用户名: 密码: 验证码:
天然镭同位素富集和测定方法及对河口混合过程的示踪研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河口是海洋初级生产力最高的区域,河口水体停留时间和地下水排放(SGD)通量对河口生态系统具有重要影响。天然镭同位素是研究河口过程的良好示踪工具,在滨岸海洋学研究中发挥着重要作用。分析河口地区各种镭同位素的比活度水平及分布特征,并以之为示踪剂进行水体停留时间和地下水排放通量的计算,是深入研究河口水体混合过程的一种十分有效的方法,可为认识河口地区物质的来源归宿、收支平衡和水体更新能力提供新的视角,为制定合理的生态环境保护措施提供重要的科学依据。
     本研究首先制备了镭同位素的富集材料—“奥齐”丙烯腈型锰纤维,并应用同步延时计数器(RaDeCC)、γ能谱仪、氡射气闪烁计数器、RAD7测氡仪等仪器对各种镭同位素进行测定,着重研究并建立了RAD测氡仪的实验室校正体系;以此为基础,将辽河口、长江口、黄河口及其邻近海域作为研究区域,分析了研究海域水体中各种天然镭同位素的放射性比活度水平及其分布规律,并利用“镭同位素表观年龄”模型计算了河口水体的停留时间及运移速率,利用~(226)Ra“质量平衡模型”计算了黄河口海底地下水排放(SGD)的通量,评价了SGD对陆源物质向海输送的贡献。
     本研究获得的主要结论如下:
     1)研究制备了“奥齐”丙烯腈型锰纤维,经实验证明是一种优异的镭同位素富集材料。其制备流程简单,反应速度快,且反应节点容易判断。该纤维的各种镭同位素本底值很低。当被富集的水样流速不超过2 L min-1时,纤维对镭同位素的富集效率稳定在95-100%之间,但当流速为2-4 L min-1时,富集效率有较为明显的下降,但仍可保持在90%以上。
     2)建立了RAD7测氡仪的实验室校正体系,最多可同时校正6台仪器。与美国DURRIDGE公司标准校正体系、美国佛罗里达州立大学Hollow Ridge Cave校正体系进行互较,实验数据在±2%的误差范围内。
     3)辽河口水体中的~(224)Ra和~(223)Ra随盐度变化呈不保守现象,在盐度为10和26的海域出现了同位素比活度高峰值,结合pH、DO、COD、石油烃、叶绿素、营养盐等参数分析发现,盐度10左右的海区镭同位素高峰值可能是悬浮颗粒物解吸造成,盐度26左右的海区镭同位素高峰值则可能是由滨岸咸水地下水排放等因素造成。辽河口水体的停留时间最大值出现在盐度为14左右的海域,达到8.34天。
     4)长江口及近海海域的~(224)Ra的放射性比活度范围为0.42-101.75 dpm 100L~(-1),~(223)Ra的放射性比活度范围为0.13-4.39 dpm 100L~(-1),~(226)Ra的放射性比活度范围为5.62-12.91 dpm 100L~(-1),228Ra的放射性比活度范围为34.28-57.55 dpm 100L~(-1),呈近岸高、远岸低和低潮高、高潮低的时空分布特点。在离岸30 km的范围内,水体的停留时间约为18天;但在离岸约60 km处的水体,根据“镭同位素表观年龄”模型计算的水体停留时间却降低为6天左右并保持相对稳定。这一“反常现象”是受到高镭淡水水团影响所致,根据盐度、水温、SPM的剖面分布以及悬浮颗粒物中的过剩~(210)Pb、~(234)Th的分布特征,推测该水团并非来自滨岸海底地下水排放(SGD),而是来自周边陆源径流。
     5)黄河口及邻近海域水体中~(224)Ra、~(223)Ra、~(226)Ra的比活度范围分别为4.17-140.35 dpm 100L~(-1)、0.70-4.02 dpm 100L~(-1)、27.71-65.52 dpm 100L~(-1),各种镭同位素随盐度的分布均呈现“中间高、两端低”的不保守现象。根据“镭同位素表观年龄”模型计算的水体运移速率,发现9月份黄河水出口门后,大部分水体迅速右转,以5-7 km d~(-1)的流速向着东南方向流动,经过大约1周的时间到达莱州湾湾顶;另一部分水体向东北方向流动,以小于2 km d~(-1)的速度汇入渤海中央环流。该区域的海底地下水排放(SGD)通量为0.15-0.67 m~3 m~(-2) d~(-1),约为黄河径流量的3-13倍,由其携带入海的溶解铀和溶解无机氮的通量也显著高于黄河径流输送量,表明SGD是黄河口海区陆源物质入海的重要输送途径,对该海域物质的来源归宿、收支平衡具有不可忽略的影响。
Estuaries are the most productive natural habitats in the world. Water residence times and submarine groundwater discharge (SGD) variations directly influence the ecological conditions and production rates in estuaries. Natural radium isotopes have become increasingly recognized for their utility in examining mixing processes in the coastal ocean. The information obtained from radium tracers can be applied to understand the source and fate of estuarine substances from a new perspective, as well as to develop management strategies for controlling the supply of terrestrial substances to offshore areas and protect the coastal environment.
     In this study,“AOQI”acrylic manganese fiber was prepared as preconcentration material for radium adsorption from water samples. Radium isotopes were measured by Radium Delayed Coincidence Counter, gamma spectrometer, Radon in line and RAD7. The lab calibration system for RAD7 was particularly established. In Liaohe estuary, Yangtze River estuary and Yellow River estuary, radium isotopes were measured and used as tracers to quantify water mixing processes. Water residence times and SGD flux were calculated via“Apparent Radium Ages Model”and“Mass balance Model”, respectively. Moreover, the contribution of SGD carried terrestrial material to the ocean was assessed.
     The author would love to highlight the main results in this thesis as follow:
     1)“AOQI”acrylic manganese fiber was an excellent material for radium preconcentrtion. It was very easy to prepare and had pretty low radium background which could be neglected. Its absorption efficiency was high and stable. About 95-100% radium would be collected when water flow rate was slower than 2 L min-1. When water flow rate was 2-4 L min-1, the absorption efficiency decreased, but still higher than 90%.
