用户名: 密码: 验证码:
吉林省东部地区沼泽草炭土的结构特性及模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济建设的高速发展,在沼泽草炭土分布地区进行大规模工程建设已成发展趋势。在诸多土类中,草炭土是最为少见的软土之一,由于相关的理论研究较少,有必要结合草炭土的相关工程,研究草炭土结构性对其力学特性的影响,揭示草炭土工程问题发生的内在机理,进而建立合理描述草炭土强度和变形特性的模型。在解决草炭土工程问题,满足其对工程可靠性、稳定性、耐久性和安全性的更高要求的同时,也会极大地促进草炭土的结构性理论的发展和应用。
     本文依托国家自然科学基金项目“季冻区沼泽草炭土特性的时间效应研究”和“季冻区沼泽草炭土的结构特性及本构关系研究”以及吉林省交通厅的多个相关课题,针对吉林省东部沼泽草炭土的结构特性及相关模型进行了深入的研究。
     本文以吉林省东部地区沼泽草炭土为研究对象,首先对吉林省东部地区沼泽草炭土的分布、成因、工程性质进行研究,从物质组成、物理力学特性、时空特征等方面研究草炭土区别于泥炭土的本质原因。其次通过对草炭土有机质含量和物理力学指标相关特征的研究,对草炭土的压缩特性、强度特性和水理特性在不同有机质含量下产生的力学效应机理进行了分析。通过进行分解度试验分析草炭土分解度的变化规律,同时对草炭土的原状样与重塑样进行相应的力学性质对比试验,得到草炭土原状样和重塑样的结构特性及受力变化的规律。最后基于分解度对草炭土强度的影响,结合相关试验数据,采用BP神经网络和RBF神经网络方法代替数学方法建立本构模型,在建模的同时考虑了不同分解度对草炭土性质的影响,不仅避免了数学建模确定复杂的函数参数和建立一系列假设条件,还可以真实地反映了草炭土的本构关系特征。
Turfy soil is an organic complex soil which usually found in cold regions, such asChangbaishan, Xing’anling, Qingzang plateau, northwest Sichuan and Yunan provinces, mostof Xinjiang province in China. It forms in areas such as moors, muskegs, pocosins, mires, andpeat swamp forests, where the land is waterlogged and subject to reducing atmosphere withlow temperature to slow down the decomposition of plant residues. It characterized by highcompressibility, low stability, high organic content, great void ratio, high compressibility andcomplex orientation of partially decomposed vegetation matters because of the special geneticenvironment and historic environment. These properties are all related to the internal structureof turfy soil. So it is necessary to study the structure which influenced the physics mechanicsproperty of turfy soil. That can shed new light on essence rule of mechanics.
     Now developing with a large scale of engineering construction in the regions of sectional frostzone of swamp turfy soil has already become a kind of development trend. Among the varioussoft soil groups, turfy soil is the less common-seeing one. Owing to the high speed ofeconomic development, it is necessary to study the mechanical properties of peat soil whichinfluenced by its structure with the combination the peat soil-related projects. It can reveal theinherent mechanism of peat soil engineering problems and establish a reasonable descriptionof peat soil strength and deformation characteristics of the constitutive model. Through theresearch of engineering problems in peat soil areas, a higher demand on the reliability,stability, endurance and security of project can be met up with, which will largely promote thedevelopment and application of the structural theory of soil.
     For the above reasons and practical applicability of the study, this paper were studied onstructural characteristics and model of marsh turfy soil under the support of the NationalNatural Science Foundation of China ‘study on the engineering geological characteristics ofturfy soil considering time effect in seasonal frost region’ and ‘Study on the structuralproperty and constitutive relations for marsh peat of seasonally frozen region’, etc. fourtransportation construction projects in Jilin Province. The research contents as follow:
     The study began with the field survey of systematic study the formation and the sedimentarycharacteristics of turfy soil. It discusses the different between turfy soil and peat soil aboutmaterial composition, physical mechanics character and spatiotemporal nature. Through thecharacterization study on the organic content of turfy soil as well as its physical andmechanical indexes, the mechanism of mechanical effects resulting from the compression andstrength properties of turfy soil with different organic contents is analyzed. Through the testof decomposition degree analyze the changing regularity of decomposition. Contrastexperiments have been done on undisturbed and remolding turfy soil samples. From the testthe structural characteristics and varying regularity of load can be obtain. Consider buildingBP network constitutive model and RBF network constitutive model which based on theinfluence of strength with decomposition degree and combined with the test data. Simulationresults show that these canbe effectiveness and good generalization ability.
     1. Study on the distribution, formation conditions of marsh turfy soil in the east of JilinProvince, then systematically discuss the differences between marsh turfy soil in the east ofJilin Province and peat soil at Dianchi region of Yunnan province:
     1) Compare to the peat soil, carbon and sulphur content of turfy soil is low but oxyhydrogenand nitrogen content is slightly higher. Because of the formation time of the turfy soil isshorter and degree of carbonation is weaker. The mineral content of turfy soil has abundantquartz which obviously different from peat soil. The mineral content of peat soil consists ofmainly illite and chlorite, without kaolinite.
