用户名: 密码: 验证码:
城市污水流动与换热及污垢增长特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源与环境问题的压力日趋严重,“节能减排”已成为世界各国发展的大政方针。城市原生污水以水温适中、数量巨大、分布广泛等特点,成为极佳的可再生绿色低位能源。但由于城市污水的水质很差、对换热设备污染严重等问题限制了城市污水低位冷热源的推广与应用。把握污染对流动换热的影响是污水冷热源应用的重要问题之一。该方向上研究成果的成熟程度目前还不足以指导工程应用。本文围绕污水对换热设备的污染问题,对城市原生污水的流动、换热特性、设备污垢对系统流动换热的影响、钛纳米聚合物涂料在换热管内的应用等进行了分析,旨在为污水冷热源的应用与推广提供依据。
     污水的流动与换热特性是污水冷热源系统分析与应用的基础。论文通过实验对污水的流变特性进行了测定,分析得出了污水流变本构方程。论文还对污水在圆管中的速度分布与温度分布进行了分析,推导了圆管中污水紊流流动的阻力系数计算式与换热准则关联式。并给出与清水相比,流动阻力增大与对流换热系数减小的幅度。
     如何把握与克服污水换热设备的污垢对系统流动换热的影响是应用的重点难题。论文通过对换热设备内污垢成分的分析,发现污染换热设备的主要为有机污垢。论文分析了其增长模型,并发现流速对污垢的沉积过程影响很大。论文通过实验数据总结出了多种常用换热管内污垢热阻的增长模型;结果表明其为随时间变化的渐近型函数。在污垢对流动阻力的影响方面,论文进行了换热器的整体实验,得到了简便实用的污垢压降模型。
     纳米涂料的应用是对污水换热器防、抗垢技术的新探索。论文依据污水及管内污垢的特性选择适当的纳米涂料,并对纳米涂料管内的污水流动、换热、污垢增长特性等进行了实验研究。通过经济技术参数的对比分析,获知采用适合的纳米涂料是抗垢的有效手段。
     本文对城市原生冷热源系统内污水对换热设备污染特性的研究与分析,为污水冷热源的工程设计、设备开发,系统管理与进一步的研究提供了参考。
With the serious issues about energy and environment increasingly,“saving energy and reducing emission”has become the one of important policy of many countries of world. And the city untreared sewage is an excellent renewable low potential energy because it is moderate temperature, large quantity and widespread distribution. But the application and popularization of city sewage cooling and heating source are limited because of the puzzle of bad quality of water, complex component and fouling of city sewage. How to calculate and analyse the characteristic of flow, heat transfer and fouling has been bottleneck of application and popularization of city sewage cooling and heating source. And it is not enough to application for present researches. Aiming at the requirements of engineering, the characteristics of flow, heat transfer, biofouling of sewage, the application of nanometer taitanium polimer covering material by theoretical derivation and field engineering experiments. These will supply base ground for the application and popularization of city sewage cooling and heating source.
     The characteristics of flow and heat transfer of sewage are the bases of application of city sewage cooling and heating source. In this paper the rheology of sewage is tested and measured and the constitutive equations of rheology is reached by experiments. And the velocity field and temperature field of sewage in circle pipe are analysed. In addition to, the equation of coefficient of drag of flow and heat transfer rule equation of sewage in circle pipe under turbulence are developed by calculated. The differences of coefficient of drag of flow and convection heat transfer between sewage and clean water are analyzed.
     How to analysis and overcome the impact of heat exchanger fouling is a key problem of application of sewage. The component of fouling is analysed in this paper. It is found that the foulings impact heat exchangers are organic foulings mainly. And the models of development of fouling formation are study. The impacts of velocity of sewage to biofouling deposit are explored base on the characteristic of stress and deposit model in every stage. The thermal resistance models of fouling of six common heat transfer pipes used is reached. They are asymptotic function of time. And the press loss model of fouling of heat exchanger is developed through calculation and experiments.
     The application of nanometer taitanium polimer covering material is new technology of anti-fouling of sewage heat exchanger. The proper nanometer covering material is chosen base on the characteristics of fouling. And the characteristics of flow, heat transfer and fouling of sewage in nanometer coat pipes are study. By contrast with other pipe material that can be known the proper nanometer coat is an availability anti-fouling method.
     In a word, the researches and analysis of characteristics of city sewage and fouling support supply to engineering application, management of system and further study of sewage cooling and heating source.