     2) The RAD7 calibration system developed in this study was an air loop circulation system with a reproducibility of about±2%. The system could maintain 6 machines at the same time. The intercomparisons with Durridge Co. and Florida State University were performed which produced comparable results within an uncertainty of about±2%.
     3) In Liaohe estuary, the distribution of ~(224)Ra and ~(223)Ra were not conservative along salinity. There were two peak activities at salinity 10 and 26. Combined with other parameters, such as pH, DO, COD, petroleum hydrocarbon, chlorophyll and nutrients, the peak at salinity 10 seemed to be caused by suspended particles desorption, and the one at salinity 26 was influenced by saline submarine groundwater discharge. The largest water residence time was 8.34 days which appeared at the area with salinity of 14.
     4) In Yangtze River estuary, the activities of ~(224)Ra, ~(223)Ra, ~(226)Ra and 228Ra were 0.42-101.75 dpm 100L~(-1), 0.13-4.39 dpm 100L~(-1), 5.62-12.91 dpm 100L~(-1) and 34.28-57.55 dpm 100L~(-1), respectively. The highest activity was appeared at low tide near-shore area and vice versa. Within the first 30 km offshore, the water residence times gradually increased to 18 days. An anomalous low salinity point occurred at a distance of 60 km, and the water ages based on the“Apparent Age Model”decreased to about 6 days and were fairly constant until 140 km offshore. The distribution of salinity, water temperature, SPM concentration demonstrated that this anomaly was influenced by terrestrial runoff rather than benthic inputs from a submarine spring.
     5) In Yellow River estuary, the activities of ~(224)Ra、~(223)Ra and ~(226)Ra were 4.17-140.35 dpm 100L~(-1), 0.70-4.02 dpm 100L~(-1) and 27.71-65.52 dpm 100L~(-1), respectively. All the radium isotopes were non-conservative versus salinity. In September, most of the Yellow River water turned right immediately after it discharged into the estuary. Under a flow rate of 5-7 km d~(-1), the diluted Yellow Rive water arrived at the top of Laizhou Bay in about one week. Small amount of river water directed to the Bohai Sea in the northeast under a lower flow rate of less than 2 km d~(-1). The SGD flux ranged from 0.15-0.67 m~3 m~(-2) d~(-1), which was about 3-13 times of Yellow River discharge. The SGD input of dissolved uranium and nutrients were significantly higher than their fluxes of Yellow River runoff.
引文
[1] M.伊凡诺维奇, R.S.哈蒙主编.铀放射系的不平衡及其在环境研究中的应用.北京:海洋出版社,1991.
    [2]陈性保.九龙江河口区、厦门湾水体中Ra同位素的分布与通量的研究.厦门大学硕士论文,1996.
    [3]陈性保,黄奕普,谢永臻等.九龙江河口区水体中224Ra的分布及其应用.海洋学报,1999,21(4):54-61.
    [4]陈彰榕.现行黄河口拦门沙的形态和演化.青岛海洋大学学报,1997,27(4):539-546.
    [5]窦衍光.长江口邻近海域沉积物粒度和元素地球化学特征及其对沉积环境的指示.国家海洋局第一海洋研究所硕士论文,2007.
    [6]范英宏,林春野,何孟常等.大辽河水系表层沉积物中重金属的迁移特征及生物有效性研究.环境科学,2008,29(12):3469-3476.
    [7]郭伟,何孟常,杨志峰等.大辽河水系表层沉积物中石油烃和多环芳烃的分布及来源.环境科学学报,2007,27(5):824-830.
    [8]郭占荣,黄磊,刘花台等.镭同位素示踪隆教湾的海底地下水排泄.地球学报,2008,29(5):647-652.
    [9]贺宝根,王初,周乃晟,许世远.长江口潮滩浅水区域流速与含沙量的关系初析.泥沙研究,2004,5:56-61.
    [10]黄磊.九龙江河口区的地下水输入研究.厦门大学硕士论文,2009.
    [11]黄奕普,谢永臻,陈敏等. 228Ra在南沙海域表层水中的分布特征,南沙群岛海域的同位素海洋化学.海洋出版社,1996a:70-78.
    [12]黄奕普,陈性保,谢永臻等.南沙海域表层水中226Ra,南沙群岛海域的同位素海洋化学.海洋出版社,1996b:79-88.
    [13]黄奕普,陈性保,谢永臻等.南沙海域表涡动扩散的228Ra示踪研究,南沙群岛海域的同位素海洋化学.海洋出版社,1996c:89-101.
    [14]黄奕普,谢永臻,陈性保等.海水中224Ra快速富集和测定的新方法.厦门大学学报,2001,40(3):699-705.
    [15]黄奕普,陈敏.海水中的放射性核素.中国海洋志(曾呈奎,徐鸿儒,王春林主编).大象出版社,2003:291-299.
    [16]黄奕普,陈敏,刘广山.同位素海洋学文集,第3卷,沿海海域. 2006.
    [17]侯立军.长江口潮滩地生源要素氮的生物地球化学过程研究.华东师范大学,博士后研究工作报告,2006.
    [18]纪大伟.黄河口及邻近海域生态环境状况与影响因素研究.中国海洋大学硕士论文,2006.
    [19]贾成霞.基于γ谱仪分析的胶州湾同位素海洋学研究.厦门大学硕士论文,2003.
    [20]贾国东,黄国伦.海底地下水排放:重要的海岸带陆海相互作用过程.地学前缘,2005,12:29-35.
    [21]江雪艳.黄河干流、河口及莱州湾南岸铀的分布及成因研究.中国海洋大学博士论文,2008.
    [22]雷坤,郑丙辉,孟伟等.大辽河口N、P营养盐的分布特征及其影响因素.海洋环境科学,2007,26(1):19-22.
    [23]李文权,居富民.锰纤维富集海水中226Ra的研究.海洋科学,1990,5:30-33.
