用户名: 密码: 验证码:
铵离子交换材料的制备、表征及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氨氮是水质指标中引起水体富营养化和水生生物毒性提高的一种重要污染物。随着污水处理技术的发展,目前去除氨氮的方法很多,各种方法都有其利弊及限制因素。离子交换法以其特有的优点成为近年来研究较多的去除氨氮的新型方法。
     本研究以广州茂名高岭土为原料,通过对其改性制备高性能铵离子交换材料,并通过不同改性方法对比,得到最佳改性方法。本文研究了不同因素对铵离子交换容量的影响:高岭土与改性剂的质量比、改性温度、煅烧升温速率、保温时间等。通过铵离子交换容量(CEC)测定,所制备材料的铵离子交换容量大于75 mg/g,可用于水处理过程中氨氮的脱除。
     本文通过XRD、SEM、NMR、IR及XPS等表征手段对高岭土的改性过程和改性产物的作用机理进行了探讨分析。XRD结果表明,改性过程改变了高岭土原土的结构,由原来的层状结构变为立方结构;从SEM谱图可以看出高岭土的表观形貌在改性前后发生了很大变化,高岭土原土表观形貌大,呈层片状结构,而改性材料层片状结构消失,颗粒细小,呈分散状态;NMR测定数据显示,样品中骨架Al在改性前后的化学环境发生很大的变化,27Al中大部分六配位变为四配位;29Si在改性前后变化不大,只有少量的层状和枝状硅氧四面体变为链中间硅氧四面体。
     本文对材料离子交换过程中影响因素、离子交换动力学过程和离子交换热力学特性进行了研究。从结果可以看出,Langmuir模型与Freundlich模型相比更能反映离子交换规律;准二级动力学模型可以准确的描述铵离子交换材料交换NH_4~+的过程。
     由于改性粉体材料直接用于水处理脱除氨氮,会导致固液分离困难,增加处理水的水头损失,不利于工业应用。为了提高材料的实际应用性能,本研究将医药用挤出-滚圆机引入实验,将粉体材料制备成一定粒径的球形多孔颗粒,以方便应用于工业和生活氨氮废水的处理。在颗粒成型工艺中,本文研究了造孔剂种类选择、造孔剂加入量、煅烧升温速率、煅烧温度、保温时间、退火降温速率等对颗粒成型及离子交换性能影响。
Ammonia nitrogen is an important contamination in the index of water quality which can promote eutrophication in receiving waters and increased toxicity to aquatic life. With the development of sewage treatment technology, a number of methods are now available for the elimination of ammonia nitrogen. Due to its unique advantages, ion exchange method has become the topic of many recent researches.
     In this paper, kaolin produced in Maoming of Guangzhou Province is used as the raw material and modified to prepare a high-performance ammonium ion-exchange material. We got the best method according to the comparing of different methods and this modified method was optimized. The effect of different factors on ammonium removal efficiency of the material is studied, including the mass ratio between kaolin and alkali, modified temperature, heating rate and holding time. According to cation exchange capacity (CEC) measurement, the prepared ammonium ion exchange material has an ammonium ion exchange capacity greater than 75 mg /g and can be used to remove ammonia nitrogen in water treatment.
     XRD, SEM, NMR, IR and XPS analysis are used to discuss and analyze the modification process of kaolin and the modification results of an ammonia ion exchange material. The measurement result of XRD show the samdwich of Kaolin material has changed during modified, layer space was smaller than before. The measurement result of SEM show apparent appearance of Kaolin before modified and after has been changed a lot, the former samdwich become small granule product. NMR data indicates that 27Al is mainly converted from hexa-coordinated Al to tetra-coordinated Al during the modification. Compared with that of the original kaolin, 29Si in the modified kaolin does not have obvious change in the average chemical environment except that a small part of the laminated and dendritic silicon-oxygen tetrahedrons are turned into inter-chain silicon-oxygen tetrahedrons.
     Then we discussed the adsorption process, kinetics, thermodynamics and desorption conditions. A comparison of the data with Langmuir and Freundlich isotherm models shows a good correlation the Langmuir model describes the process more accurately. And the adsorption process of ammonia nitrogen in water with the ammonium ion exchange material closely matches the pseudo-second-order reaction.
     However, when the modified powder material is directly used in water treatment to remove ammonia nitrogen, it will cause difficulty in solid-liquid separation and more head loss of treated water, which are unfavorable for industrial application. In order to improve actual performance of the material in application, a pharmaceutical extruder-rounder is used to turn the powder material into spherical grains of a certain grain size in order to facilitate its application in the treatment of industrial and domestic ammonia nitrogen wastewater.