引文
1科技日报网中长期科技发展规划.能源、资源与海洋发展科技问题研究组组长王大中答记者问.2004年6月25日. http://www.stdaily.com
    2龙惟定,王长庆,丁文婷.试论中国的能源结构与空调冷热源的选择取向.暖通空调.2000,30(5):27~32
    3龙惟定,白玮等.中国住宅空调的未来发展.暖通空调.2002,32(4):43~47
    4龙惟定.试论我国暖通空调业的可持续发展.暖通空调.1999,29(3):25~30
    5江亿.建筑节能——实现可持续发展的必由之路.科技潮.2005,198(6):1~3
    6焦红光,胡正彬.浅谈我国燃煤污染危害及其防治.选煤技术.2004,(2):3~7
    7范存养,林忠.住宅环境设备的现状与发展.暖通空调.2002,32(4):34~42
    8孙德兴,吴荣华,张承虎等.开发水源技术解决热泵发展的瓶颈问题.中国勘察设计.2006,21(5):30~32
    9高振生,严应政.空调冷热源方案优化级抉择.暖通空调.2004,34(4):40~41.
    10 Energy Information Administration. International Energy Outlook 1999, DOE/EIA~0484(99), http/www.eia.doe.gov, March 1999
    11朱俊生.国内外新能源和可再生能源发展现状.节能与环保,2001,(4):33~35
    12 Nesreen Ghadder, Yvonne Nasr. Experimental study of a refrigerant charged solar collectter. Int. J. of Energy Research, 1998, (22): 625~638
    13 William S. Fleming. Ground~Source heat pump design and operation~experience within an Asian country. ASHRAE Trans, 1998, 104(1): 771~774
    14 Watanabe, Choyu. Super heat pump system using river water as a heat source.ASME/JSME Thermal Engneering Joint conference Proceeding.1995
    15张积太.空气源热泵型冷热水机组在胶东地区的设计尝试及技术经济分析.暖通空调, 1997, 27(6): 17~20
    16周立.风冷热泵机组环境温度使用范围及除霜技术.暖通空调,1995, 25(8):58~61
    17 Wang H, Touber S. Distributed and unsteady state Modeling of air cooler. Int. J. Refrig. 1991, 14(3): 98~111
    18张群力,王晋.地源热泵和地下水源热泵的研发现状及应用过程中的问题分析.流体机械, 2003, (5): 50~54
    19 Jitenda B. Singh, Gustav Foster Jr. Representative operating problems of commercial ground~source and groundwater~source heat pumps. ASHRAE Trans, 2000, 107(2): 561~568
    20 Cane R L D, Forgas D A. Modeling of GSHP performance. ASHRAE Trans ,1991, 97(1): 909~925
    21 Piechowski M. Heat and mass transfer model of a ground heat exchanger: theoretical development . Int. J. of Energy reseach ,1999, 34(7): 571~588
    22梁伟臻,吴大为.污水处理厂集水量的确定方法.中国给水排水, 2003, 19(12): 72~74
    23马最良,姚杨.污水源热泵系统的应用前景.中国给水排水, 2003, 19(7): 41~43
    24崔福义,李晓明.污水资源及其在热泵供热中的应用.低温建筑技术, 2005, (1): 96~97
    25 Kevin Rafferty. Groundwater heat pump systems: experience at two high schools. ASHRAE Trans, 1996, 102(1): 922~928
    26 David R Dinse. Geothermal systems for school. ASHRAE Trans, 1998, 104(5): 872~876
    27 Nakazato T.. Urban Heat. Mizu, 1987, (8): 61~67
    28王宏哲,尹军.我国城市污水热能热能有效利用存在的差距与对策.中国环境管理, 2001, (3): 20~22
    29 KIER (Korea Institute of Energy Research). Feasibility Study on heat hump system using waste thermal hot water as a heat source. Internal report, 2001
    30吴荣华.城市原生污水源热泵系统研究与工程应用哈尔滨工业大学博士论文. 2005: 15~30
    31Φdegaard H, Skrφvseth A F. An evaluation of performance and process stability of different process for small wastewater treatment plants. Wat. Sci. Tech. , 1997, 35(6): 119~127
    32吴荣华,孙德兴.城市原生污水冷热源应用的关键因素研究.哈尔滨商业大学学报, 2004 , 20(6): 86~88
    33 Lines James R. Heat exchanger in municipal wastewater treatment plants. Water/Engineering and Management, 1991, (9): 28~29
    34 Walker S. Energy form waste in the sewage treatment process. IEE Conference, 1996, (3): 73~75
    35章熙民,任泽霈,梅飞鸣.传热学(第四版).北京:中国建筑工业出版社,2001:85~109
    36 Funamizu N, Iisa M. Reuse of heat energy in wastewater: implementation examples in Japan. Water Science and Technology, 2001, 43(10): 277~286.