    [24]李艳云,王作敏.大辽河和辽东湾海域水质溶解氧与COD、无机氮、磷及初级生产力的关系.中国环境监测,2006,22(3):70-72.
    [25]廖小青,刘贯群,袁瑞强等.黄河农场地区地下水入海量FEFLOW软件数值模拟.海洋科学进展,2005,23(4):446-451.
    [26]刘广山,黄奕普,陈性保.锰纤维富集γ能谱法测定海水中的224Ra、226Ra和228Ra.海洋学报,1999,21(5):65-71.
    [27]刘广山,杨伟锋,贾成霞等.大体积海水镭同位素现场快速富集与γ谱直接测定.核技术,2004,27(2):116-121.
    [28]刘广山,门武,纪丽红.基于镭同位素分布的黄海和东海垂直混合速率计算.地球物理学报,2010,53(8):1976-1984.
    [29]刘宗峰.黄河口及莱州湾表层沉积物中多环芳烃来源解析研究.中国海洋大学硕士论文,2008.
    [30]马绍赛,辛福言,崔毅等.黄河和小清河主要污染物入海通量的估算.海洋水产研究,2004,23(5):47-51.
    [31]门武,刘广山,陈敏等.北黄海水体的224Ra.台湾海峡,2010a,29(1):47-57.
    [32]门武,刘广山,陈志刚等.镭同位素在海洋学研究中的应用及进展.地球科学进展,2010b,25(1):33-42.
    [33]邱汉学,郑希来,张效龙,陈友媛.黄河农场地区地下水入海通量的数值分析.海洋地质动态,2003,19(3):28-33.
    [34]邱晓辉. I. Mn-纤维富集和测定天然水中Ra-226方法的研究,II.九龙江-厦门湾河口溶解Ra-226的分布.厦门大学硕士论文,1988.
    [35]全向春,汤茜,俞博凡等.大辽河水系沉积物对PAHs生物降解的特征.中国环境科学,2008,28(8):758-763.
    [36]施文远,邱晓辉,黄奕普.九龙江-厦门湾河口区溶解226Ra的分布.海洋学报,1993,15(4):50-65.
    [37]苏妮,张磊,张耀玲等.沿岸地下水排放通量.水文地质工程地质,2009,3:45-50.
    [38]孙娟,孙茜,莫春波等.大辽河口及邻近海域的污染现状和特征.水产科学,2008,27(6):286-289.
    [39]孙效功,杨作升,陈彰榕.黄河三角洲冲淤定量计算及其机制讨论.海洋学报,1993,(15):129-136.
    [40]谭燕.长江口、黄河口邻近海域CO2通量及东海pCO2估测模型的讨论.中国海洋大学硕士论文,2004.
    [41]王芬芬,北黄海水体的226Ra和228Ra.台湾海峡,2010,29(2):265-276.
    [42]王厚杰,杨作升,毕乃双等. 2005年黄河调水调沙期间河口入海主流的快速摆动.科学通报,2005,50:2656-2662.
    [43]王开荣,姚文艺,张希芳,李平.黄河口的现状及其治理.海洋科学,2001,25(10):52-54.
    [44]王强.渤海环流的季节变化及浮游生态动力学模拟.中国海洋大学硕士论文,2004.
    [45]魏伟,康兴伦,江雪艳等.地下卤水中镭的富集与测定方法研究.海洋科学,2008,11:1-4.
    [46]谢永臻,黄奕普,施文远等.天然水体中226Ra、228Ra的联合富集与测定.厦门大学学报,1994a,33:86-90.
    [47]谢永臻,黄奕普,施文远等.九龙江河口区水体中的226Ra和228Ra.台湾海峡,1994b,13:394-399.
    [48]谢永臻.南海及厦门邻近海域镭同位素地球化学的研究.厦门大学博士论文,1994c:91.
    [49]谢永臻,施文远,黄奕普等.南海东北部海水中的226Ra,台湾海峡及邻近海域海洋科学讨论会论文集.海洋出版社,1995a:232-238.
    [50]谢永臻,黄奕普等.黄奕普等.南海东北部海水中的228Ra,台湾海峡及邻近海域海洋科学讨论会论文集.海洋出版社,1995b:239-246.
    [51]邢娜,陈敏,黄奕普等.北冰洋、白令海226a的分布及其水文学意义.中国科学:D辑,2002,32(5):430-440.
    [52]杨俊鸿.北太平洋与同安湾若干海洋学过程的同位素示踪.厦门大学硕士论文,2007.
    [53]叶玉玲,廖小青,刘贯群.国内外地下水入海通量研究现状与趋势.水文地质工程地质,2006,6:124-128.
    [54]张峰.海底地下水排泄对沿海海域营养盐平衡的影响.浙江大学博士论文,2010.
    [55]张慧荣,叶属峰.生态长江口的概念与构架.生态学杂质,2010,29(1):106-110.
    [56]张磊.长江口、东海的镭同位素及其在水团混合分析中的应用.华东师范大学博士论文,2007.
    [57]张向上.黄河口碳输运过程及其对莱州湾的影响.中国海洋大学博士论文,2008.
    [58]赵峰,苏妮,黄德坤等.海水中同位素Ra分析方法比较研究.海洋环境科学,2010,29(3):424-428.
    [59]祝陈坚.海水分析化学.中国海洋大学出版社,2006.
    [60]中国人民共和国国家标准,海洋监测规范. GB 17378.4-1998.
    [61]中国人民共和国国家标准,海洋监测规范. GB 17378.7-2007.
    [62] Balistrieri, L.S., Murray, J.W.. Marine scavenging: trace metal adsorption by interfacial sediment from MANOP site H1. Geochimica et Cosmochimica Acta, 1984, 48: 921–929.
    [63] Baskaran, M., Santschi, P.H.. The role of particles and colloids in the transport of radionuclides in coastal environments of Texas. Marine Chemistry, 1993, 43: 95-114.
    [64] Basu, A.R., Jacobsen, S.B., Poreda, R.J., Dowling, C.B., Aggarwal, P.K.. Large groundwater strontium flux to the oceans from the Bengal basin and the marine strontium isotope record. Science, 2001, 293: 1470-1473.
