用户名: 密码: 验证码:
污染土壤中汞的形态特征及其释放的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以原沈阳冶炼厂废旧厂区自然污染土壤和模拟汞污染土壤(均为草甸土)为研究对象,采用连续浸提形态分析法对土壤中汞的赋存形态进行了分析,共分为水溶态汞,交换态汞,碳酸盐、铁锰氧化物及部分有机态汞,腐殖酸结合或络合态汞,易氧化降解有机质结合态汞,难氧化降解有机质及某些硫化物结合态汞和残渣态或晶格态汞等七种形态,并采用一次平衡法对其潜在毒性进行了研究,分析研究得出以下主要结论:
     1.供试土壤中汞的形态分布存在很大差异。其中水溶态汞含量均很低,最高为模拟污染土壤中占到总量的0.50%,明显高于自然污染土壤;交换态汞以模拟污染土壤和pH较低的制酸车间土壤中最高,分别占总量的25.63%和19.99%;碳酸盐、铁锰氧化物及部分有机态汞以制酸车间土壤中最高,占到总量的20.33%;腐殖酸结合或络合态汞以模拟污染土壤和制酸车间土壤中最高,均超过总量的10%;而易氧化降解有机质结合态汞则以废水排污口土壤中最高,占总量的43.06%,其次是模拟污染土壤,占总量的35.47%;难氧化降解有机质及某些硫化物结合态汞以试验田土壤(对照)中所占比例最高为14.81%;残渣态或晶格态汞以原料库区土壤和生产车间土壤中所占比例最高,占总量的87.04%和87.66%,而以模拟污染土壤中最低,只占总量的18.28%。
     2.在10~2000 mmol·L~(-1)浓度范围内SO_4~(2-)、Cl~-、Na~+和Ca~(2+)对污染土壤汞的释放量均随离子浓度的增大而增大;CO_3~(2-)、OH~-则没有表现出这一规律。同一离子对不同土壤汞的释放量并不与汞全量成正相关关系。同一无机离子在相同浓度条件下,对模拟污染土壤的释放量要明显高于自然污染土壤。
     3.从不同离子的释放特征曲线来看,供试无机离子对污染土壤汞的释放能力(即潜在毒性)大致表现为:Cl~->OH~->CO_3~(2-)>SO_4~(2-);Ca~(2+)>Na~+。
     4.酸度是影响土壤汞潜在毒性的重要因素之一。随H~+浓度的增大,对污染土壤汞的释放率也随之增大。
     5.在所有的释放实验中,以残渣态或晶格态汞为主的原料库区土壤和生产车间土壤均表现出相一致的释放特征。
     6.除OH~-和CO_3~(2-)外,实验所选用的无机离子SO_4~(2-)、Cl~-、Na~+、Ca~(2+)及盐酸浓度(mol·L~(-1))与污染土壤汞的释放量(mg·kg~(-1))之间的关系能很好地用多项式方程:y=ax~3+bx~2+cx+d加以描述,相关系数r均达到显著水平(p<0.05)。
This article focuses on the natural contaminated soil samples from a deposed smelt factory's region in Shenyang and the simulative contaminated soil which are all meadow soil as the tested soils, the soils' mercury species are analyzed by sequential extraction species method can be divided the following kinds: water soluble species, exchangeable species, species combined with carbonate and Fe and Mn oxides, species combined with humic acid, species combined with easily oxidized and degraded organic matter, species combined with hardly oxidized and degraded organic matter and residual species existing in mineral lattice et al. seven groups. And investigated their underlying toxicity used the means of the first balance. The results show the following main conclusions:
     1.The mercury species distribution in the tested soil exist greatly differences. In these soil, mercury existed in water soluble species are all very low, the highest is in simulative contaminated soil which is 0.50 percent of total, but distinctly higher than the natural contaminated soil; mercury existed in exchangeable species is the highest in simulative contaminated soil and lower pH of made acid plant soil, which are 25.63 and 19.99 percent of total; mercury existed in species combined with carbonate and Fe and Mn oxides is the highest in made acid plant soil, which is 20.33% of total; mercury existed in species combined with humic acid is higher in contaminated soil and lower pH of made acid plant soil, which are all higher than 10%; mercury existed in species combined with easily oxidized and degraded organic matter is the highest in drained waste water region soil of 43.06%, the second is contaminated soil which percent is 35.47%; mercury existed in species combined with hardly oxidized and degraded organic matter is the highest in testing farmland soil which is antitheses, is 14.81%; mercury existed in residual species existing in mineral lattice is the highest in raw material storeroom section soil and produced workshop soil, which are 87.04 and 87.66 percent of total, but the lowest is in simulative contaminated soil which is only 18.28%.
     2.In 10-2000 mmol·L~(-1) concentration range, the mercury releasing amount enhanced with the increment of SO_4~(2-)、Cl~-、Na~+ and Ca~(2+), but CO_3~(2-)and OH~-can't put up this uniform disciplinarian. The mercury releasing amount can't take on positive correlativity with the total mercury in tested soil. In the same abio-ion under the uniform concentration, the mercury releasing amount in the simulative contaminated soil are distinct fatter than the natural contaminated soil.
     3.From the characteristic curves of Hg released by different ions for the contaminated soil, the mercury releasing ability (namely: underlying toxicity) in the tasted soil approximately behaves: Cl~->OH~->CO_3~(2-)>SO_4~(2-);Ca~(2+)>Na~+.
     4.Acidity is one of the importance factors which affects the underlying toxicity of mercury in contaminated soil. The mercury releasing rate increases with the increment of hydrochloric acid concentration.
     5.In all released experiments, mercury existed in residual species existing in mineral lattice is primary in raw material storeroom section soil and produced workshop soil which put up accordant released character.
     6.In the tasted all abio-ions, with the exception of OH~- and CO_3~(2-), the connection with concentration (mol·L~(-1)) and the mercury releasing amount (mg·kg~(-1)) in contaminated soil can primly be described by multinomial equation: y=ax~3+bx~2+cx+d. All correlative relations reach prominent level (p<0.05).
引文
1. 丁振华,王文华,瞿丽雅,等.贵州万山汞矿区汞的环境污染及对生态系统的影响[J].环境化 学,2004,25(2):111-114.
    