    37大迫健一.全国初の下水(未处理)を利用した地域冷暖房.建筑设と偏配管工时,1993:15~28
    38杨善让,徐志明,孙灵芳.换热设备的污垢与对策(第二版).北京:科学出版社,2004:3~52
    39李鑫.污水源热泵系统中换热器内污垢生长特性研究.哈尔滨工业大学硕士论文2007:15~18
    40下水道多目的活用研究会编.下水道最先端一下水道の多目的活用.理工图书朱式会社,1997:25~39
    41 Funamizu N, Ogoshi M. Reuse of water and heat energy in wastewater in Japan.
    21世纪国际城市污水处理及资源化发展战略研讨会与展览会会议论文.北京,2001
    42吴荣华,张承虎,李贵涛等.地表水源热泵系统节能系数与环境影响研究.太阳能学报. 2007, 38(7): 751~755
    43 Bansal B and Muller~steihagen H. crystallization fouling in palte heat exchangers. Journal of heat transfer, 1993,(115):584~591
    44刘永辉,张佩芬.金属腐蚀学原理.北京:航空工业出版社,1993:32~45
    45 Muller~steinhagen H. fouling of heat exchanger surfaces. Chemistry & industry, 1995,(3):171~175
    46张晓峰,张小萌.管壳式换热器的腐蚀与防护分析.化工装备技术.1997,(1):52~55
    47吴荣华,张承虎,孙德兴.城市污水冷热源应用技术发展状况研究.暖通空调. 2005:31~37
    48吴荣华,孙德兴.城市原生污水冷热源污水流动阻塞与换热特性.暖通空调, 2005, 35(2):54~56
    49 Kavanaugh S P. Design considerations for ground and water source heat pumps in southern climates. ASHRAE Transactions, 1989, 95(1): 1139~1149
    50 Kavanaugh S P, Pezent M C. Lake water applications of water~to~air heat pumps . ASHRAE Transactions, 1990, 96(1): 813~820.
    51üyükalaca O, Eklnci F, Yimaz T. Experimental investigation of Seyhan River and Dam Lake as heat source–sink for a heat pump. Energy, 2003, 28: 157~169.
    52 Netero A M. Lakes as a heat source in cold climate. International Congress of Refrigeration. Washington D C, 2003: 1~8
    53文远高.武汉地区的低温热能资源及其利用方式.节能与环保.2004(6):18~20
    54秦红,文远高,张文华.空调系统的地表水利用及其节能和环境影响分析.全国暖通空调制冷1998年学术年会论文集.北京:中国建筑工业出版社,1998:565~569
    55陈焰华,祈传斌.武汉地区水源热泵系统应用前景分.全国暖通空调制冷2002年学术年会论文集.北京:中国建筑工业出版社,2002:123~126
    56云霞,方肇洪,张林华等.地表水源热泵系统的设计.可再生能源.2003,(3):30~32
    57何满潮,李学元.混合水源联动运行空调技术及工程应用.矿业研究与开发.2004,24(1):30~33
    58李亚峰,陈平.利用热泵技术回收城市污水中的热能.可再生能源2002( 6): 23~ 24
    59白莉.城市污水热能利用技术的实验研究.长春:吉林大学2002:13~23
    60王宏哲.城市污水热能利用的探讨.环境保护,2001, 26 ( 11) : 44~45.