    [65] Beek, P.V., Sternberg, E., Reyss, J.L., et al.. 228Ra/226Ra and 226Ra/Ba ratios in the Western Mediterranean Sea: Barite formation and transport in the water column. Geochimica et Cosmochimica Acta, 2009, 73:4720-4737.
    [66] Beek, P.V., Souhaut, M., Reyss, J.L.. Measuring the radium quartet (228Ra, 226Ra, 224Ra, 223Ra) in seawater samples using gamma spectrometry. Journal of Environmental Radioactivity, 2010, 101: 521-529.
    [67] Boehm, A.B., Paytan, A., Shellenbarger, G.G., Davis, K.A.. Composition and flux of groundwater from a California beach aquifer: Implications for nutrient supply to the surf zone. Continental Shelf Research, 2006, 26: 269-282.
    [68] Bokuniewicz, H., Pavlik, B.. Groundwater seepage along a Barrier Island. Earth and environmental science, 1990, 10: 257-276.
    [69] Bone, S.E., Charette, M.A., Lamborg, C.H., Gonneea, M.E.. Has submarine groundwater discharge been overlooked as a source of mercury to coastal waters? Environmental Science & Technology, 2007, 41: 3090-3095.
    [70] Boudreau, B.P., Huettel, M., Froster, S., Jahnke, R.A., McLachlan, A., Middelburg, J.J., et al.. Permeable marine sediments: overturning an old paradigm. EOS, 2001, 82: 133-136.
    [71] Broecker, W.S., An application of natural radon to problems in ocean circulation, in Oceans and Fresh Waters, edited by T. Ichiye, Lamont-Doherty Geological Observatory, Palisades, N.Y., 1965: 116-145.
    [72] Burnett WC. Offshore springs and seeps are focus of working group. EOS, 1999, 80:13–5.
    [73] Burnett, W.S., Kim, G., Lane-Smith, D.. A continuous monitor for assessment of 222Rn in the coastal ocean. Journal of radioanalytical and nuclear chemistry, 2001a, 249: 167-172.
    [74] Burnett, W.C., Taniguchi, M., Oberdorfer, J.. Measurement and significance of the direct discharge of groundwater into the coastal zone. Journal of Sea Research, 2001b, 46: 109-16.
    [75] Burnett, W.C., Bokuniewicz, H., Huettel, M. et al., 2003. Groundwater and pore water inputs to the coastal zone. Biogeochemistry, 66, 3-33.
    [76] Burnett, W.C., Aggarwal, P.K., Aureli, A.. Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Science of the Total Environment, 2006, 367: 498-543
    [77] Butts, J., Todd, J.F., Lerche, I., Moore, W.S. and Moore, D.G.. A simplified method for 226Ra determinations in natural waters. Marine Chemistry, 1988, 25: 349-357.
    [78] Cai, W.J., Wang, Y.C., Krest, J., Moore, W.S.. The geochemistry of dissolved inorganic carbon in a surficial groundwater aquifer in North Inlet, South Carolina, and the carbon fluxes to the coastal ocean. Geochimica et Cosmochimica Acta, 2003, 67: 631-639.
    [79] Charette, M.A., Buesseler, K.O., Andrews, J.E.. Utility of radium isotopes for evaluating the input and transport of groundwater-derived nitrogen to a Cape Cod estuary. Limnogy and oceanography, 2001, 46: 465-470.
    [80] Charette, M.A., Sholkovitz, E.R.. Oxidative precipitation of groundwater derived ferrous iron in the subterranean estuary of a coastal bay. Geophysical Research Letters, 2002, 29: 1444
    [81] Charette, M.A., Splivallo, R., Herbold, C., Bollinger, C., Moore, W.S.. Salt marsh submarine groundwater discharge as traced by radium isotopes. Marine Chemistry, 2003, 84: 113-121.
    [82] Charette, M.A., Buesseler, K.O.. Submarine groundwater discharge of nutrients and copper to an urban subestuary of Chesapeake Bay (Elizabeth River). Limnology and Oceanography, 2004, 49: 376-385.
    [83] Charette, M.A., Moore, W.S., Burnett, W.C.. Uranium- and Thorium-series nuclides as tracers of submarine groundwater discharge. Radioactivity in the Environment, 2008a, 13: 155-191.
    [84] Charette, M.A., Scholten, J.C.. Marine Chemistry special issue: The renaissance of radium isotopic tracers in marine processes studies. Marine Chemistry, 2008b, 109: 185-187.
    [85] Chen, W-F., Liu, Q., Huh, C-A., Dai, M-H., Miao, Y-C.. Signature of the Mekong River plume in the western South China Sea revealed by radium isotopes. Journal of Geophical Research, 2010, 115, C12002, doi: 10.1029/2010JC006460.
    [86] Corbett, D.R., Chanton, J., Burnett, W.C., Dillon, K., Rutkowski, C., Fourqurean, J.. Patterns of groundwater discharge into Florida Bay. Limnology and Oceanography, 1999, 44: 1045-55.
    [87] Corbett, D.R., Dillon, K., Burnett, W.C., Chanton, J.. Estimating the groundwater contribution into Florida Bay via natural tracers 222Rn and CH4. Limnology and Oceanography, 2000, 45: 1546-57.
    [88] Cosod II. Fluid circulation in the crust and the global geochemical budget. Report of the second conference on scientific ocean drilling, Strasbourg, France, 1987, 6–8, July.
    [89] Crotwell, A.M., Moore, W.S.. Nutrient and radium fluxes from submarine groundwater discharge to Port Royal Sound, South Carolina. Aquatic Geochemistry, 2003, 9: 191-208.
    [90] Destouni, G., Prieto, C.. On the possibility for generic modeling of submarine groundwater discharge. Biogeochemistry, 2003, 66: 171-186.
    [91] Dukat, D.A., Kuehl, S.A.. Non-steady-state 210Pb flux and the use as a geochromometer on the Amazon continental shelf. Marine Geology, 1995,125: 329-350.