引文
[1]张勇,万金泉.工业废水污染控制方法的新进展[J].工业水理,2001,21(1):9-12.
    [2]沈耀良,王宝贞.废水生物处理新技术—理论与应用[M].北京:中国环境出版社,1999,195-197.
    [3] Trinkel M, Trttnak W, Reininger F,et al. Intern J Environ[J],1997,67:237-251.
    [4]岳舜琳.净水技术[J],2001,20(2):12-14.
    [5]李冬,李云.给水排水[J],1998,24(7):60-63.
    [6] Bruning-Fann C S, Kaneene J B. The effects of nitrate, nitrite and N-nitroso compounds on human health: A review[J]. Vet Hum Toxicol, 1993, 35(6):521-538.
    [7] Gonzales C A, Riboli E, Badosa J, et al. Nutritional factors and gastric-cancer in Spain[J]. American Journal of Epidemiology, 1994, 139(5):466-473.
    [8] Lee J,Park H,Choi W.Selective photocatalytic oxidation of NH3to N2on platinized TiO2 in water[J].Environ.Sci.Technol.,2002,36:5462-5468.
    [9] Zhu X D,Castleberry S R,Nanny M A,et al.Effects of pH and catalyst concentration on photocatalytic oxidation of aqueous ammonia and nitrite in titanium dioxide suspensions[J].Environ. Sci. Technol., 2005,39:3784-3791.
    [10]汪大翚.工业废水中专项污染物处理手册[M].化学工业出版社,2000.210-221.
    [11]沈耀良等.废水生物处理新技术[M].中国环境科学出版社,1999. 196—221.
    [12]张希衡.水污染控制工程[M].冶金工业出版社,1993.282—286.
    [13]钱易等.环境保护与可持续发展[M].高等教育出版社,2000.50—51.
    [14]谢炜平等.废水中氨氮的去除与利用[J].环境导报,1999,(1):14—15.
    [15]汪苹,王斌.同步硝化反硝化处理氨氮废水过程中气态脱氮产物的研究[J].环境科学研究.2008,18(5):67-71.
    [16]金彪等.吹脱技术净化石油污染地下水实验[J].环境学,2000,21(4):102-105.
    [17]王卓,纪逸之.物化—生化组合工艺在含高盐量高氨氮量有机废水处理中的应用[J].江苏环境科技,2000, (6): 10-13.
    [18]王铮.膜吸收法去除氨氮的研究[D].北京工商大学学士学位论文,2003.
    [19]孙佩石.净化处理高浓度有机废水的催化湿式氧化技术[J].云南化工,1996, (4): 53-57.
    [20]杜鸿章.焦化污水催化湿式氧化净化技术[J].工业水处理,1996,16(6): 11-13.
    [21] Robertson L A, Van N E, Torremans R A, et al. Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera pantotropha [J]. Appl Environ Microbiol, 1998, 54(11):2812-2818.
    [22] Meiberg J B, Bruinenberg P M, Harder W. Effect of dissolved oxygen tension on the metabolism of methylated amines in Hyphomicrobium X in the absence and presence of nitrite: aerobic denitrification[J]. Microbiol, 1980,120:453-463.
    [23]汪大等.工业废水中专项污染物处理手册[M].化学工业出社,2000.210-221.
    [24]张希衡.水污染控制工程[M].冶金工业出版社,1993.282-286.
    [25]黄峻,陈建中.氨氮废水处理技术研究进展[J],环境污染治理技术与设备,2003,3(2):65-68.
    [26]陈秀芳.离子交换法在废水处理中的应用[J],科技情报开发与经济,2004,14(7)148~155.
    [27]唐受印.废水处理工程[M].北京:化学工业出版社,1998.
    [28]王德华,费维扬.钠改型天然斜发沸石的铵离子交换平衡[J],离子交换与吸附,2002,18(4):343-348.
    [29] Cooper D. A , Manufacture of ammonium-exchanged faujasite zeolites with low alkali metal content[J] , Zeolites , 1996 , 17(3): 320.
    [30] Chandrasekhar Sathy,Pramada P. N. Sintering behaviour of ammonium exchanged low silica zeolites synthesisied by two different routes[J],Ceramics International , 2001 , 27(3): 351~361
    [31]刘玉亮,罗固等.斜发沸石对氨氮吸附性能的试验分析[J].重庆大学学报:自然科学版,2004 ,27(1) :62-65.