    2. 山县登(日).微量元素与人体健康[M].北京,地质出版社,1987:5-25.
    
    3. 王亚平,黄毅,王苏明,等.土壤和沉积物中元素的化学形态及其顺序提取法[J].地质通报,2005, 24(8):728-734.
    
    4. 王云,魏复盛.土壤环境元素化学[M].北京:中国环境科学出版社,1995.145-155.
    
    5. 王定勇,石孝洪,杨学春.大气汞在土壤中转化及其与土壤汞富集的相关[J].重庆科技学报,1998, 20(5):22-25.
    
    6. 王起超,沈文国,麻壮伟.中国燃煤汞排放估算[J].中国环境科学,1999,19(4):318-321.
    
    7. 王新,周启星.土壤Hg污染修复技术研究[J].生态学杂志,2002,21(3):43-46.
    
    8. 中国环境监测总站.中国土壤元素背景值[M].北京:中国环境科学出版社,1990.
    
    9. 冯新斌.贵州部分地区土壤挥发性汞释放通量及其影响因素的研究[J].地质地球化学,1995,(6): 123-125.
    
    10.冯新斌,陈业材,朱卫国.土壤中汞存在形式的研究[J].矿物学报,1996,16(2):218-222.
    
    11.冯新斌,陈业材,朱卫国.土壤挥发性汞释放通量的研究[J].环境科学,1996,17(2):20-25.
    
    12.刘俊华,王文华,彭安.土壤质地对土壤中汞赋存形态的影响[J].环境化学,2000,19(5):474-478.
    
    13.全国土壤普查办公室[M].北京:中国农业出版社,1998,1016-1018.
    
    14.孙卫玲,赵蓉,张岚,等.pH对铜在黄土中吸持及其形态的影响[J].环境科学,2001,22(3):78-83.
    