    [92] Dulaiova, H., Burnett, W.C.. An efficient method forγ-spectrometric determination of radium-226, 228 via manganese fibers. Limnology and Oceanography: Methods, 2004, 2: 256-261.
    [93] Dulaiova, H., Burnett, W.C., Wattayakorn, G., et al.. Are groundwater inputs into river-dominated areas important? The Chao Phraya River-Gulf of Tailand. Limnology and Oceanography, 2006, 51: 2232-2247
    [94] Dulaiova, H., Burnett, W.C.. Evaluation of the flushing rates of Apalachicola Bay, Florida via natural geochemical tracers. Marine Chemistry, 2008, 109: 395-408.
    [95] Eikenberg, J. Radium Isotope Systematics in nature: Applications in Geochronology and Hydrogeochemistry[D]. Switzerland: Division for Radiation Protection and Safety, Paul Scherrer Institute, 2002.
    [96] Elsinger, R.J., Moore, W.S.. Ra-226 behavior in the Pee Dee river– Winyal Bay estuary. Earth and Planetary Science Letters, 1980, 48: 239-249
    [97] Elsinger, R.J., Moore, W.S.. 224Ra、226Ra and 228Ra in the Winyal Bay and Delaware Bay. Earth and Planetary Science Letters, 1983, 64: 430-436.
    [98] Elsinger, R.J., Moore, W.S.. Ra-226 and Ra-228 in the mixing zones of the Pee Dee river– Winyal Bay, Yangtze River and Delaware Bay estuaries. Estuarine, Coastal and Shelf Science, 1984, 18: 601-613.
    [99] Feng, H.. Natural radionuclides as tracers for behavior, transport and fate of particle associated contaminants in the Hudson River estuary. Ph.D. Dissertation, State University of New York, Stony Brook, 1997.
    [100] Fisher, N.S., Teyssie, J.-L.. Accumulation of Th, Pb, U, and Ra in marine phytoplankton and it geochemical significance. Limnology and Oceanography, 1987, 32: 131– 142.
    [101] Garrels, R.M. and MacKenzie, F.T.. Evolution of Sedimentary Rocks, Norton and Co, New York, 1967: 397.
    [102] Garrison, G.H., Glenn, C.R., McMurtry, G.M.. Measurement of submarine groundwater discharge in Kahana Bay, O’ahu, Hawaii. Limnology and Oceanography, 2003, 48: 920–928.
    [103] Giffin, C., Kaufman, A., Broecker, W.S.. Delayed coincidence counter for the assay of actinon and thoron. Journal of Geophysical Research, 1963, 68: 1749-1757.
    [104] Giffin, D., Corbett, D.R.. Evaluation of sediment dynamics in coastal systems via short-lived radioisotopes. Journal of Marine Systems, 2003, 42: 83-96.
    [105] Hanshaw, B.B. and Back, W.. Chemical mass-wasting on the north Yucatan Peninsula by groundwater dissolution. Geology, 1980, 8: 222–224.
    [106] Hancock, G.J., Martin, P.. Determination of Ra in environmental samples by alpha particle spectrometry. Applied Radiation and Isotopes, 1991, 42:63-69.
    [107] Hougham, A.L., Moran, S.B.. Water mass ages of coastal ponds estimated using 223Raand 224Ra as tracers. Marine Chemistry, 2007, 105: 194-207.
    [108] Hwang, D.W., Kim, G., Lee, Y-W, Yang, H-S. Estimating submarine inputs of groundwater and nutrients to a coastal bay using radium isotopes. Marine Chemistry, 2005, 96: 61-71.
    [109] Johannes, R.E.. The ecological significance of the submarine discharge of groundwater. Marine Ecology Progress Series, 1980, 3: 365-373.
    [110] Kasemsupaya, V., Tsubota, H., Nozaki, Y.. 228Ra and its implications in the Seto Inland Sea. Estuarine Coastal and Shelf Science, 1993, 36: 31-45.
    [111] Key, R.M., Brewer, R.L., Stockwell, J.H., Guinasso, N.L. and Schink, D.R.. Some improved techniques for measuring radon and radium in marine sediments and in seawater. Marine Chemistry, 1979, 7: 251-264.
    [112] Key, R.M., Stalland, R.F., Moore, W.S., Sarmiento, J.L.. Distribution and flux of 226Ra and 228Ra in the Amazon River estuary. J. Geophys Res., 1985, 90: 6995-7004.
    [113] Kim, G., Burnett, W.C., Dulaiova, H., Swarzenski, P.W., Moore, W.S.. Measurement of 224Ra and 226Ra activities in natural waters using a radon-in-air monitor. Environ. Sci. Technol., 2001, 35: 4680-4683.
    [114] Kim, G., Ryu, J-W., Yang, H-S., Yun, S-T.. Submarine groundwater discharge (SGD) into the Yellow Sea revealed by 228Ra and 226Ra isotopes: implications for global silicate fluxes. Earth and Planetary Science Letters, 2005, 237:156-166.
    [115] Kohout, F.A.. Submarine springs: a neglected phenomenon of coastal hydrology. Hydrology, 1966, 26: 391-413.
    [116] Kraemer, T. F., Curwick, P. B.. Radium Isotopes in the Lower Mississippi River. Journal of Geophysical Research, 1991, 96:2797-2806.
    [117] Krest, J.M., Moore, W.S., Rama.. 226Ra and 228Ra in the mixing zones of the Mississippi and Atchafalaya Rivers: Indicators of groundwater input. Marine Chemistry,1999, 64: 129–152.
    [118] Krest, J.M., Moore, W.S., Gardner, L.R.. Marsh nutrient export supplied by groundwater discharge: evidence from radium measurements. Glob Biogeochem Cycles, 2000, 14: 167-76.
    [119] Krest, J.M., Harvey, J.W.. Using natural distributions of short-lived radium isotopes to quantify groundwater discharge and recharge. Limnol. Oceanogr., 2003, 48: 290-298.