     2) Turfy soil has higher organic matter and low degree of decomposition than peat soil. Thereare a lot of unrotten plant root and plant fiber in the turfy soil. The reticulate structure offibrous root and stem leat distribute in disorder. So the turfy soil has aerial structure and largepores development. The plants in peat soil are fuzziness which mainly decomposed. Thetypical structures are cellular structure, aerial structure and globular structure.
     3) Higher the moisture content, porosity, compressibility, permeability and the lower specificweight are due to the lower decomposition degree and higher organic content of turfy soilthan peat soil. Comparison the shear strength between peat soil and turfy soil, the internalcohesion is relative decline and the internal friction angle is relative increase. It is because that there many plant residue in the turfy soil.
     2. The organic matter effect on physical and mechanical properties of turfy soil are as follows:
     1) Density and particle density of turfy soil linearly decrease when the organic contentincreases, whereas the moisture content increases linearly. The void ratio increasesexponentially with the organic content. The organic content has significant influence onengineering properties of turfy soil. The compressibility increases with the organic content.The turfy soil is composed of a large amount of partially decomposed plant cellulose, whichincreases the organic content and accordingly the compressibility.
     2) The cohesion of the turfy soil, mainly associated with colloids and clay particles, ispositively related to the organic content. The partially decomposed plant cellulose providesadditional strength intertwining and constraining the lateral displacement of turfy soil.Secondly, there are many undecomposed plant residue in turfy soil. They are criss-crosswhich produced a part in tractive force.
     3) The permeability decreases when the organic content increases. With the same organiccontent, the horizontal component of the permeability is less than its vertical component.
     3. The structure characteristics and the structural strength of turfy soil are studied by the testsof constitutive property, the test results are as follows:
     1) The lower degree of decompose is, more loose the structure of turfy soil own and the morethe void ratio and moisture content is. With the degree of decomposition increasing, porespace is filled with particle material and produces synthesizes inorganic/organic compositeswhich made the void ratio and moisture content decrease, density and particle densityincrease.
     2) With the degree of decomposition increasing, compression curve of undisturbed soilsamples and remolded soil samples all gradually change slower. It is because that with thedegree of decomposition increasing, the structure of turfy soil changes from aerial structure toflocculation structure gradually, and the structure gradually become denser, the compressionbecome lower than before. The compression curve of undisturbed soil samples have a tippingpoint basically under the same degree of decomposition but the compression curve ofremolded soil samples don’t. With the increasing of the loading, the pore space and compressibility of undisturbed soil samples gradually approach the index of remolded soilsamples.
     3) The deviatoric stress and pore water pressure of undisturbed soil samples and remolded soilsamples increases as the increasing of the axial strain under the same confining pressure. Thedeviatoric stress and pore water pressure of remolded soil samples are less than the index ofundisturbed soil samples. All of these because the constitutive property of undisturbed soilsamples are superior to the constitutive property of remolded soil samples. The deviatoricstress-axial strain curve of undisturbed soil samples and remolded soil samples are allappeared as strain hardening, some undisturbed soil samples showed strain softening in thedifferent confining pressures. With the degree of the decomposition increasing, the deviatoricstress and pore water pressure decreased.
     4) The shear strength index is less than other soils. The cohesion general has little changed,but angle of internal friction has obvious changed. Total stress indices of remolded soilsamples are always smaller than the indices of undisturbed soil samples but differ ofcorresponding effective stress indices between remolded soil samples and undisturbed soilsamples are not obvious. Secondly, the shear strength index has the very big connection withthe degree of decomposition such as the lower degree of decomposition made larger the angleof internal friction. It is prompted by the plant residue of turfy soil acts as reinforced duringthe shearing. The destructed form on shearing mainly divides into two modes such as singleshearing zone and protruding in the middle of samples. They are existed in undisturbed soilsamples and remolded soil samples.
     5) Structure strength of turfy soil is mainly affected by confining pressure, degree ofdecomposition and other factors. The constitutive property of turfy soil increases with thepressure then decreases under different degree of decomposition. The curves of constitutiveproperty all have crest value. Structural strength changes from strain that shows as strainsoftening. With the degree of decomposition increasing, the constitutive property andstructural strength of turfy soil decrease.
     4. In order to fully show the effects of structure of turfy soil, based on the theory of artificialneural network, a constitutive model of turfy soil is achieved. The results follow as:
     1) Based upon artificial intelligence method, adopts turfy soil triaxial test data trainingintelligence network, self-act generating network parameter, and gets reinforced soil BPneural network constitutive model, RBF neural network constitutive model, thus avoiding thedifficulties of mathematical modeling determine function parameter.
     2) The BP neural network constitutive model of turfy soil has good fitting precision and goodgeneralization ability. Through comparing and analysis the prediction accuracy and the testdata, it can fully describe the influence of the turfy soil.
     3) Simulation results show that the RBF neural network constitutive model can achievepreferable effect with the different degree of decomposition. Under the training and checkingprocess the curves of model simulating are in accordance with experimental curves which candescribe the law of strength and deformation.
     4) RBF neural network constitutive model of turfy soil learning is much faster than BP neuralnetwork constitutive model. And the training error of RBF neural network constitutive modeis smaller than BP neural network constitutive model as well. This is mainly up to the RBFneural network using the least square method to get threshold value and weight, but BP neuralnetwork using vice gradient descent method to regulate weight.