    [32] Rozic M,Stefanovic S C , Kurajica S ,et al . Ammoniacal nitrogen removal from waterby treatment with clays and zeolites. Water Research ,2000,34:3675 3681.
    [33]李可彬,金士道.液膜法去除废水中的氨氮污染[J].膜科学与技术,1996, 16(3): 40-45.
    [34]冯旭东,王葳.高浓度氨氮废水处理技术[J].北京工商大学学报(自然科学版),2004,22(2):5-8.
    [35]李红岩,高孟春,杨敏.组合式膜生物反应器处理高浓度氨氮废水[J].环境科学,2002,23(5):62-66.
    [36] Bjorn R, Lars J H , Hallvard O , Nitrogen Removal from Dilute Wastewater in Cold Climate Using Moving-bed Biofilm Reactors[ J ],Water Environ Res,1995,67(1) : 65.
    [37] Helmer C , Kunst S , Simultaneous Nitrification/ Denitrification in an Aerobic Biofilm System[ J ] , Wat Sci Tech , 1998 , 37(4&5): 183~187.
    [38] Yutaka S , Joseph R V F , Makram T S , et al .Modeling of Electrochemically Activated Denitrifying Biofilms [J], Water Research, 1994 , 28(5): 1077~1086.
    [39] Lahav O.Green M. Ammonium Removal from Primary ad Secondary Effluents Using a Bioregenerated Ion-exchange Process [ J ],Wat Sci Tech,2000,142(1) : 179~185.
    [40] Coelho M A Z,Russo C,Araujo Q Q F.Optimization of a sequencing batch for biological nitrogen removal[J].Water Research, 2000. 34(10). 2809-2817.
    [41] Jokela J P Y,Kettunen R H,Sormunen K M. Biological nitrogen removal from municipal landfill leachate:low-cost nitrification in biofilters and laboratory scale in-situ denitrification[J].Water Research,2002.36.4079-4087
    [42]陶美君,吴晓辉,陆晓华.垃圾渗滤液中氨氮的超声处理研究[J].华中科技大学学报,2005.2(1):70-72.
    [43]周爱娇,陶淘,李胜利等.等离子体技术用于垃圾渗滤液预处理[J].中国给水排水,2003.19(11):59-61.
    [44]曲久辉,王立立,田宝珍等.高铁酸盐氧化絮凝去除饮用水中氨氮的研究[J],环境科学学报,2000,20(3):280~283.
    [45]杜鸿章,房廉清,江义.难降解高浓度有机废水催化湿式氧化净化技术[J],水处理技术,1997.23(3):160~163.
    [46]于德爽,彭永臻,张相忠等.中温短程硝化与反硝化的影响因素研究[J].中国给水排水,2003.9(1):40—42.
    [47]殷海荣,武丽华,陈福等.纳米高岭土的研究与应用[J].材料导报,2006, 20(6):196-199.
    [48]曹秀华,王炼石.高岭土夹层复合物的合成、结构和应用[J].材料科学与工程学报,2003.21(3):456~459.
    [49] Sondi I.,Pravdic V., The colloid and surface chemistry of clays in natural waters[J] , Croatica Chemica Acta , 1998 , 71(4):1061~1074.
    [50] Maxwell C. B , and Malla P. B., Chemical delamination of kaolin [J], American Ceramic Society Bulletin , 1999, 78(1):57~59.
    [51] Eggleton R. A.,Tilley D. B., A ferric kaolin mineral with curved morphology [J].Clays Clay Miner. 1998, 46(4): 400~413.
    [52] Singh,B., Gilikes, R. J., The nature of soil kaolins from Indonesia and Western Australia[J],Clays Clay Miner , 1992 , 40: 212~222.
    [53] Hart R. D., Singh , B., Iron in soil kaolins from Indonesia and western Australia[J] , Clay Miner , 2002, 37(4): 671~685.
    [54]张永明,唐荣荣,郑叔琴等.高岭土晶体结构与裂化催化剂性能关系研究[J].石油炼制与化工,1997,28(5):51-55.
    [55]韩秀山.我国高岭土应用现状[J].矿产保护与利用,2004.6:29.
    [56]吴铁轮.我国高岭土行业现状剖析与展望[J].非金属矿,2002,25(2):8-10.
    [57]亓春英,刘星,周跃飞.高岭土的综合利用与发展前景[J].昆明理工大学学报(理工版),2003,28(2):4-7.