    15.朱小翠,青长乐,皮广洁.土壤汞形态及其影响因素的研究[J].土壤学报,1996:33(1):94-100.
    
    16.许中坚,王晚英,刘广深,等.红壤中微量元素锌在酸雨淋溶下的释放特征研究[J].湘潭矿业学院学 报,2003,18(4):79-82.
    
    17.朱寿珩,赵义芳,刘平,等.土壤中汞的形态的研究[J].北京农业大学学报,1987,13(1):59-64.
    
    18.陈怀满,郑春荣.复合污染与交互作用研究-农业环境保护中研究的热点与难点[J].农业环境保 护,2002,(4):192.
    
    19.陈静生主编.环境地球化学[M].海洋出版社,1990.
    
    20.陈静生,刘玉机.鸭绿江口再悬浮沉积物中汞的释放[J].环境科学学报,1993,13,(4):385-390.
    
    21.何振立,周启星,谢正功.污染及有益元素的土壤化学平衡[M].北京,中国环境科学出版社,1998, 224-276.
    
    22.李非里,刘丛强,宋照亮.土壤中重金属形态的化学分析综述[J].中国环境监测,2005,21(4): 21-27.
    
    23.李华斌,王文华,彭安.甲基Hg的大气-水-土壤界面交换通量[J].环境科学,2000,21(1):148-155.
    
    24.李仲根,汉王新斌,汤顺林,等.封闭式城市生活垃圾填埋场向大气释放汞的途径[J].环境科学, 2006,27(1):19-23.
    
    25.李学垣 主编.土壤化学[M].北京:高等教育出版社,2001.
    
    26.吴龙华,骆永明,黄焕忠.铜污染土壤修复的有机调控研究I,可溶性有机物和EDTA对污染红壤铜的 释放作用[J].土壤,2000,41(2):62-66.
    
    27.吴燕玉 主编.辽宁省土壤元素背景值研究[M].北京:中国环境科学出版社,1994.
    
    28.许中坚,刘广深.模拟酸雨对南方红壤镉释放的影响[J].农村生态环境,2004,20(4):27-31.
    
    29.张学旬,王连平,宁胜焕.天津污灌区土壤-作物重金属污染状况的研究[J].环境科学,1988,8(2): 22-24.
    
    30.张淑香,依艳丽,刘孝义.二道坊河河道沉积物中汞形态分布及其影响因素的分析[J].沈阳农业大 学学报,1996,27(3):235-238.
    
    31.邹海明,邹长明,林平,等.土壤中酸可提取态重金属释放特征研究[J].农业资源与环境科学,2006, 22(6):404-406.
    
    32.国家环境保护局科技标准司.固体废物浸出毒性浸出方法 水平振荡法.GB 5086.2-1997.
    
    33.国家环境保护局科技标准司.危险废物鉴别标准浸出毒性鉴别.GB 5085.3-1996.
    
    34.国家环境保护局科技标准司.土壤环境质量标准,GB 15618-1995.
    
    35.和文祥.土壤酶与重金属关系研究现状[J].土壤与环境,2000,9(2):139-142.
    
    36.庞叔薇,邱光葵,孙晋芳.连续化学浸提法测定底泥中不同形态汞的探讨[J].环境科学学报,1981, 1(3):234-241.
    
    37.青长乐.论土壤重金属毒性临界值[J].农业环境保护,1992,11(2):51-56.
    
    38.单长青,刘汝海,单红仙.胶州湾近岸沉积物-海水汞的释放研究[J].海洋湖沼通报,2006,(4): 44-51.
    
    39.周东美,郑荣春,陈怀满.镉与柠檬酸、EDTA在几种典型土壤中交互作用的研究[J].土壤学报,2002, 39(1):29-36.
    
    40.周启星.复合污染生态学[M].北京:中国环境科学出版社,1995.
    
    41.侯明,钱建平,殷辉安.桂林市土壤汞存在形态的研究[J].土壤通报,2005,36(3):398-401.
    