引文
[1]赵华,佴磊.敦化地区草炭土的工程性质研究[J].岩土工程技术,2004(6):311-314.
    [2]金健康,佴磊.鹤大公路草炭土工程地质特性研究[J].城市道桥与防洪,2004(6):113-115.
    [3]韩玉民,王庆宽.草炭土工程特性在公路建设中应用的研究[J].城师范学院学报,2009,23(3):75-78.
    [4]刘飞,佴磊,吕岩,等.分解度对草炭土结构特征及强度的影响试验[J].吉林大学学报(地球科学版),2010,40(6):1395-1400.
    [5]吕岩,佴磊,徐燕,等.有机质对草炭土物理力学性质的影响及机理分析[J].岩土工程学报,2011,33(4):655-660
    [6]刘飞.吉林敦化地区草炭土特性的时间效应研究[D].长春:吉林大学,2011.
    [7]纪青山,栾海,韩一波,等.延边地区草炭土工程特性分析[J].吉林交通科技,2003,(3):3-7.
    [8]韩兴广,佴磊.草炭土路基处理方法研究[J].世界地质,2004,23(4):391-396.
    [9]江娟.鹤大公路试验段草炭土路基极限填高研究[D].长春:吉林大学,2005.
    [10]陈东丰,汪滨滨,马志范.草炭土地区公路路基处置方案比较[J].吉林交通科技,2006,105(6):3-6
    [11]于炎鑫,佴磊,刘建磊,等.草炭土路堤稳定性分析及工程处理措施研究[J].铁道建筑,2010,4:72-75.
    [12]沈世伟,佴磊.草炭土铁路路基工程处理研究[J].铁道建筑,2010,2:61-64.
    [13]柳雁玲.草炭土路基沉降与变形特性研究[D].长春:吉林大学,2006.
    [14]李淼.江密峰至黄松甸段一级公路软土地区路基固结沉降特性[D].长春:吉林大学,2006.
    [15]徐燕.季冻区草炭土变形工程地质特性及变形沉降研究[D].长春:吉林大学,2008.
    [16]刘飞,佴磊,吕岩,等.草炭土路基填筑过程力学特性试验研究[J].吉林大学学报(地球科学版),2011,41(2):505-510.
    [17]牛焕光,张养贞.东北地区沼泽[J].自然资源,1980,(2):53-63.
    [18]黄锡畴.试论沼泽的分布和发育规律[J].地理科学,1982,2(3):193-201.
    [19]孙广友.试论沼泽与冻土的共生机理-以中国大小兴安岭地区为例[J].冰川冻土,2000,22(4):309-316.
    [20]陆健健,何文珊,童春富.湿地生态学[M].北京:高等教育出版社,2006.
    [21]陈静,张树文,张养贞.近十五年来东北地区沼泽湿地变化研究[J].内蒙古师范大学学报(自然科学汉文版),2009,38(1):85-91.
    [22]郎惠卿.兴安岭和长白山地森林沼泽类型及其演替[J].植物学报,1981,23(6):470-477.
    [23]陈淑云,郎惠卿,王升忠,等.东北山地贫营养泥炭的性质与泥炭的发育过程[J].东北师大学报自然科学版,1994,(4):100-104.
    [24]赵红艳,冷雪天,王升忠.长白山地泥炭分布、沉积速率与全新世气候变化[J].山地学报,2002,20(5):513-518.
    [25]赵红艳,王升忠,李鸿凯.长白山地区全新世泥炭剖面地球化学特征及其古环境意义[J].古地理学报,2004,6(3):356-362.
    [26]赵红艳,王升忠,何春光.吉林省敦化地区泥炭成矿类型及性质[J].东北师大学报自然科学版,2001,33(2):93-96.
    [27]赵红艳,郄瑞卿,白燕,李舸民.敦化大桥泥炭土有机质及其组分研究[J].吉林农业大学学报,2002,24(3):65-67.
    [28]赵红艳,白燕,赵霞.敦化泥炭矿物质组成的研究[J].东北师大学报自然科学版,2002,34(1):77-80.
    [29]赵红艳,王升忠,周道玮.泥炭记录的近2200年吉林省敦化盆地的气候变化[J].东北大学学报,2005,37(4):111-115.
    [30]张新荣,胡克,刘莉莉.吉林省敦化地区全新世泥炭沉积中植硅体分析[J].微体古生物学报,2005,22(2):202-207.
    [31]赵红艳,周道玮.吉林省敦化地区晚全新世泥炭沼泽孢粉组合特征及古植被[J].应用生态学报,2006,17(2):197-200.
    [32]柴岫.中国泥炭的形成与分布规律的初步探讨[J].地理学报,1981,36(3):237-253.
    [33]陈淑云,金树仁.中国草本泥炭的性质及其利用途径[J].东北师大学报自然科学版,1984,(2):93-103.
    [34]尹善春.中国泥炭资源及其开发利用[M].北京:地质出版社,1991.
    [35]尹善春.泥炭沼泽的演化及其机制[J].煤田地质与勘探,1995,23(6):6-11.
    [36]白光润,王升忠,冷雪天,等.草本泥炭形成的生物环境机制[J].地理学报,1999,54(3):247-254.