    [58]郑水林.粉体表面改性[M].北京:中国建材工业出版社, 2003.
    [59]王绪海,卢旭晨.高岭土表面改性研究进展[J],化工矿物与加工.2004.33(3):1-10.
    [60]朱慧红,孙素华,刘杰等.改性高岭土结构特性研究[J].石化技术与应用,2007, 25(05):399-401.
    [61]孙书红,王智甲,马建泰.高岭土合成沸石分子筛的研究进展[J].分子催化, 2007, 21(02):186-192.
    [62]刘新海.沉积型煅烧高岭土表面改性与应用试验研究[J].中国粉体工程, 2005, 2:3-6.
    [63]张旺驰.宜昌沉积型煅烧高岭土表面改性与应用研究[J].矿物与加工, 2006, 9:8-12.
    [64]杨晓林.高岭土表面改性的技术和方法[J].煤炭加工与综合利用,1995,06:43-45.
    [65]王绪海.高岭土表面改性研究进展[J].化工矿物与加工,2004,3:1-4.
    [66] Sj?berg Marie, Bergstr?m Lennart, Larsson Anders, et al. The effect of polymer and surfactant adsorption on the colloidal stability and rheology of kaolin dispersions[J]. Colloids Surf, 1999, 159(1):197-208.
    [67]沈王庆,薛如君,李国琴.溶出条件对煤系高岭土脱硅率的影响[J].中国非金属矿业导刊, 2005, 3:18-20.
    [68]刘从华,刘育.酸碱改性高岭土性能的研究[J].石油炼制与化工, 1999, 3(5):30-40.
    [69]豆祥辉,张玉丽,郑淑琴.裂化催化剂专用高岭土开发和改性[J].江苏化工, 2005, 33(04):32-36.
    [70]刘从华,马燕青,张忠东等.酸碱改性高岭土性能的研究Ⅱ比表面积和孔结构[J].石油炼制与化工, 1999, 30(05):30-34.
    [71]沈忠悦,叶瑛.水合夹层化合物在珍珠陶石鉴定中的应用[J].矿物学报, 1996, 1:56-58.
    [72] Robertson L A,Van N E,Torremans R A. Simultaneous nitrification anddenitrification in aerobic chemostat cultures of thiosphaera pantotropha[J] , Environ Microbiol , 1998 , 54(11): 281~282.
    [73] R L Frost, J Kristof, L Rintoul, et al. Restarch of the resume of CH3COOK kaolin lamellar compound by spectrum. Spectrochinmica Acta Part A , 2006, 56:1681-1691.
    [74]王林江,吴大清.高岭石有机插层反应的影响因素[J].化工矿物与加工, 2000, 5:29-32.
    [75] Giuliano Tari, Iuliu Bobos, Celso S. F. Gomes, and Jose M. F. Ferreira J Colloid Interface Sci. 1999, 210(2): 360-366.
    [76]彭建平,曾淦宁,周燕,龙华.海藻总氮含量测定方法研究[J].海洋环境科学.2009,28(01):72-75.
    [77]胡小玲,吴鹏.水杨酸-次氯酸盐测定水中氨氮方法的改进[J].干旱环境监测,2005,19(3):184-185.
    [78]陈国强,卢明宇.应用离子选择性电极法测定生活污水中的氨氮[J].重庆环境科学, 1998,20(3):58-60.
    [79]崔丽英,张瑞,邢浩然.ADC发泡剂废水中氨氮的快速测定[J].氯碱工业,2009,45(4):34-35.
    [80]彭伟,吕秀荣,陈永立.蒸馏和滴定法测定水中氨氮的过程优化[J].新疆石油科技,2007,17(1):39-40.
    [81]卢寿慈.粉体加工技术[M].北京:中国轻工业出版社,1999.
    [82]邓建国.粉体材料[M].成都:电子科技大学出版社,2007.
    [83]王双影,徐庆,胡娅君,安峰,叶京生.雾化造粒技术的研究与发展[J].通用机械,2009,6:33-36.
    [84]侯婷,南亚森.固体制剂造粒技术的研究进展[J].天津药学,2008,20(4):69-72.
    [85]马保国,王耀城,袁龙,穆松,吕阳.不同成孔机理造孔剂对轻质保温烧结制品性能的影响[J].中国建材科技,2009,6:65-68.
    [86]鞠银燕,宋士华,陈晓峰.多孔陶瓷的制备、应用及其研究进展[J].硅酸盐通报,2007,26(5),969-974.