    61 JAMESR L Heat exchanger in municipal wastewater treatment plants. Water/Engineering and Management 1991, 9, 28~29
    62伊均,王宏哲,书新东.城市污水热能利用技术及展望.吉林建筑工程学院学报. 2001 14(2): 15~17
    63王宏哲,伊均.我国城市污水热能有效利用存在的差距与对策.中国环境管理2001, 21( 3): 20~ 22
    64伊军.城市污水中的热能回收与利用.中国给水排. 1998, 14( 2): 33~ 34
    65冯彦刚.城市污水资源化的研究.北京:北京工业大学,2002:67~74
    66涛郁.管道内污水两相流动的阻力特性.重庆:重庆大学硕士学位,2002:12~17
    67王光谦.固液两相流与颗粒流的运动理论与实验研究.北京:清华大学博士学位论文, 1989:15~19
    68 Buyevich,Y,A Hydrodynamic Model of Disperse Systems, J.of Applied Mathematics and Mechanics,1969, 33(3): 482~486
    69 Buyevich,Y,Statistical Hydrodynamics of Disperse Systems, I ,Physical Background and general Equations, J. Ftuid Mech. , 1971, (1): 489~490
    70 Murray J.D.,On Equations of Motion for a Particle~Fluid Two Phase Flow,National Center For Air Pollution Control Grant Ap00455~01,Aerosols Tech. Rep.,1966, (1): 78~81
    71 Anderson,T.B.& Jackson,R.Fluid Mechanical Description of Fluidized Beds, Int. Eng. Cbem. Fundam, 1967, (5): 527~539
    72 Murray J. On the Mathematics of Fluidization,Fundamental Equations and Wave Propagation. J. Fluid Mech., 1965, (21): 465~493
    73 Liu Da~you. Discusssion on the concepts of two~phase flow, multiphase flow, multifluid and non~newtonian flow. Advances in Mechanics, 1994, 24(1): 66~73
    74 Liu Da~you. A comment on the defect of sediment theory–a discussion on the suitability of the diffusion model and the Fick’s law. Journal of Sediment Research,1996, (3): 39~44
    75刘大有.描写混合物运动的双流体模型与扩散模型.第4届全国多相流、非牛顿流和物理化学流学术会议论文集.西安.1993:21~26
    76张维佳,潘大林编著.工程流体力学.哈尔滨:黑龙江科学技术出版社,2001:62~69
    77屠大燕编著.流体力学、泵与风机.北京:建筑工业出版社,1994:84~92
    78蔡增基,李炳田.管道内污水两相流的阻力计算.管道技术与设备, 2005(3):12~14
    79刘大有.再论二相流基本方程—关于固体碰撞应力的讨论.中国科学(A辑)1998.28(1):72~79
    80刘大有.研究多相介质运动的意义、内容和方法.力学与实践1995.17.(6):1~10
    81赵丽娟倪福生.管道固~液两相流研究的意义、内容和方法.管道技术与设备2003(1): 3~6
    82段金明周敬宣.真空排污管内多相流动阻力特征研究.华中科技大学学报. 2006.23.(1):46~48
    83汪体乾.化工流变学.上海.华东理工大学出版社.2003:86~125
    84汪体乾.非牛顿流体流态分析.力学学报. 1988.20(3)29~36
    85 A B Metaner, D W Doge, Rheologia Acta, Band 1. P 205
    86 Toms B A. Some observations on the Flow of Linear Polymer Solutions through Straight Tubes at Large Reynolds Numbers. In: Proc.1st. Int. Cong. R.heol Vol. II 1948: 135
    87王红苗,葛绍岩,姚永庆. b/a=0.5的椭圆形通道内非牛顿流体的强化传热.工程热物理学报1996 17(2):203~209
    88唐福瑞等.搅拌槽内非牛顿流体换热特性.化工学报,1983 (4):289
    89 Leidenfrost J. G Int. J. Heat Mass Transfer, 1756, 9:1153~1166
    90 Sieder E N. Application of Fouling Factors in the Design of Heat Exchangers,Heat Transfer, ASME, NewYork: 1935, 82~86
    91 TEMA. Tubular Exchanger Manufacture Association, Standards of Tubular Exchanger Manufactures Association, New York, 1941
    92 Kern D.Q and Seaton R.E. A theoretical analysis of thermal surface fouling. Chem. Engineering Progress, 1959, 4: 258~262
    93 Knudsen J.Cx,Edit by Marto PJ. and Nunn R.H Power condenser heat transfertechnology. Washington D.C. Hemisphere Pub. Co.,1981:213~246
    94 Fischer P, Suiter J W and Ritter R.B. Fouling Measurement Techniques. Chem. Eng. Pro,1975,71:66~72