    [37]马学慧,王荣芬.我国泥炭基本性质的区域分异[J].地理科学,1991,11(1):30-41.
    [38]赵红艳,王升忠,白燕,等.近10年来我国泥炭地学的研究进展[J].地球科学进展,2002,17(6):848-854.
    [39]殷书柏,吕宪国.“泥炭气候成因说”的探讨[J].地理科学,2006,26(3):321-327.
    [40]蒋忠信,袁宝印,黄俊等.滇池泥炭土[M].成都:西南交通大学出版社,1994.
    [41]王丹微,王清,陈剑平.滇池盆地泥炭土分布规律及工程地质特性研究[C].第二届全国岩土与工程学术大会论文集,2005,821-825
    [42]孙晓娟.滇池泥炭土工程地质特性试验研究[D].昆明:昆明理工大学,2006.
    [43]熊恩来,阮永芬,刘文连等.云南泥炭土力学特性实验及归一化性状研究[J].云南水利发电,2005,21(2):39-42
    [44]熊恩来.云南泥炭、泥炭质土的力学特性及本构模型研究[D].昆明:昆明理工大学,2005.
    [45]黄俊,蒋忠信.南昆铁路七甸泥碳土的性质与工程处理[J].中国地质灾害与防治学报,1994,5(sup.),184-189.
    [46]黄俊.南昆线七甸泥炭土的工程岩土学特征[J].路基工程,1999,(6):6-12.
    [47]蒋忠信,黄俊,陈国芳.南昆线七甸泥炭土路基加固的沉降控制[J].铁道工程学报,1998,60(4),79-89.
    [48]蒋忠信,陈国芳,张利民.南昆线七甸泥炭土路基沉降的模拟分析[J].路基工程,1999,(6):24-28.
    [49] Lea N.D. Notes on mechanical properties of peat[C]. In Proceedings4th Muskeg ResearchConference, Ottawa, ACSSM, Technical Memo,1958,54:53-57, National Research Council ofCanada.
    [50] Adams J.I. The engineering behavior of a Canadian Muskeg[C]. In Proceedings of6thInternationalConference on Soil Mechanics and Foundation Engineering, Montreal,1965,1:3-7.
    [51] MacFarlance I.C. and Radforth N.W. A study of the physical behavior of peat derivatives undercompression[C]. In Proceedings10th Muskeg Research Conference, Ottawa,1965:159, NationalResearch Council of Canada.
    [52] Bulychey V.G., Amaryan L. S., Bazin E. T. Field studies on the strain and strength properties of peatsoil[J]. Fundamenty I Mekhanika Gruntov,1966,(3):22-24.
    [53] Hobbs N.B. Mire morphology and the properties and behavior of some British and foreign peats[J].Quarterly Journal of Engineering Geology, London,1986,19(1):7-80.
    [54] Hobbs N.B. A note on the classification of peat[J]. Geotechnique,1987,37(3):405-407.
    [55]刘永和,孟宪民,王忠强,等.1995年以来国外泥炭及泥炭的研究进展[J].生态环境,2003.12(1):86-91.
    [56] Inisheva L.I. Peat soils: Genesis and classification[J]. Eurasian Soil Science,2006,39(7):699-704.
    [57] Forrest J.B. and MacFarlane I.C. Field studies of response of peat to plate loading[J]. Journal of SoilMechanics and Foundation Division, ASCE,1969,95, SM4:949-968.
    [58] Barden L. Time dependent deformation of normally consolidated clays and peats[J].Journal of SoilMechanics and Foundation Division, ASCE,1969,95(1):1-31.
    [59] Berry P.L.&Poskitt T.J. The consolidation of peat[J]. Geotechnique,1972,22(1):27-52
    [60] Landva A.O. Vane testing of peat[J]. Canadian Geotechnical Journal,1980,17(1):1-19.
    [61] Edil T.B. and Dhowian A.W. At-rest lateral pressure of peat soils[J]. Journal of GeotechnicalEngineering, ASCE,1980,107(2):201-217.
    [62] Yamaguchi H., Ohira Y., Kogure K., et al. Undrained shear characteristics of normally consolidatedpeat under triaxial compression and extension conditions[J]. Soils and Foundations,1985,25(3):1-18.
    [63] Edil, T.B. and den Haan, E.J. Settlement of peats and organic soils, In Proceedings of the Conferenceon Vertical and Horizontal Deformations of Foundations and Embankments[C]. Texas, USA,Felio,ASCE,1994,Part2:1543-1572.
    [64] Den Haan E.J. Compression model for non-brittle soft clay sand peat[J].Geoteehnique,1996,6(1):l-16.
    [65] Mesri G., Stark T.D., Ajlouni M.A., et al. Secondary compression of peat with or withoutsurcharging[J]. Journal of Geo-technical and Geo-environmental Engineering,1997,123(5):411-420.
    [66] Stack E.M.,Dyrkacz G.R., Hatcher P.G., et al. Density gradient centrifugation method for separationof peat[J].Separation Seienee and Technology,1997,32(14):2289-2307.
    [67] Gunarathe M., Stinnette P., Mullins A.G., et al. Compressibility relations for peat and organic soil[J].Journal of Testing&Evaluation,1998,26(1):1-9.