    [87] Yang J F,Zhang G J,Ohji T,et al. Fabrication of low-shrinkage:porous silicon nitride ceramics by addition of a small amout of carbon[J]. J Am Ceram Soc,2001,84(7):1639-1641.
    [88]吴建峰,徐晓红.多孔磷酸三钙生物陶瓷的研制[J].陶瓷学报,1999,2:104-107.
    [89]薛友祥,王耀明,贾光耀.饮用水净化高性能微孔陶瓷滤芯[J].现代技术陶瓷,1993,3:10-13.
    [90] Wemer K,Maria S. Method of manufacturing porous sintered inorganic bodies with large open pore volume [P]. US Pat:4588540,1986-05-13.
    [91]龚森蔚,江东亮,谭寿洪.孔径可控羟基磷灰石复相陶瓷中玻璃相的作用[J].材料导报,1998,12(4):31-33.
    [92] Zhang G J,Jian F Y,Tatsnki O.Fabrication of porous ceramies with unidirectionlly aligned continuous pores [J]. J Am Ceram Soc,2001,84(6):1395-1397.
    [93]梁永仁,罗艳妮,丁秉钧,等.多孔陶瓷及其制备方法研究进展[J].绝缘材料,2006,39(2):60-61.
    [94]朱小龙,苏雪筠.多孔陶瓷材料[J].中国陶瓷,2000,36(4):36-39.
    [95] Tanev P T,Pinnavaia T J. Biomimetic templating of porous lamellar silica by larsurfactant assemblies [J]. Science,1996,271:1267-1269.
    [96]邵曼君.环境扫描电镜及其应用[J].物理,1998,27(1):48-52.
    [97]权雪玲,张隐奇,徐学东.环境扫描电镜对亲水高分子材料的原位观察[J].电子显微学报,2005,24(4):367-369.
    [98]刘延奇,吴史博,毛自荐.固体核磁共振技术在淀粉研究中的应用[J].农产品加工学刊,2008,7:9-11.
    [99]陈雷,邓风,叶朝辉.铝在MCM-22分子筛骨架上分布的27Al MQ MAS NMR研究[J].物理化学学报,2003,19(9):805-809.
    [100]汪群海,丁大同.沸石结构中骨架铝,非骨架铝固体27AlNMR研究[J].分析测试通报,1992,11(6)23-27.
    [101]薛纪越,周玲棣.碱性长石Al-Si有序化进程中微结构和29Si NMR谱的表现[J].矿物学报,1998,18(3)261-267.
    [102]林民,舒兴田,汪燮卿.1H→13C和1H→29Si CP/MAS NMR研究钛硅分子筛晶化[J].石油学报,2003,19(3):33-37.
    [103]杜希文,原续波.材料分析方法[M].天津:天津大学出版社, 2006.
    [104]周玉,武高辉.材料分析测试技术-材料X射线衍射与电子显微分析[M].哈尔滨:哈尔滨工业大学出版社, 2007.
    [105]谭红琳,蔡晓兰,蔡进.X射线光电子能谱对单一助剂与复合助剂包覆片状铝粉的性能研究[J].功能材料,2007,38(7):2878-2881.
    [106]郭沁林. X射线光电子能谱[J].物理, 2007, 36(5): 405-410.
    [107]刘忠敏.现代分析仪器分析方法通则及计量检定规程[M].北京:科学技术文献出版社, 1997.
    [108]岳明波,李酽,杨绪杰,陆路德.红辉沸石合成A型分子筛的红外光谱研究[J].光谱实验室2003,13(3):364-366.
    [109]邓德斌,李宣文.β沸石骨架铝化改性的红外光谱[J].物理化学学报,2000,16(2):162-165.
    [110]刘培生,马晓明.多孔材料检测方法[M].北京:冶金工业出版社,2005.
    [111] Wang Shengli,Nan Zhongren,Zeng Jingjing,et a1.Desorption of zinc by the kaolin from Suzhou,China[J].Applied Clay Science,2007,37:221- 225.
    [112] Sathy Chandrasekhar,Pramada P N,Kaolin-based zeolite Y.A precursor for cordierite ceramics[J].Applied Clay Science,2004,27:187-198.
    [113]李云雁,胡传荣,实验设计与数据处理,北京:化学工业出版社,2005,79-107.
    [114]彭先佳.改性膨润土在废水处理中的应用[J].中国非金属矿工业导刊,2000,5(17):40-41.
