thin filmscreated at different temperatures using magnetron sputtering[C]. AbstractSubmitted for the MAR13Meeting of The American Physical Society,2012.
    [139]李新宇,高陇桥,刘征,等. CVD金刚石薄膜金属化及其与金属的焊接研究[J].真空电子技术,2010,04:43-46.
    [140] Zhang X F,Lu A X. Effects of titanium coating on property of diamond[J].Transactions of Nonferrous Mteals Society of China,2007,17:715-719.
    [141]马士剑,张平则,缪强,等. C-TiAl辉光等离子无氢渗碳后的组织及性能研究[J].热处理,2007,22(5):26-29.
    [142] Zou Y, Sun Z Mi, Tada S J, et al. Liquid Reaction during Synthesis of Ti3SiC2through Pulse Discharge Sintering Ti/Si/TiC Mixed Powders[J]. MaterialsTransactions,2006,47(12):2987-2990.
    [143] Shan D, Yan G, Lian Z, et al. Synthesis of Ti3SiC2bulks by infiltrationmethod[J]. Journal of Alloys and Compounds,2011,509-513.
    [144] Zhang X W, Wang X H, Li F Z, et al.Mechanical and Thermal Properties ofAntiperovskite Ti3AlC Prepared by an In Situ Reaction/Hot-PressingRoute[J]. Journal of the American Ceramic Society,2009,92(11),2698-2703.
    [145] Du Y L. Electronic Structure and Elastic Properties of Ti3AlC fromFirst-Principles Calculations[J]. China physic letters,2009,26(11):117102.
    [146] Hall E L, Ritter A M. Structure and behavior of metal/ceramic interfaces in Tialloy/SiC metal matrix composites[J]. Journal of Material Research.1993,8(5):1158-1168.
    [147] Yoshida O, Hoshiyama Y, Ommyo J, et al. Reaction mechanism for thesynthesis of Ti3AlC2through an intermediate carbide of Ti3AlC fromelemental Ti, Al, and C powder,mixture[J]. Journal of the Ceramic Societyof Japan,2010,118(1),37-42.
    [148]郭俊明,陈克新,王宝森,等. TiAl3对燃烧合成Ti3AlC的影响[J].稀有金属材料与工程,2006,35(11):1708-1711.
    [149]曲选辉,黄伯云,吕海波,等. TiAI有序金属间化合物中的层错带与变形孪晶[J].1992,11(3,4):31-38.
    [150] Williams J J, Kramer M J, Akinc M. Thermal expansion of Ti5Si3with Ge, B,C, N, or O additions [J]. Journal of Materials Research,2000,15:1780-1785.
    [151] Zhang L, Wu J. Thermal expansion and elastic moduli of the silicide basedintermetallic alloys Ti5Si3(X) and Nb5Si3[J]. Scripta Materialia,1998,38:307-313.
    [152] Mitra R. Microstructure and mechanical behavior of reaction hot-pressedtitanium silicide and titanium silicide-based alloys and composites[J].Metallurgical and Materials Transactions A,1998,29:1629-1641.
    [153]公衍生. TiC颗粒增强TiAl金属间化合物基复合材料的制备与性能研究[D].济南大学硕士学位论文,
    [154] Rao K T, Odette G R, Ritchie R O. On the contrasting role of ductile-phasereinforcements in the fracture toughness and fatigue-crack propagationbehavior of TiNb/γ-TiAl intermetallic matrix composites[J]. ActaMetallurgica et Materialia,1992,40(2):353-361.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700