    [120] Krishnaswami, S., Lab, D.,Somayajulu, B.L.K., Dixon, F.S., Stonecipher, S.A., and Craig, H., Silicon, radium, thorium, and lead in sea water: in-situ extraction by synthetic fiber, Earth Planet. Sci. Lett., 1972, 16, 84-90.
    [121] Ku, T. L. An evaluation of the 234U/238U method as a tool for dating pelagic sediment. Journal of Geophysical Research,1965,70(14):3457-3474.
    [122] Lapointe, B., O'Connell, J.D., Garrett, G.S.. Nutrient coupling between on-site sewage disposal systems, groundwaters and nearshore surface waters of the Florida Keys. Biogeochemistry, 1990, 10: 289-307.
    [123] Lazarev, K.F., Nikolaev, D.S., Grashenko, S.M.. Dokl Akad Nauk SSSr, 1965, 164: 1151.
    [124] Lee, J.S., Kim, K.H., Moon, D.S.. Radium isotopes in the Ulsan Bay. Journal of Environmental Radioactivity, 2005, 82: 129-141.
    [125] Lee, Y-W, Kim, G.. Linking groundwater-borne nutrients and dinoflagellate red-tide outbreaks in the southern sea of Korea using a Ra tracer. Estuarine, Coastal and Shelf Science, 2007, 71: 309-317.
    [126] Levy, D.M., Moore, M.S.. 224Ra in continental shelf waters. Earth and Planetary Science Letters, 1985, 73: 226-230.
    [127] Li, Y.-H., Mathieu, G., Biscaye, P., Simpson, H.J.. The flux of 226-Ra from estuarine and continental shelf sediments. Earth and Planetary Science Letters, 1977, 37: 237-241.
    [128] Liu, G-S., Huang, Y-P., Chen, X-B.. Measurement of 224Ra, 226Ra and 228Ra in seawater using Mn-fiber adsorption-γspectrum method. Acta Oceanologica Sinica, 2000, 19: 19-27.
    [129] Lucas, H.F.. Improved low-level alpha-scintillation counter for radon. The Review of Scientific Instruments, 1957, 28: 680-683.
    [130] Matisoff, G., Wilson, C.G., and Whiting, P.J., 2005. The 7Be/ 210Pbxs ratio as an indicator of suspended sediment age or fraction new sediment in suspension. Earth Surface Processes and Landforms. 30:1191-1201.
    [131] Men, W., Wei, H., Liu, G.. 226Ra and 228Ra in the seawater of the western Yellow Sea. Journal of Ocean University of China, 2006, 5: 228-234.
    [132] Men, W., Liu, G.S., Huang, Y. P.. Measurement of 228Ra in the Yellow Sea and East China Sea using the radon emanation method. Journal of Radioanalytical and Nuclear Chemistry, 2010, 284: 65–72.
    [133] Men, W., Wang, F.F., Liu, G.S.. 224Ra and its implications in the East China Sea. Journal of Radioanalytical and Nuclear Chemistry, 2011, 288: 189-195.
    [134] Michel, J., Moore, W.S., King P..γ-ray spectrometry for determination of radium-228 and radium-226 in natural waters. Analytical Chemistry, 1981, 53: 1885-1889.
    [135] Milliman, J.D.. Production and accumulation of calcium carbonate in the ocean: Budget of a nonsteady state. Global Biogeochemical Cycles, 1993, 7: 927-957.
    [136] Moore, D.G., Scott, M.R.. Behavior of 226Ra in the Mississippi River Mixing zone. Journal of Geophysical Research, 1986, 91: 14317-14329
    [137] Moore, W.S.. Measurement of Ra228 and Th228 in sea water. Journal of Geophysical Research, 1969, 74: 694-704.
    [138] Moore, W.S.. Radium-228: application to thermocline mixing studies. Earth and planetary science letters, 1972, 16: 421-422.
    [139] Moore, W.S., Reid, D.F.. Extraction of radium from natural waters using manganese- impregnated acrylic fibers. Jouranl of Geophysical Research, 1973, 78: 8880-8886.
    [140] Moore, W.S., Cook, L.M.. Radium removal from drinking water. Nature, 1975, 253,262-263.
    [141] Moore, W.S.. Sampling 228Ra in the deep ocean. Deep-Sea Research, 1976, 23: 647-651.
    [142] Moore, W.S.. Radium isotopes in the Chesapeake Bay. Estuarine Coastal and Shelf Science, 1981, 12: 713-723.
    [143] Moore, W.S.. Radium isotope measurements using germanium detectors. Nuclear Instruments and Methods in Physics Research Section A, 1984, 223: 407-411.
    [144] Moore,W.S., Key, R.M., Sarmiento, J.L.. Techniques for precise mapping of Ra-226 and Ra-228 in the ocean. Journal of Geophysical Research, 1985, 90: 6983–6994.
    [145] Moore, W.S., Sarmiento, J.L., Key, R.M.. Tracking the Amazon component of surface Atlantic water using 228Ra, salinity and silica. Journal of Geophysical Research, 1986, 91: 2574-2580.
    [146] Moore, W.S., Todd, J.F.. Radium isotopes in the Orinoco estuary and eastern Caribbean Sea. Journal of Geophysical Research, 1993, 98: 2233-2244.
    [147] Moore, W.S.. Large groundwater inputs to coastal waters revealed by 226Ra enrichments. Nature, 1996, 380: 612-4.
    [148] Moore, W.S., Arnold, R.. Measurement of 223Ra and 224Ra in coastal waters using a delayed coincidence counter. Journal of geophysical research, 1996, 101: 1321-1329.
    [149] Moore, W.S.. The effects of groundwater input at the mouth of the Ganges-Brahmaputra Rivers on barium and radium fluxes to the Bay of Bengal. Earth and Planetary Science Letters, 1997, 150: 141-150.
    [150] Moore, W.S.. Application of 226Ra, 228Ra, 223Ra and 224Ra in coastal waters to assessing coastal mixing rates and groundwater discharge to oceans. P. Indian As-Earth, 1998, 107 (4): 343-349.