    [115] Demir A, Gunay A, Debik E. Ammonium removal from aqueous solution by ion-exchange using packed bed natural zeolite[J]. Water S. A. 2002, 28(3): 329-336.
    [116]张铨昌,杨华蕊,韩成.天然沸石离子交换性能及其应用[M].北京科学出版社, 1986, 73-86.
    [117]姜志新,宋正孝.离子交换分离工程[M].天津大学出版社, 1992, 42-65.
    [118]王方.离子交换应用技术[M].北京科学技术出版社, 1990, 59-68.
    [119]朱屯.萃取与离子交换[M].北京冶金工业出版社, 2005, 411-419.
    [120] Karadag D, Koc Y, Armagan A. Removal of ammonium ion from aqueous solution using natural Turkish clinoptilolite[J]. J. Hazard. Mater. B, 2006, 136: 604-609.
    [121] Poots,VJ.P.,Mckay.G ,Healy.J.T,Removal of basic dye from effluent using wood as an adsorbent,Wat.Pollut.Control.Fed.,1978,50 ,926~931.
    [122] M. Chabani et al., Kinetic modeling of the adsorption of nitrates by ion exchange resin, Chem. Eng. J. 10(2006):1~7.
    [123] R. Donat, A. Akdogan, E. Erdem, H. Cetisli, Thermodynamics of Pb2+ and Ni2+ adsorption onto natural bentonite from aqueous solutions, J. Colloid Interface Sci. 286 (2005) 43~52.
    [124] J. Berrueta, J.M. Freije, G. Adrio, J. Coca, Synergistic effect in the mixtures of extraction of phenol from aqueous-solutions with n-butylacetate and acetophenone. Solvent extract, Ion Exchange 8 (1990) 817~825.
    [125] Gaines G L, Thomas H C. Adsorption studies on clay minerals: II. A formulation of the thermodynamics of exchange adsorption[J]. J. Chem. Phys, 1953, 21: 714-718.
    [126] Amphlett C B. Inorganic Ion Exchangers[M]. New York: Elsevier, 1964.
    [127] Redlich O J, Peterson D L. A useful adsorption isotherm[J]. J. Phys. Chem., 1959, 63(6): 1024-1026.
    [128] Runping H, Zhang J, Zou W. Equilibrium biosorption isotherm for lead ion on chaff[J]. J. Hazard. Mater., 2005, 125: 266-271.
    [129] M.Jaroniec,R.Madey著,加璐等译,非均匀固体上的物理吸附[M].北京化学工业出版社,1997:37.
    [130] R.Qadeer,J.Hanif.[J]J.Chem.Soc.Park.1993,15;227-230.
    [131] M .Mahramanlioglu, I.Kiziciki,I.O.Bic-r.Adsorption of Fluoride from Aqueous Soloution by Acid Treated Spent Bleaching Earth.[J] Journal of Chemistry.2002,115:41-47
    [132] Bektas N, Agim B A, Kara S . Kinetic and equilibrium studies in removing lead ions from aqueous solution by sepiolite[J]. Journal of Hazardous Materials, 2004, 112(1-2):115-122.
    [133] Yang W C, Liu W P, Liu H J. Adsorption and correlation with their thermodynamic properties of triazine herbicides on soil[J]. Journal of Environmental Sciences, 2003, 15(4):443-448.
    [134] Beutel T., Peltre M. J., Su B. L., Interaction of phenol with NaX zeolite as studied by 1H MAS NMR, 29Si MAS NMR and 29Si CP MAS NMR spectroscopy[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol.187-188, 2001:319-325.
    [135]方永浩.固体高分辨核磁共振在水泥化学研究中的应用[J].建筑材料学报, 2003, 6(1):54-60.
    [136]戴长禄,钟洪祥等著,高岭土.中国建筑工业出版社.1983.
    [137] Frost R L. Hydroxyl deformation in kaolins[J]. Clay and Clay Minerals, 1998, 46(3):280-289.
    [138]夏丽华,董秉直,高乃云等.改性沸石去除氨氮和有机物的研究[J].同济大学报:自然科学版,2005,33(1):78-82.
    [139] Ngugen M. L., Tanner C. C, Ammonium removal from wastewaters using natural New Zealand zeolites[J]. New Zealand Journal of Agricultural Research. 1998,41(3):427~446.
    [140] Thornton A.,Pearce P., Parsons S.A., Ammonium removal from solution using ion exchange on to MesoLite, an equilibrium study[J]. Journal of Hazardous Materials. 2007,147:883–889.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700