    95 Suitor J.W, Marner WJ and Ritter R.B. Can. J. Chem. Eng. 1977, 55:374
    96 Hasson D and Bramson D. Effective of Magnetic Water Treatment in Suppressing CaCO; Scale Deposition. Ind. Eng. Chem. Process. Dev. 1985 24(3):588~592
    97 Taborek J, Aoki T., Ritter R.B., Palen J.W. and Knuden J.Cx Fouling: The Majour Unresolved Problem in Heat Transfer. Chem. Eng. Prog., 1972, 68(2):59~67
    98 Epstein N. Fouling in Heat Exchangers. Proceed. 6th Int. Heat Transfer Conf, Heat Transfer, 1978,6:235~253
    99 Somerscales E.F.C. and Knudsen Eds. Fouling of Heat Transfer Equipment.Washington: Hemisphere Publishing Corp., 1981:146~149
    100 Epstein N, Fouling in heat exchangers in Heat exchanger theory and practice. Eds Taborek J &Hesitt G McGraw~Hill: Hemisphere Publishing Corp., 1983:49~85
    101 Melo L.F, Bott T.R. and Bernardo C.A. Fouling Science and Technology. Dordrecht, Boston and London: Kluwer Academic Publishers, 1988:78~94
    102 Yiantsion S.C and Karabelas A.J. Fouling of Tube Surfaces: Modeling ofRemoval Kinetics. AIChE J. 1994, 40(11):1804~1813
    103杨善让,徐志明.换热设备的污垢与对策.北京:科学出版社,1995:23~85
    104 Kern D.Q. and Seaton R.E., A theoretical analysis of thermal surface fouling. Chem. Eng. Prog.1959. 4:258~262
    105 Bridgwater J and Loo C.E. Removal of crystalline scale: mechanism and the role of thermal stress. In 1st UK Heat Transfer Conference Symposium Series 1984,No.86,455~463(1984)
    106 Cleaver J.W and Yates B. Mechanism of detachment of colloid particles from a flat substrate in turbulent flow. J. Colloid Interface Sci.,1973,44:464~473
    107 Cleaver J.W and Yates B. A sublayer model for the deposition of the particles from turbulent flow Chem. Engi. Sci.,1975,30:983~992
    108 Cleaver J.W. and Yates B. The effect of re~entrainment on particle deposition. Chem. Eng. Sci.,1976,31:147~151
    109 Yang B.P.K, Merry H. andreentramment m aqueous systems. Bott T.R. The role of turbulent bursts in particle Chem. Eng. Sci.,1989,44(4):873~882
    110 Bolt R.B. General fouling problem. In Fouling Science and Technology, Eds. Melo L.F., Bott T.R. and Bernardo C.A., Dordrecht, Boston and London: Kluwer Academic Publishers ,1988:356~387
    111 Epstein N. In Somerscales E.F.C and Knuden J.Cx Eds. Fouling of Heat Transfer Equipment, Washington: Hemisphere Publishing Corp. ,1981:26~34
    112 Krause S. Fouling of Heat~Transfer Surface by Crystallization and Sendimentation. International Chemical Engineering,1993,33(3):355~401
    113 Bansal B, Muller~Steighagen H and Chen X.D. Effect of Suspended Particles on Crystallization Fouling in Plate Heat Exchangers. Transactin of the ASME, Journal of Heat Transfer, 1997,119:568~574
    114徐志明,王建国,杨善让等,微粒污垢剥蚀机制研究.工程热物理学报,1998 19(5):611~615
    115 Watkinson A.P and Marinez O. Scaling of Heat Exchanger by Calcium Carbonate. Transaction of the ASM, Journal of Heat Transfer, 1975 ,97(2):504~508
    116崔福义,李晓明,周红.污水换热器污垢热阻特性研究,煤气与热力2005 6(25):9~12
    117 Bott. T. R. and P. C. Miller. 1983. Mechanisms of Biofilm Formation on Aluminum Tubes. Journal of Chemical Technology and Biotechnology, 33B: 177~184.