    [68] Karunawardena, W.A. A Study of Consolidation Characteristics of Colombo Peat[C]. In Proceedingsof1st International Young Geotechnical Engineering Conference, Southampton, UnitedKingdom.2000
    [69] Kugan, R., Puswewala, U.G.A., Kulathilaka, S.A.S., et al. Consolidation testing of peaty clay[C]. InProceedings of Engineering Research Unit, University of Moratuwa, Sri Lanka.2004
    [70] Baird A.J. Field estimation of macropore functioning and surface hydraulic conduetivity in a fenpeat[J]. Hydrological Proeesses,1997,11(3):287-295.
    [71] Baird A.J. Solute movement in drained fen peat: a field tracer study in a Somerset (UK) wetland[J].Hydrological Processes,2000,14(14):2489-2503.
    [72] Kennedy P., Van Gee P.J. Hydraulics of Peat Filters Treating Septic Tank Effluent[J]. Transport inPorous Media,2000,41(1):47-60.
    [73] Vidal-Beaudet L.,Charpentier S. Percolation Theory and Hydrodynamies of soil-Peat Mixtures[J].Soil Science Society of America Journal,2001,64(3):827-835.
    [74] Mooney S.J., Holdenn M., Ward S.M., et al. A comparison of morphologieal data an physicalmeasurements of pore struetures in milled peat stockpiles[J]. Geoderma,2001,104(l-2):61-73.
    [75] Beheim E. The effect of peat land drainage and afforestation on runoff dynamics[J]. EnvironmentalRole of Wetlands in Headwaters,2006:59-75.
    [76] Lea N.D. and Brawner C.O. Highway design and construction over peat deposits in Lower BritishColombia[J]. Highway Research Board, Research Record1963,7:1–33.
    [77] Berry P.L. Application of consolidation theory for peat to the design of a reclamation scheme bypreloading[J]. Quarterly Journal of Engineering Geology, London,1983,16:103-112.
    [78] Laval Samson and Pierre La Rochlle. Design and performance of an expressway constructed overpeat by preloading[J]. Canadian Geotechnical Journal,1972,9:447-446.
    [79] Kogure K. Consolidation and settlement of peat under loading[C]. In Proceedings of InternationalConference on Problematic Soils,1999,2:817-831, Balkema, Rotterdam.
    [80] Kulathilaka S.A.S. Improvement of engineering properties of peat by precompression[C]. InProceedings of11th Asian Regional Conference on Soil Mechanics&Geotechnical Engineering,Seoul, Korea,1999,1:97-100,Balkema, Rotterdam.
    [81] O’Mahony M.J.and UEBERSCHAER A. Bearing capacity of forest access roads built on peat soils[J]. Journal of Terramechanics,2000,37:127-138.
    [82] O’Loughlin, C.D. and Lehane, B.M. Modeling the time-dependent compression of peat and organicsoils[C]. In Proceedings of3rd International Conference on Soft Soil Engineering, Hong Kong,2001:369-375, Balkema.
    [83] Karunawardena, W.A. Improvement of engineering properties of peat by preconsolidation–Acomparative of field and laboratory test results[R], Master Thesis, University of Moratuwa, SriLanka.2002
    [84] Karunawardena W.A. and Kulatilaka S.A.S. Field monitoring of a fill on peaty clay and itsmodeling[C]. In Proceedings of12thAsian Regional Conference on Soil Mechanics&GeotechnicalEngineering, Singapore,2003,1:159-162,World Scientific Publishing Co.
    [85] Kugan R., Puswewala U.G.A., Kulathilaka S.A.S., et al. Peaty clay improvement with prefabricatedvertical drains, In Proceedings of Engineering Research Unit, University of Moratuwa, SriLanka.2003
    [86] Ketheeswaravenayagam R. Finite element modeling of highway embankments over soft subsoilconditions[M]. Master Thesis, University of Moratuwa, Sri Lanka.2006
    [87]白燕赵红艳,祖文辰,等.中国东北与白俄罗斯泥炭藓泥炭特性的对比研究[J].东北师大学报自然科学版,1997,(2):98-103.
    [88]张则有,陈扬乐,白燕,等.中国东北地区与白俄罗斯泥炭特性及开发利用的对比研究[J].东北师大学报自然科学版,1997,(1):100-109.
    [89] Sawahiko Shimada, Hidenori Takahashi, Akira Haraguchi, et al. The carbon content characteristicsof tropical peats in central kalimantan,indonesia estimation their spatial variability in density[J].Biogeochemistry,2001,53:249-267.
    [90] Lars Zetterberg, Stefan Uppenberg, Markus hman. Climater impact from peat utilistation inSweden[J]. Mitigation and Adaptation Strategies for Globel Change,2004,9:37-76.
    [91] DMITRI MAUQUOY, Dan YELOFF. Raised peat bog development and possible responses toenvironmental changes during the mid-to late-Holocene. Can the palaeoecological record be used topredict the nature and response of raised peat bogs to future climate change?[J]. Biodiversity andConservation,2008,17(9):2139-2151.
    [92] Dmitri Mauquoy, Dan Yeloff.Raised peat bog development and possible responses to environmentalchanges during the mid to late Holocene[J]. Biodivers Conserv,2008,17P:2139-2151.
