用户名: 密码: 验证码:
基于ARM11的环保专用污染源数据采集传输仪的设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着环保物联网建设的推进,我国将在十二五期间建设立体的、全方位的环境监控体系。本课题以移动数据传输应用为目标,依托目前无线覆盖面积最大的移动网络,设计了一款对采集数据实现实时监控功能的嵌入式设备,为天津市乃至全国节能减排、重点污染源实时监控以及重大环保污染事件应急监控处理提供技术支撑。本课题提出了基于ARM11的环保专用污染源数据采集传输仪的设计方案,以国家环保部发布的"污染源在线自动监控(监测)系统数据传输标准"(HJ/T212)和"污染源在线自动监控(监测)数据采集传输仪技术要求"(HJ 477)为设计标准;以天津市环保物联网的建立为远期愿景。
     本论文设计的基于ARM11的环保专用污染源数据采集传输仪具备以下技术特点:
     1、依托新一代三星S3C6410处理器构建ARM平台,设计研发的辅助的A/D采样模块,可采集8个通道模拟量(4mA~20mA电流输入),分辨率达到12位;
     2、通过拓展芯片实现5个RS232(或RS485)数字输入通道,用于连接监测仪表,实现数据、命令双向传输;
     3、同时支持无线、有线两种网络传输方式,以Siemens MC39i模块构建DTU实现GPRS网络传输,同时通过DM9000网络芯片实现以太网传输;
     4、自行设计了电源模块,实现了外部供电电源与备用电池协同供电的功能,满足国标HJ 477“在外部电源切断后仍然能够满负荷运转至少六小时”的要求;
     5、在软件实现方面,在定制Windows CE嵌入式操作系统基础上,开发了嵌入式软件实现通信协议(国标HJ/T212)和人机交互功能;
     6、本设计引入SQLite技术在嵌入式系统上建立污染信息数据库,为后续开发环保物联网云计算应用提供可靠和高效的数据来源。
     基于上述方案开发的污染源数据采集传输仪TY-001型已经实现小批量生产,样机可通过模拟/数字接口实现和CEMS系统及水质监测仪器的成功对接,数据采集稳定可靠。目前本样机已通过天津市质量监督检验站的EMC、高低温疲劳试验等测试,同时仪器精度和通讯协议也通过了中国环境监测总站的鉴定,等最后一项MTBF(60天平均无故障连续运行时间)测试通过后,就可获取国家环保产品资质证书,正式进入国内市场。
With the development of The Internet of Things for environmental protection, our country would construct a space integrated and comprehensive environmental monitoring system during the 12th Five-Year Plan. In this paper,an embedded equipment for real-time monitoring acquisition data and mobile data transmission was established based on the mobile network which has the largest wireless coverage area. With its base in Tianjin to serve the whole country, it would provide technical support to energy-saving and emission reduction, significant pollution source real-time monitoring system and sudden environmental pollution accident emergency system. A data acquisition and transmission equipment was designed for auto monitoring pollution emission based on ARM11 chip according to "Standard for data communication of pollution emission auto monitoring system" (HJ/T212-2005) and "The technical requirement for data acquisition and transmission equipment of pollution emission auto monitoring system" (HJ 477-2009) released by Ministry of Environmental Protection of PRC. The long-term vision of the design was the establishment of Internet of Things for environmental protection in Tianjin.
     The data acquisition and transmission equipment of pollution emission in this paper had following technical characteristics:
     1. An ARM platform was built up relying on the new Samsung S3C6410 processor. And a kind of A/D sampling module of this equipment was developed with eight analog input channels (4~20mA current input) and 12 bits resolution.
     2. Through serial port extended chip, the equipment had five digital input channels under RS232 (RS485) protocol, which were applied for the bidirectional data and command transmission with the monitoring instruments.
     3. This equipment supported two types of network transmission both wireless and wired. Siemens MC39i was adopt as the core of the Data Transmission Unit to realize the wireless data transmission by GPRS network while DM9000 network chip was used for the wired Ethernet data transmission.