    118刘志斌,张承虎,钱剑峰,黄磊,李桂涛,孙德兴.城市污水冷热源污水污杂物分级浓度的实验分析.流体机械.2007,35(1):56~60
    119孙德兴,吴荣华.城市污水冷热源的应用方法与装置.中国,发明专利,专利号:ZL03132553.X
    120 Harty, D. W. S.. 1980. Microbial Fouling of a Simulated Heat Transfer Surfaces In Phd. Thesis Anniversary of Birmingham, Chemical Engineer Department.235~239
    121 Nesartnam, R. N 1984. Biofilm Formation and Destruction on Simulated Heat Transfer Surfaces. In Phd. Thesis University of Birmingham, Chemical Engineering Department.156~164
    122 Bott, T. R. and P. C. Miller. 1983. Mechanisms of Biofilm Formation on Aluminums Tubes. Journal of Chemical Technology and Biotechnology, 33B: 177~184.
    123 Flemming, H. C. 1991. Biofouling in Water Treatment. In Biofouling and Biocorrosion in Industrial Water Systems, H. C. Flemming G. G. Geesey, Eds., pp.47~80. Springer Verlag, Berlin.
    124 Stotsky, G.. 1966. Influence of Clay Minerals on Microorganisms. Can. J. Microbiology.12, 831~848.
    125 Filip, Z. and Hattori, T.. 1984. Utilization of Substrates and Transfermation bSubstrate. In Microbial Adhesion and Aggregation, K. C. Marshall, Ed. Pp of Solid 251~282. Springer Verlag, Berlin
    126 Bums, R. G. 1979. Interaction of Microorganisms, Their Substrates and Their Products with Soil Surfaces. In Adhesion of Microorganisms to Surfaces. D. C. Elwood, J.Mellins and P. R. Rutter, Eds. pp. 109~138, Academic Press, London.
    127 Bums, R. G.. 1989. Microbial and Enzymic Activities in Soil Biofilms. In Structure and Function of Biofilms. W. G. Characklis and P. A. Wilderer, Eds. Pp. 333~349, Wiley, New York.
    128 Marshall, K. C. 1989. Adsorption of Microorganisms to Solids and Sediments. In Adsorption of Microorganisms to Surfaces, G. Bitton and K. C. Marshall, Eds. Pp. 317~329. Wilev. New York.
    129 Bowen, R. B. And Dempscy, B. Improved Performance of Actived withAddition of Inorganic Solids A. 1992. Sludge Water Science Technology. 26(9~11)
    130 Chudoba, P, and Pannier, M.. 1994. Use of Powdered Clay to Upgrade 2511~2514.Actived Sludge Process. Environ. Technolo. 15, 863~870.
    131 Characklis, W. Cx and K. E. Coolcsey. 1983. Biofilms and Microbial Fouling. Advances in Applied Microbiology 29: 93~138
    132 Dempsey, M. J.. 1981. Colonization of Antifouling Paints by Marine Bacteria. Bot Mar. 24:185~192.
    133 Dott, W. and D. Schoenen. 1985. Qualitative and Quantitative Examination of Bacteria Found in Aquatic Habitats. Communication, Development of Bacterial Aufwuchs on different Working Materials Exposed to PoTab Water. Zentralblatt fur Bakteriology, Hygiene and Parasitenkunde 180: 436~447
    134 Little, B. J. P Wagner, J. S. Make, M. Walch, and R. Mitchell. 1986. Factors Influencing The Adhesion of Microorganisms to Surfaces. Journal of Adhesion 20: 187~210.
    135 McEldowney, S. and M. Fletcher. 1986. Variability of The Influence of Physicochemical Factors Affecting Bacterial Adhesion to Polystyrene Substrata Applied Environmental Microbiology 52: 460~465.
    136 Pedersen, K. 1990. Biofilm Development on Stainless Steel and PVC Surfaces in Drinking Water. Water Research 24: 239~243.
    137李晓明.回收污水热能时水质对换热设备腐蚀和结垢影响的研究.哈尔滨:哈尔滨工业大学博士学位论文. 2005:45~49
    138陈胜.悬浮填料生物膜特性及其处理高浓度有机废水效能研究.哈尔滨:哈尔滨工业大学博士学位论文. 2006:65~72
    139于瑞红.冷却水系统中生物垢影响因素的研究.大连:大连理工大学硕士学位论文. 2000:2~15
    140周世宁.现代微生物微生基础.北京:高等教育出版社. 2007:3~5
    141 Baier, R. E.. 1979. Early Events of Micro~Biofouling of All Heat Transfer Equipment. Proc. Int. Conf. On Fouling of Heat Transfer Equipment Rensselaer Polytechnic Institute. Troy, NY, USA (E. F. C. Somerscales and J. G. Knudsen, Eds.).26~38
    142 Corpe, W. A. 1980. Microbial Surface Components Involved in Adsorption of Microorganisms Onto Surfaces. In Adsorption of Microorganisms to Solid Surfaces, edited by G. Bitton and K. C. Marshall. New York: John Wiley, pp.106~144.