    [151] Moore, W.S.. The subterranean estuary: a reaction zone of ground water and sea water. Marine chemistry, 1999, 65: 111-125.
    [152] Moore, W.S.. Ages of continental shelf waters determined from 223Ra and 224Ra. Journal of Geophysical Research, 2000a, 105: 22117-22122.
    [153] Moore, W.S.. Determining coastal mixing rates using radium isotopes. Continental Shelf Research, 2000b, 20: 1993-2007.
    [154] Moore WS.. Sources and fluxes of submarine groundwater discharge delineated by radium isotopes. Biogeochemistry, 2003, 66: 75-93.
    [155] Moore,W.S., Krest,J.. Distribution of 223Ra and 224Ra in the plumes of the Mississippi and Atchafalaya Rivers and the Gulf of Mexico. Marine Chemistry, 2004, 86: 105-119.
    [156] Moore, W.S.. Radium isotopes as tracers of submarine groundwater discharge in Sicily. Continental Shelf Research, 2006, 26: 852-861.
    [157] Moore, W.S., Blanton, J.O., Joye, S.B.. Estimates of flushing times, submarine groundwater discharge, and nutrient fluxes to Okatee Estuary, South Carolina. Journal of Geophysical Research, 2006, doi: 10.1029/2005JC003041.
    [158] Moore, W.S.. Fifteen years experience in measuring 224Ra and 223Ra by delayed-coincidence counting. Marine Chemistry, 2007, 109:188-197.
    [159] Moore, W.S., Oliveira, J.de.. Determination of residence time and mixing processes of the Ubatuba, Brazil, inner shelf waters using natural Ra isotopes. Estuarine, Coastal, Shelf Science, 2008, 76: 512-521.
    [160] Moore, W.S., Sarmiento, J.L., Key, R.M.. Submarine groundwater discharge revealed by 228Ra distribution in the upper Atlantic Ocean. Nature Geoscience, 2008, 1:309–11.
    [161] Moore, W.S.. The effect of submarine groundwater discharge on the ocean. Annual Review of Materials Science, 2010, 2: 59-88.
    [162] Mortazavi, B., Iverson, R.L., Huang, W.. Dissolved organic nitrogen and nitrate inApalachicola Bay, Florida: spatial distributions and monthly budgets. Marine Ecology Progress Series, 2001, 214, 79–97.
    [163] Nozaki,Y.. Mean residence time of the shelf water in the East China and the Yellow Seas determined by 228Ra/226Ra measurements. Geophysical Research Letters, 1989, 16: 1297-1300.
    [164] Nozaki,Y., Tsubota, H., Kasemsupaya, V., Yashima, M., Ikuta, N.. Residence of times of surface water and particle-reactive 210Po and 210Po in the East China and Yellow Seas. Geochimica et Cosmochimica Acta, 1991,55:1265-1272.
    [165] Okubo, T., Sakanoue, M.. Radioactive disequilibrium of thorium series nuclides in hot spring deposits. Geochemical Journal, 1975, 9: 221-226.
    [166] Okubo, T., Furuyama, K., Sakanoue, M.. Distribution of 228Ra in surface sea water of the East Indian Ocean. Geochemical Journal, 1979, 13:201-206.
    [167] Peterson, R.N., Burnett, W.C., Taniguchi, M., Chen, J.Y., Santos, I.R., Misra, S.. Determination of transport rates in the Yellow River-Bohai Sea mixing zone via natural geochemical tracers. Continental Shelf Research, 2008a, 19: 2700-2707.
    [168] Peterson, R.N., Burnett, W.C., Taniguchi, M., Chen, J.Y., Santos, I.R., Ishitobi, T.. Radon and radium isotopes assessment of submarine groundwater discharge in the Yellow River delta, China. Journal of Geophysical Research, 2008b, doi: 1029/2008JC004776.
    [169] Peterson, R.N., Burnett, W.C., Dimova, N., Santos, I.R.. Comparison of measurement methods for radium-226 on mangese-fiber. Limnology and Oceanography: Methods, 2009a, 7: 196-205.
    [170] Peterson, R.N., Burnett, W.C., Santos, I.R., Taniguchi, M., Ishitobi, T., Chen, J.Y.. Bohai Sea coastal transport rates and their influence on coastline nutrient inputs. In, Taniguchi, M., W.C. Burnett, Y. Fukushima, M. Haigh, and Y. Umezawa (eds.) From Headwaters to the Ocean, Taylor & Francis, London, 2009b: 659-664.
    [171] Peterson, R.N.. Natural radionuclide applications for riverine and coastal marine investigations. Ph.D. Dissertation, Florida State University, Tallahassee, Florida, 2009.
    [172] Percival, D.R., Martin, D.B.. Sequential determination of radium-226, radium-228,actinium-227 and thorium isotopes in environmental and process waste samples. Analytical Chemistry, 1974, 46: 1742–1749.
    [173] Porcelli, D., Swarzenski, P.W.. The behavior of U- and Th-series nuclides in groundwater. Reviews in Mineralogy and Geochemistry, 2003,52: 317-361.
    [174] Qi, D.-M., Shen, H.-T., Zhu, J.-R., 2003. Flushing time of the Yangtze Estuary by discharge: a model study. Journal of Hydrodynamics Series B 3, 63-71.
    [175] Radiochemical methodology for drinking water regulations. EPA-600/4-75-005, 1975.
    [176] Rama, Moore, W.S.. Mechanism of transport of U-Th series radioisotopes from solids into groundwater. Geochimica et Cosmochimica Acta, 1984, 48: 395-399.
    [177] Rama, Todd, J.F., Butts, J.L., Moore, W.S.. A new method for the rapid measurements of 224Ra in natural waters. Marine Chemistry, 1987, 43-54.
    [178] Rama, Moore, W.S.. Using the radium quartet for evaluating groundwater input and water exchange in salt marshes. Geochimica et Cosmochimica Acta, 1996, 60: 4645-4652.