    [93] Simon M. Hutchinson, Richard P.Armitage. A Peat Profile Record of Recent Environmental Eventsin the South Pennines(UK)[J]. Water Air Soil Pollut,2009,199:247-259.
    [94] Colin R. Jackson, Kong Cheng Liew, Catherine M. Yule. Structural and functional changes withdepth in microbial communities in a tropical malaysian peat swamp forest[J]. Microb Ecol,2009,57:402-412.
    [95] Mesri G., Roskhar A., Bohor B.E. Composition and compressibility of typieal samples of Mexieoclay[J]. Geotechnique,1975,25(3):527-554.
    [96] Graham J., Li E.C.C. Comprison of natural and remolded plastic clay[J]. Journal of GeotechniealEngineering, ASCE,1985,111(7):865一881
    [97] Locat J, Lefebvre G. The compressibility and sensitivity of an artificially sedimented clay soil:theGrande Baleine marine clay[J]. Quebec. Marine Geotechnical,1985,6(1):1–27.
    [98] Burland J B.On the compressibility and shear strength of natural clays[J]. Geotechnique,1990,40(3):329–378.
    [99]张诚厚.两种结构性土的土工特性[J].水利水运科学研究,1983,(4):65–71.
    [100]沈珠江.软土工程特性和软土地基设计[J].岩土工程学报,1998,20(1):100–111.
    [101]龚晓南,熊传祥,项可祥.黏土结构性对其力学性质的影响及其形成原因分析[J].水利学报,2000,44(10):43–47.
    [102] Cotecchia F, Chandler R. J. A general framework for the mechanical behaviour of clays[J].Geotechnique,2000,50(4):431–447.
    [103]陈铁林,周成,沈珠江.结构性粘土压缩和剪切特性试验研究[J].岩土工程学报,2004,26(1):31–35.
    [104]李涛,钱寿易.土样扰动影响的评价及其先期固结压力的确定[J].岩土工程学报,1987,9(5):29–21.
    [105] Haan E.J.D. The formulation of virgin compression of soils[J]. Geotechnique,1992,42(3):465-83.
    [106] Liu M.D., CarterJ.R, DesaiC.S., et al. Analysis of the compression of struetured soils using thedisturbed state concept[J]. Intemational Journal for Numerieal and Analytieal Methods inGeomechanies,2000,24(8):723一735.
    [107] Liu M.D., Carter J., DesaiC.S. Modelling compression behavior of geo-materials[J]. IntemationalJournal of Geomechanies, ASCE,2003,3(2):191一04.
    [108] Chandler R J. Clay sediments in depositional basin:the geotechnical cycle quarterly[J]. Journal ofengineering geology and hydrogeology,2000,33(1):7-39.
    [109]王立忠,李玲玲,丁利等.温州煤场软土结构性试验研究[J].土木工程学报,2002,(l):88-92,106.
    [110]王立忠,丁利,陈云敏,等.结构性软土压缩特性研究[J].土木工程学报,2004,(4):46-53.
    [111]王国欣,肖树芳,周旺高.原状结构性土先期固结压力及结构强度的确定[J].岩土工程学报,2003,25(2):249–251.
    [112]王冠英,肖树芳,习春飞.海积软土前期固结压力与结构强度的关系及成因分析[J].世界地质,2004,23(1):69–74.
    [113]刘恩龙,沈珠江.结构性土压缩曲线的数学模拟[J].岩土力学,2006,27(4):615-620.
    [114] Deleg R., Lefebvre G. Study of the strueture of a sensitive champlain clay and evolution duringconsolidation[J]. Canadian Geotechnieal Journal,1984,21:21-25.
    [115] Lapierre C., Leroueil S, Loeat J. Mereury in trusion and permeability of Louiseville clay[C].Canadian Geotechnieal Conferenee,1989:23-25.
    [116] Nagaraj T.S., PandianN.S., RajuP.S.R.N. Compressibility behavior of soft cementedsoils[J].Geotechnique,1998,48(2):281-287.
    [117]魏汝龙.软枯土的强度和变形[M].北京:人民交通出版社,1987
    [118]刘保健,谢永利,李又云.公路软基在变荷载条件下的沉降计算[J].中国公路学报,2000,13(4):21-25.
    [119]王年香,魏汝龙.沿海软粘土取土质量的对比分析[J].工程地质学报,1994,2(2):66–75.
    [120]王国欣.软土结构性及其扰动状态模型研究[D].长春:吉林大学,2003.
    [121]王冠英.不同地区海积软土前期固结压力与结构强度的关系及其成因分析[D].长春:吉林大学,2003.
    [122]李又云,李哲,谢永利.一维固结理论中固结系数的试验分析[J].建筑科学与工程学报,2008,25(3):102–106.
    [123]李作勤.有结构强度的欠压密土的力学特性[J].岩土工程学报,1982,4(1):34–35.
    [124] Soga, Kenichi, Mitchell, James K. Rate–dependent deformation of structured natural clays[C].Geotechnical Measuring and Modeling Time Dependent Soil Behavior.Special Publication,1996,61:243–257.
    [125]雷华阳.海积软土结构性模型的试验研究及其在基坑开挖工程中的应用[D].吉林大学,2000.