    143 Characklis, W. G.. 1981. Microbial Fouling: A Process Analysis. In Fouling of Heat Transfer Equipment, edited by E. F. C. Somerscales and J. G Knudsen. Washington, D. C.: Hemisphere, pp. 251~291.
    144 Characklis, W. G.. 1990. Microbial Fouling. In Biofilms, edited by W. G. Characklis and K. C. Marshall. New York: John Wiley, pp. 523~584.
    145 Characklis, W. G.. 1979. Microbial Fouling: A Process Analysis. In E.RC. Somerscales and J.G. Knudsen (Eds.). Fouling of Heat Transfer Equipment Proceedings of International Conference at Rensselaer, Polytechnic institute U.S.A. Aug, 13~17.
    146 Marshall, K. C.. 1979. Bacterial Behavior at Solid Surfaces~A Prelude to Microbial Fouling. In E. F. C. Somerscales and J. G. Knudsen (Fds.). Fouling of Heat Transfer Equipment: Proceedings of International Conference at Rensselaer Polytechnic Institute USA. Aug. 16~19.
    147 Marshall, K. C. R. Stout, and R. Mitchell. 1971. Selective Sorption of Bacteria From Seawater. Canadian Journal of Microbiology 17: 1413~1416.
    148 Marshall, K. C. 1986. Theory and Practice in Bacterial Adhesion Processes. In Proceedings of The Fourth International Symposium on Microbiology, Ljubljana, pp. 112~116
    149 Fletcher, M., J. J. Bright and J. H. Pringle. 1982. Attachment of Aquatic Bacteria to Solid Surfaces. Int. Conf. On Fouling of Heat Exchanger Surfaces, White Haven, Pennsylvania, Oct. 31~Nov. 5
    150 Ho, C. S. 1986. An Understanding of the Forces in the Adhesion of Microorganisms to Surfaces. Process Biochemistry, 121(5): 148~153.
    151 Bright, J. J. And M. Fletcher. 1983. Amino Acid Assimilation and Electron Transport System Activity in Attached and Free Living Marine Bacteria. Applied and Environmental Microbiology. 45:818~825
    152 Pugh, S. Y R., I. S. Gosling, H. Simmons and D. P. Kelly. 1988. Analysis of Biofilms Subjected to Flowing Conditions. In International Conference on Fouling in Process Plant, Oxford: Chapter 4, 9~15.
    153 Meadows, P. S. And J. G Anderson. 1979. The Microbiology of Interfaces in The Marine Environment. Progress in Industrial Microbiology. M. J. Bull ed. (Elsevier Publ.)13:207~265
    154 Characklis, W. G., and K. C. Marshall. 1990. Biofilms. New York: John Wiley
    155 Drew Myers. (吴天诚译).界面和胶体原理及应用.北京:北京材料科学与工程出版中心,2005:96~123
    156 Vatistas N. The Effect of Adhesions time on particle deposition. Chem. Eng Sci, 1989,44(8): 1603~1608
    157 Muller~Steinhagen H. Fouling: the Ultimate Challenge for Heat Exchanger Desigh. The 6th International Symposium on Transport Phenomena in Thermal Engineering, May 9~13,Seoul, Korea. 1993,1~13
    158杨传芳等,结垢诱导期的理论分析与实验研究,化工学报,1994, 45 (2):199~205
    159 Bukda F, Forebener K R et al. Experiments connected with the barium sulfate seeding process. Proc. Int. Symp. on Fresh Water from the Sea, Alghero. Italy, 1976,1:265