    42.郭翠花,张红,杨国栋.工业城市农田生态系统中Hg污染及防治[J].农业环境保护,2000,19(4): 245-247.
    
    43.莫测辉,王秀璋.冀西北东坪金矿床成矿流体的来源研究[J].矿物岩石地球化学学报,1997,16(2): 98-100.
    
    44.倪才英,田光明,骆永明,等.有机化合物和硝酸溶液对复合污染土壤中Cu、Zn、Pb释放的影响[J]. 土壤学报,2004,41(2):237-244.
    
    45.唐永鉴主编.环境学导论[M].北京:高等教育出版社,1987.
    
    46.姚爱军.腐殖酸对矿物结合态汞活性的影响研究.博士学位论文,1997.
    
    47.姚爱军,青长乐,牟树森.腐殖酸对矿物结合汞植物活性的影响[J].中国环境科学,2000,20(3): 215-219.
    
    48.徐仁扣,季国亮,蒋新.低分子量有机酸对高岭石中铝释放的影响[J].土壤学报,2002,39(3):334-340.
    
    49.崔瑞平,赵彬彬,满洪界.某汞矿冶炼厂附近环境汞污染调查[J].环境科学,1998(3):65-67.
    
    50.章明奎,符娟林,顾国平,等.长三角和珠三角土壤中汞的化学形态转化和吸附特性[J].安全与环境 学报,2006,6(2):1-5.
    
    51.章明奎,符娟林,黄昌勇.杭州市居民区土壤重金属的化学特性及其与酸缓冲性的关系[J].土壤学 报,2005,42(1):44-50.
    
    52.鲁如坤主编.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999.
    
    53.彭安,郭子健.热分解法研究河流底泥中汞的形态[J].环境化学,1984,3(1):53-57.
    
    54.喜田村正次,等.(侯召堂译,1988).汞[M].北京,原子能出版社,1977.
    
    55.裘祖楠,方宇翘,张仲燕,等.苏州河底泥中汞的形态分布和释放能力的关系[J].环境科学研究, 1989,(1):1-8.
    
    56.廖自基.微量元素的环境化学及生物效应[M].北京,中国环境科学出版社,1992.
    
    57.廖柏寒,蒋青.模拟酸沉降条件下南方森林土壤铝的释放与活化研究[J].2000,26(5):347-351.
    
    58.谭红,何锦林,花金兰,等.汞矿区大气汞的流通量与汞干湿沉降研究[J].环境化学.1999,18(1): 34-38.
    
    59.戴前进,冯新斌,唐桂萍.土壤汞的地球化学行为及其污染的防治对策[J].地质地球化学,2002, 30(4):75-79.
    
    60.Anthony, C. Methy mercury contamination and emission to the atmosphere from soil amended with municipal sewage sludge [J]J, Environ Qual., 1997, 26(6): 1650-1654.
    
    61. Anthony, C, et al. Sunlight-mediated emission of elemental mercury from soil amended with municipal sewage sludge [J]. Environ Qual., 1997,31(3):2085-2091.
    
    62. AzzariaL M and Aftabt A. Stepwise thermal analysis technique for estimating mercury phases in soils and sediments [J]. Water, Air and Soil Pollution, 1991, 56:203-217.
    
    63. Biester H, Christian S. Determination of mercury binding forms in contaminated soils: mercury pyrolysis versus sequential extraction [J]. Environ. Sci. Technol., 1997,31:233-239.
    
    64. Biester, Muller G, Scholer H L. Binding and mobility of mercury in soils contaminated by emissions from chlor-alkali plants [J].The Science of the Total Environment, 2002,284:191-203.
    
    65. Coquery M, Cossa D, Sanjuan. Speciation and sorption of mercury in two macro-tidal estuaries [J]. Marine Chemistry, 1997, 58(2):213-227.
    
    66. Fitzgerald W F, Is mercury increasing in the atmosphere? The need for an atom-sphere mercury network (AMNET) [J]. Water Air and Soil Pollution, 1995, 80:245-254.
    
    67. Gambrell. Chemical availability of mercury, lead and zinc in mobile bay sediment suspensions as affected by ph and Eh conditions [J].Environ. Sci. Tech., 1980, 14(4):31-36.
    