    [126]谢定义,齐吉琳.土结构性及其定量化参数研究的新途径[J].岩土工程学报,1999,21(6):651-656.
    [127] McCulloeh W.S, Pitts W. A. Logical calculus of the ideas immanent in Nervous Activity[J]. BullMath. Biophysics,1943,5:115-13
    [128] Martin T H, Howard B D, Mark H B.戴葵译.神经网络设计[M].北京:机械工业出版社,2002
    [129] Powell M J D. Radial Basis Function for mu1tivariable interpolation:a review[C]. In: IMAConference on Algorithms for the Approximation of Functions and Data. RMCS Shrivanham,1987:143-167
    [130] Broomhead D S, Lowe D. Multivarialble functional interpolation and adaptive network[J]. ComplexSystems,1988,(2):321-355
    [131] Park J, Etal. Universal Approximations Using RBF Netorks[J]. Neural Computation,1991,2(3):246-257
    [132] Powell M. J. D. The Theory of RBF Approximation in l990[C]. In: Numerical AnalysisReport.University of Cambrige,1990:51-56
    [133]高隽.人工神经网络原理及仿真实例.北京:机械工业出版社,2003:1-23.
    [134] Zadeh L A. Fuzzy Sets. Information and control[J].1965,8(2):338-358
    [135] Banimahd M., Yasrobi S.S., Woodward P.K. Artificial neural network for stress-strain behavior ofsandy soils:Knowledge based verification[J]. Computers and Geotechnics,2005,32:377-386
    [136] Sidarta D.E., Ghaboussi J. Constitutive modeling of geomaterials from non-uniform material tests[J].Computers and Geotechnics,1998,22(1):53-71
    [137] Shin H.S., Pande G.N. One self-learning finite element codes based on monitored response ofstructures[J]. Computers and Geotechnics,2000,27:161-178.
    [138] Ghaboussi J., Sidarta D.E. New nested adaptive neural networks (NANN) for constitutivemodeling[J]. Computers and Geotechnics,1998,22(1):29-52.
    [139] Huber N., Tsakmakis Ch. Determination of constitutive propertises from spherical indentation datausing neural networks[J]. Journal of the Mechanics and Physics of Solids,1999,47:1569-1588.
    [140] Kushwaha R.L., Zhang Z.X. Evaluation of factors and current approaches related to computerizeddesign of tillage tools:a review[J]. Journal of Terramechanics,1998,35:69-86.
    [141] Dunjun Chen, Miaoquan Li, Shichun Wu. Modeling of microstructure and constitutive relationduring superplastic deformation by fuzzy-neural network[J].2003,142:197~202.
    [142]曾洪飞. RBF神经网络预测土的物理力学指标初探[J].建材技术与应用,2007,9:7-9
    [143]张高峰,梁宾桥,堪会芹.用BP神经网络预测土抗剪强度指标c,φ[J].岩土工程技术,2006,20(l):36-38,44
    [144]龚羊庆,黄英,金克盛.红土抗剪强度指标及其BP网络模型研究[J].昆明理工大学学报,2004,29(6):5-8,14
    [145]许传华,房定旺.边坡稳定性分析中工程岩体抗剪强度参数选取的神经网方法[J].岩石力学与工程学报,2002,21(6):855一562
    [146]骆以道.一种非饱和土抗剪强度的预测方法[J].大坝观测与土工测试,2001,25(6):41
    [147]吴洪词,唐晓玲,申波,等.砂体本构特性的神经网络模拟[J].贵州工业大学学报,1997,26(3):89-93
    [148]吴洪词,包太,张小彬等.土本构模型的有限元-神经网络耦合模拟[J].贵州工业大学学报,1999,28(2):95-99
    [149]来兴平,蔡美峰,张冰川.神经网络计算在采场结构参数分析中的应用[J].煤炭学报,2001,26(3):245-248
    [150]王靖涛.建立岩土本构模型的反问题理论及神经网络方法[C].第六次全国岩石力学与工程学术大会论文集,2000:260-263
    [151]王靖涛.建立岩土本构模型的数值方法[J].华中科技大学学报(城市科学版),2002,19(1):44-47
    [152]曾静,王靖涛.饱和粘土本构关系的神经网络模型[J].华中科技大学学报,2002,30(3):68-70
    [153]曾静,王靖涛,李国成.多应力路径下饱和粘土的神经网络本构模型及其沉降分析[J].东南大学学报(自然科学版),2002,32(3A):47-50
    [154]曾静,冯夏庭,王靖涛,等.不同应力路径下砂土的神经网络模型弹塑性本构模型研究[J].岩土力学,2004,25(6):896-900