    [179] Rihs, S., Condomines, M.. An improved method for Ra isotope 226Ra, 228Ra, 224Ra measurements by gamma spectrometry in natural waters: application to CO2 -rich thermal waters from the French Massif Central. Chemical Geology, 2002, 182: 409-421.
    [180] Saari, H.K., Schmidt, S., Castaing, P., Blanc, G., Sautour, B., Masson, O., Cochran, J.K.. The particulate 7Be/210Pbxs and 234Th/210Pbxs activity ratios as tracers for tidal-to-seasonal particle dynamics in the Gironde estuary (France): implications for the budget of particle-associated contaminants. Science of the Total Environment, 2010, 15: 4784-4794.
    [181] Shaw, T.J., Moore, W.S., Kloepfer, J., Sochaski, M.A.. The flux of barium to the coastal waters of the southeastern USA: The importance of submarine groundwater discharge. Geochimica et Cosmochimica Acta, 1998, 62: 3047-54.
    [182] Shiller, A.M.. A mixing rate approach to understanding nutrient distributions in the plume of the Mississippi River. Marine Chemistry, 1993, 43: 211–216.
    [183] Slomp, C.P., Cappellen, P.V.. Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. Journal of Hydrology, 2004, 295: 64-86.
    [184] Sugimura, Y., Tsubota, H.. A new method for the chemical determination of radium in seawater. Journal of Marine Research, 1963, 21: 74-80.
    [185] Suksi, J., Rasilainen, K., Casanova, J., Ruskeeniemi, T., Blomqvist, R., Smellie, J.A.T.. U-series disequilibra in a groundwater flow route as an indicator of uranium migration processes. Journal of Contaminant Hydrology, 2001, 47: 187-196.
    [186] Sun, Y., and Torgersen, T., 1998. The effects of water content and Mn-fiber surface conditions on 224Ra measurement by 220Rn emanation. Marine Chemistry 62, 299-306.
    [187] Swarzenski, P.W.. U/Th series radionuclides as coastal groundwater tracers. Chemical Reviews, 2007, 107: 663-74.
    [188] Taniguchi, M., Iwakawa, H.. Submarine groundwater discharge in Osaka Bay,Japan. Limnology, 2004, 5: 25–32.
    [189] Taniguchi, M., Ishitobi, T., Chen, J., Onodera, S.-I., Miyaoka, K., Burnett, W. C., Peterson, R., Liu, G., Fukushima, Y.. Submarine groundwater discharge from the Yellow River delta to the Bohai Sea, China. Journal of Geophysical Research, 2008, 113, C06025, doi:10.1029/2007JC004498.
    [190] Trier, R.M., Broecker, W.S., Feely, H.W.. Radium-228 profile at the second GEOSECS inter calibration station, 1970, in the North Atlantic. Earth and planetary science letters, 1972, 16: 141-145.
    [191] Valiela, I., Teal, J.M., Volkman, S., Shafer, D., Carpenter, E.J.. Nutrient and particulate fluxes in a salt marsh ecosystem: tidal exchanges and inputs by precipitation and groundwater. Limnol Oceanogr, 1978, 23:798-812.
    [192] Valiela, I., Foreman, K., LaMontagne, M., Hersh, D., Costa, J., Peckol, P., et al.. Couplings of watersheds and coastal waters: sources and consequences of nutrient enrichment in Waquoit Bay, Massachusetts. Estuaries, 1992, 15:443-57.
    [193] Valiela, I., Bowen, J.L., Kroeger, K.D.. Assessment of models for estimation of land-derived nitrogen loads to shallow estuaries. Applied Geochemistry, 2002, 17:935-53.
    [194] Walshi, I.J., Collier, D.. Rates of recycling of biogenic components of settling particles in the ocean derived from sediment trap experiments. Deep-Sea Research II, 1988, 35: 43-58.
    [195] Wang, K., Cornett, R.J.. Distribution coefficients of 210Pb and 210Po in laboratory and natural aquatic systems. Journal of Paleolimnology, 1993, 9: 179–188.
    [196] Waska, H., Kim, S., Kim, G., Peterson, R. and Burnett, W.C.. An efficient and simple method for measuring 226Ra, together with 223Ra and 224Ra, using a delayed coincidence counter (RaDeCC). Journal of Environmental Radioactivity, 2008, 99: 1859-1862.
    [197] Watters, D.L., Kline, D.E., COale, K.H., Cailliet, G.M.. Radiometric age confirmation and growth of bank rockfish, Sebastes rufus, from California. Fisheries Research, 2006, 81: 251-257.
    [198] Webster, I.T., Hancock, G.J., Murray, A.S.. Modeling the effect of salinity on radium desorption from sediments. Geochimica et Cosmochimica Acta, 1995, 59: 469-476.
    [199] Windom, H., Niencheski, F.. Biogeochemical processes in a freshwater-seawater mixing zone in permeable sediments along the coast of southern Brazil. Marine Chemistry, 2003, 83: 121-130.
    [200] Windom, H.L., Moore, W.S., Niencheski, L.F.H., Jahrike, R.A.. Submarine groundwater discharge: A large, previously unrecognized source of dissolved iron to the South Atlantic Ocean. Marine Chemistry, 2006, 102: 252-266.
    [201] Xu, B., Burnett, W.C., Derek, Land-Smith, Yu Z.. A simple laboratory-based radon calibration system. Journal of radioanalytical and nuclear chemistry, 2010, 283: 457-463.
    [202] Yang, S.L., Zhao, Q., Belkin, I.M., 2002. Temporal variation in the sediment load of the Yangtze River and the influences of the human activities. Journal of Hydrology, 263, 56-71.
    [203] Yeh, J.-C. and Chung, Y.-C.. 228Ra and 226Ra distributions off north and southwest Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 1997, 8:141–154.
    [204] Zektser, I.S., Loaiciga, H.A.. Groundwater fluxes in the global hydrologic cycle: past, present and future. Journal of Hydrology, 1993,144: 405-27.
    [205] Zektser, I.S., Everett, L.G., Dzhamalov, R.G.. Submarine Groundwater. Boca Raton, FL: CRC Press. 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700