    160 Frederick W J and Grace T.M. Analysis of Scaling in a Black Liquor. AIChE Symp. Ser.,1979, 75(184):95
    161朱冬生等,管壳式换热器的防垢、强化传热技术,海湖盐与化上,1994, 23 (5):20
    162 Mori H, Nakamura M and Toyama S Crystallization Fouling of Calcium Sulfate Dehydrate on Heat Transfer Surfaces. Journal of Chemical Engineering of Japan, 1996, 29(1): 166~173
    163齐金生,孟宪级,白丽萍,诱垢载体沉积式除垢技术的研究,工业水处理1998,18(1):12
    164赵晓娣.纳米自清洁整理剂及其应用的研究.天津:天津工业大学硕士学位论文2004:23~35
    165张玉林,冯辉,马维新.纳米多功能外墙涂料的研制.新型建筑材料,2002 ( 3 ): 18~21
    166 Hiroshi Kubota, Takakazu Yamane. Development of high stain resistant coating: Hydrophilic clear coat which is applicable to wet on wet base coat . JSAE Review, 2002. 23 (2): 271~277
    167 Akihiko Asakawa, Masao Unoki, Takao Hirono, et al. Water borne fluoropolymer for paint use. Journal of Fluorine chemistry, 2000(104): 47~51
    168李琳.纳米复合涂料的制备及其耐蚀性能研究.天津:天津大学硕士学位论文.2005:12~16
    169沈崇堂,刘鹤年.非牛顿流体力学及其应用.北京:高等教育出版社,1987:23~46
    170国家环境保护总局,水和废水检测分析方法编委会.水和废水检测分析方法.北京:中国环境科学出版社,2002:15~26
    171贾月梅.流体力学.北京:国防工业出版社,2005:69~74
    172张国强,吴家鸣.流体力学.北京:机械工业出版社,2006:76~85
    173徐大中,糜振琥.热工测量与实验数据整理.上海:上海交通大学出版社,1991:63~68
    174田胜元,萧曰嵘.实验设计与数据处理.北京:中国建筑工业出版社,1988:79~63
    175方安平,叶卫平. Oringin7.5科技绘图及数据分析.机械工业出版社,2007:12~26
    176王凯.非牛顿流体的流动、混合和传热.杭州:浙江大学出版社,1988:42~65
    177刘崇建,刘孝良,柳世杰.非牛顿流体流态判别方法的研究.天然气工业,2001,21(4):49~52
    178王惠民.流体力学基础.北京:清华大学出版社,2005:46~58
    179陈文芳.非牛顿流体力学北京:北京科学出版社,1996:52~68
    180汪志明,崔海清,何光渝.流体力学,北京:石油工业出版社,2006
    181孙德兴.高等传热学.北京:中国建筑工业出版者,2005:69~74
    182赵明明.热泵冷热源污水的换热特性研究.哈尔滨:哈尔滨工业大学硕士学位论文,2008:34~39
    183杨世铭,陶文铨.传热学(第二版) .北京:高等教育出版社,2006:52~64
    184邱树林,钱滨江.换热器.上海:上海交通大学出版社,1990:35~41
    185钱颂文.换热器设计手册.北京:化学工业出版社,2002:76~84
    186蒋祖星,刘晓红.壳管式海水换热器污垢状况的火用评价方法研究.热能动力工程,2003,18(6):558~561
    187魏琪.热质交换原理与设备.重庆:重庆大学出版社,2007:32~41
    188 N F Glen, H J Howarth, A M Jenkins. The Estimation of Errors and Uncertainty in the Determination of Fouling Resistances. In : Bott T R,et al.eds. Understanding Heat Exchanger Fouling and Its Mitigation. New York, Begell House Inc, 1999: 369~375
    189施利毅.纳米科技基础.上海:华东理工大学出版社,2005:23~26
    190贾爱忠.自清洁隔热功能涂覆材料的制备及性能.河北工业大学硕士学位论文,2004:11~14
    191薛富津.钛纳米聚合物涂料的性能与应用.纳米材料与应用. 2004,2(4):28~30
    192东北企业网.哈尔滨鑫科钛纳米聚合物涂料产品介绍. http://www1.86114.com.cn/
    193蔡亚翔,刘荣贵.实用金属材料产品手册.北京:中国物资出版社,2004
    194 Somerscales E F C. Mitigation of Corrosion Fouling. Proceedings of an International Conference on Understanding Heat Exchanger Fouling and Its Mitigation. New York: Begell House Inc. 1997, 23~54
    195陆耀庆.实用供热空调设计手册.北京:中国建筑下业出版社.1991:63~74
    196全国造价工程师执业资格考试培训教材编审委员会.工程造价管理基础理论与相关法规.北京:中国计划出版社,2004:112~132
    197姜宝成,王永镖,李炳熙.地源热泵的技术经济性评价.哈尔滨工业大学学报2003,35(2):196~200

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700