    [155]曾静,王靖涛.土本构关系的数值建模方法[J].岩石力学与工程学报,2002,21(增2):2336-2340
    [156] Ghassem Habibagahi and Alireza Bamdad. A neural network framework for mechanical behavior ofunsaturated soils[J]. Canadian Geotechnical Journal,2003,40(2):684-693
    [157] Banimahd M., Yasrobi S. S., Wood ward P. K. Artificial neural network for stress-strain behavior ofsandy soils: Knowledge based verification[J]. Computers and Geotechnics,2005,32(6):377-386
    [158]谭云亮,王春秋.岩石本构关系的径向基函数神经网络快速逼近模型[J].岩土工程学报,2001,23(1):14-17
    [159]姚辉,王靖涛.多重应力路径下粘土本构关系的神经网络模型[J].岩石力学与工程学报.2003.22(9):1454-1457
    [160]邓子胜.深基坑支护结构-土空间非线性共同作用研究[D].湖南:湖南大学,2004
    [161] J. Ghaboussi and D. E. Sidarta. New Nested Adaptive Neural Networks (NANN)for ConstitutiveModeling. Computer and Geotechnics,1998,22(1):29-52
    [162] D. E. Sidarta and J. Ghaboussi. Constitutive Modeling of Geomaterials from Nonuniform MaterialTests. Computer and Geotechnics,1998,22(1):53-71
    [163] Suat Akbulut, Hasiloglu A Samet, Sibel Pamukcu. Data generation for shear modulus and dampingratio in reinforced sands using adaptive neuro-fuzzy inference system. Soil Dynamics andEarthquake Engineering,2004,24(11):805-814
    [164]丁德馨,张志军.位移反分析的自适应神经模糊推理方法[J].岩石力学与工程学报,2004,23(18):3087-3092
    [165]沼泽研究室泥潭组.吉林省泥潭资源.地理科学,1989,3(3):241-252
    [166]张路,詹长久,李翠华,等.昆明滇池泥炭土的某些特性,土工基础,2006,20(2):93-94
    [167]张树夫.云南滇池泥炭及其形成的古地理环境[J].湖泊科学,1989,1(1):88-97
    [168]黄俊,蒋忠信,刘劲华.南高云原泥炭土沉积环境与沉积相及工程地质特性[J].铁道工程学报,1996,60(2):238-247
    [169]唐大雄,刘佑荣,等.工程岩土学[M].地质出版社,1999.
    [170]谷任国,房营光.有机质和粘土矿物对软土流变性质影响的对比试验研究[J].华南理工大学学报(自然科学版),2008,36(10):31-36.
    [171]张春雷,汪顺才,朱伟,等.初始含水率对水泥固化淤泥效果的影响[J].岩土力学,2008,29(Supp):567-570.
    [172]冯志超,朱伟,张春雷,等.粘粒含量对固化淤泥力学性质的影响[J].岩石力学与工程学报,2007,26(Supp1):3052-3057.
    [173]朱伟,曾科林,张春雷.淤泥固化处理中有机物成分的影响[J].岩土力学,2008,29(1):33-36.
    [174]范昭平,朱伟,张春雷.有机质含量对淤泥固化效果影响的试验研究[J].岩土力学,2005,26(8):1327-1334.
    [175]储诚富,邵俐,刘松玉,等.有机质含量对水泥土强度影响的室内定量研究[J].岩土力学,2006,27(9):1613-1616.
    [176]陈慧娥,王清.有机质对水泥加固软土效果的影响[J].岩石力学与工程学报,2005,24(Supp2):5816-5821.
    [177] JTJ051-93,《公路土工试验规程》[S]
    [178]谢莉萍,吴风军,曹中.有机质土、泥炭质土的比重与有机质含量的相关性探讨[J].城市勘测,2003:52-54.
    [179]王跃新.原状土与重塑土静力三轴试验的对比研究[D]大连:大连理工大学,2009
    [180]钱尼贵.腐木纤维、淤泥混合土变形特性及沉降规律研究[D]河海大学硕士学位论文2004.3
    [181]牟春梅,李佰锋.有机质含量对软土力学性质影响效应分析[J].水文地质工程地质,2008,03:42-46
    [182]沈珠江.土体结构性的数学模型-21世纪土力学的核心问题[J].岩土工程学报,1996,18(l):95-97.
    [183]王立忠,李玲玲,丁利,等.温州煤场软土结构性试验研究[J].土木工程学报,2002,35(1):88-92.
    [184]熊传祥,郡飞,周建安,等.土结构性对软土地基性状的影响[z].福州大学学报(自然科学版),2001,29(5):59-92
    [185]周宇泉,胡听,洪宝宁,等.从微细结构方面解释某勃性土压缩特性的差异IJ].水利水电科技进展,2006,26(1):31-36.
    [186]坂口丰.泥炭地地学[M].科学出版社,1983
    [187] GBT_50123-1999,土工试验方法标准,1999
    [188]谢定义,齐吉琳,张振中.考虑土结构性的本构关系[J].土木工程学报,2000,33(4):35-40.
    [189]张尔其,李淑平.深埋泥炭质粘土的力学性能[J].哈尔滨工业大学学报,2009,(8):34-37
    [190]张建经,梁锺琪.昆明泥炭质土的力学特性[C].中国土木工程学会第七届土力学及基础工程学术会议论文集,1994
    [191]刘会灯,朱飞. MATLAB编程基础与典型应用[M].人民邮电出版社,2008.7
    [192]彭钊.基于人工智能方法加筋土本构模型[D].长沙:湖南大学,2009
    [193]陈昌富,彭钊,刘怀星.基于BP神经网络的草根加筋土本构模型[J].水土保持通报,2008,28(3):93-96
    [194]石修松,王路君,程展林.基于RBF神经网络的加筋粘土本构模型[J].长江科学院院报,2010,27(7):31-35

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700