    68. Garcfa-Sanchez A, Alastuey A, Querol X. Heavy metal adsorption by different minerals: Application to the remediation if pollution soils [J]. The Science of the Total Environment, 1999, 242:179-188.
    
    69. Haidouti C. Soil mercury pollution in area surrounding the state of oil refinery of Aspropirgos Greece [J].Catena, 1991,18:1-10.
    
    70. Higueras P, Oyarzun R, Biester H. A first insight into mercury distribution and speciation in soils from the Almandine mining district, Spain [J].Journal of GeochemicalExploration, 2003, 80:95-100.
    
    71. Lee. Y, H, et al. Fluxes and turnover of methylmercury: mercury pods in forest soil [A].In: Watras. X, J(eds). Mercury Pollution: Integrations and Syntheses [J]. Florida: CRC Press Inc, 1994, 329-342.
    
    72. Lindberg S. E., Dong Weijin, Jeff Chanton. A mechanism for bimodal emission of gaseous mercury from aquatic macrophytes. Atmospheric Environment.2005, 39:1289-1301.
    
    73. Lindberg S E, Turner P R, Meyers T P, et al. Atmospheric concentrations and deposition of mercury to a deciduous forest at Walker branch watershed, Tennessee, USA [J]. Water Air and Soil Pollution, 1991, 56:577-594.
    
    74. Lindberg,S,E, et al. Micrometeorological gradient approach for quantifying air/surface exchange of mercury vapor tests over contamination soils[J].Environ.Sci.Technol., 1995,29:126-135.
    
    75. Lindpvist, et al. Atmospheric mercury in the Swedish environment [J]. Water Air and Soil Poll., 1995, 55:254-261.
    
    76. Mason R P, Sullivan K A. The distribution and speciation of mercury in the South and equatorial Atlantic[J].Deep-Sea Research II, 1999, (46): 937-956.
    
    77. Mason RP, Lawson N M, Sullivan K A, The concentration, speciation and sources of mercuryin Chesapeake Bay precipitation [J].Atmospheric Environment, 1997, 31(21):3541-3550.
    
    78. Paul J Lechler, Jerry R Miller, Liang-Chishu, et al. Mercury mobility at the Carson River Superfund??Site, west-central Nevada, USA: interpretation of mercury speciation data in mill tailings, soils and sediments [J].Journal of Geochemical Exploration, 1997, 58: 259-267.
    
    79. Pirrone N, Keeler G J and Nriagu J O ,Regional differences in worldwide emissions of mercury to theammosphere[J]. Atmospheric Environment, 1996, 30(17):1069-1077.
    
    80. Revis, E, Distribution of mercury species in soil from a mercury contaminated [J]. Water Air and Soil Poll., 1989,45:105-113.
    
    81. Rogers R D and Mcfarlane J C. Impact factors of mercury volatile from soils. Journal of Environmental Quality, 1979, 8:255-260.
    
    82. Schroeder W.H. and Munthe J. Atmospheric mercury-An overview. Atmospheric Environment [J]. 1998,32(5):809-822.
    
    83. Sun B, Zhao F J, Lombi E, et al. Leaching of heavy metals from contaminated soils using EDTA [J]. Environmental Pollution.2001, 113:111-120.
    
    84. Tessier A. Cambell P G C, Bisson M. Sequential Extraction Procedure for the Speciation of Particulate Trace Metal [J]. Analytical Chemistry, 1979, 51 (7)844-850.
    
    85. Xiao, Z. F., Munthe, J., Schroeder, W.H., Lindqvist, O.Vertical fluxes of volatile mercury over forest soil and lake surfaces in Sweden [J]. Technol, 43B:267-279.
    
    86. Ying G, Sebasten S, William H. Epuilibrium speciation of Cd, Cu and Pb in soil solutions. In: Evans L, et al. Eds.Proc.6th International Conference on the Biogeochemistry of Trace Elements. Guelph, Canada, 2001, 459-465.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700