     4. A self-designed power module was made to provide the collaborative power for the equipment both from external AC power supply and battery backup. Because the HJ 477 standard claimed that“the data acquisition and transmission equipment of pollution emission should have the ability to operate at full load at least six hours when the external power is cut off”.
     5. Based on customization of Windows CE embedded OS, the embedded application software was developed to implement the communication protocol (HJ/T212) and human-computer interaction.
     6. In this design, the SQLite database technology was introduced to preserve the pollution information data on the embedded system. This application would provide reliable and efficient data sources for the subsequent development of cloud computing platform on The Internet of Things for environmental protection.
     Now the pollution emission data acquisition and transmission equipment called TY-001, which was based on the above design, had small batch production, and prototype had been able to communicate with CEMS and COD instruments through analog and digital interface. The data acquisition of prototype was not only stable but also reliable. Recently, this prototype had passed the EMC test and high-low temperature test hold by the Tianjin Quality Supervision and Inspection Station. Meanwhile, the prototype had obtained the certification issued by China National Environmental Monitoring Centre on the accuracy of the equipment and the correctness of HJ212 communication protocol. The data acquisition and transmission equipment of pollution emission would enter the domestic market after passed the 60-days MTBF test.
引文
[1]但德忠,我国环境监测技术的现状与发展,中国测试技术,2005,9:1~5
    [2]孙海林,贺鹏,朱媛媛,污染源自动监测数据采集传输仪在污染源在线监测中的应用,环境研究与监测,2010,23(1):12~13
    [3]周锡生,2009-2010中国物联网年度发展报告,无锡:新华社,2010
    [4]王悦,污染源连续监测系统的应用和发展,上海环境科学,2000,19(10):464~465
    [5]杨子江,林宣雄,陆励群,物联网时代和环保信息化的梯次推进,世界地理研究,2010,01:157~165
    [6]杜泽俊,综合性环境自动监控信息系统的设计和探讨,杭州:浙江大学,2007
    [7]刘建业,分组型移动数据业务GPRS,现代电信科技,2000,4:8~15
    [8]李海,数据采集系统在远程通信中的研究与应用,贵阳:贵州大学,2008
    [9]文志成,通用分组无线业务GPRS,北京:电子工业出版社,2004.14~16
    [10]韩亚东,基于GPRS技术的无线远程监测系统的研究与设计:[硕士学位论文],武汉;武汉理工大学,2009
    [11]国家环境保护总局,HJ/T 212-2005,污染源在线自动监控(监测)系统数据传输标准,北京:中国环境科学出版社,2005-12-30
    [12]欧阳俊,王淮滨,张子凡等,环境监测数据远程自动监控系统的建设,中国科技成果,2007,14:37~39
    [13]刑玉生,任全民,尹祥杰,基于单片机通信网络的分布式数据采集预控制系统的实现,现代电子技术,2002,26(3):45~46
    [14]国家环境保护部,HJ 477-2009,污染源在线自动监控(监测)数据采集传输仪技术要求,北京:中国环境科学出版社,2009-07-02
    [15]俸皓,罗蕾,用GPRS实现远程环保监控,成都信息工程学院学报,2005,20(1):88~91
    [16]Santa Clara, Agilent Technologies Inc. Understanding GPRS Technology: Agilent Technologies Inc, 2002
    [17]孙少陵,GPRS技术特点及其应用,电信技术,2000,3:2~5
    [18]赵熊,基于GPRS网络的远程数据传输:[硕士学位论文],厦门;厦门大学,2007
    [19]吕捷,GPRS技术,北京,北京邮电大学出版社,2001.1~127
    [20]李艳萍,苏禹宾,陶伟,广西区域自动气象站监测网GPRS组网解决方案,气象研究与应用,2007,28:65~66
    [21]Siemens MC39i Hardware Interface Description.Version:02.00, September 28, 2005
    [22]朱贺飞,陆超,周晓飞等,嵌入式系统的存储器管理单元设计,计算机工程与应用,2007,43(1):96~99
    [23]林晓飞,刘彬,张辉,基于ARM嵌入式LINUX应用开发与实例教程,北京:清华大学出版社,2007
    [22]Dedicated Systems Experts NV,RTOS Evaluation Project, http://download.mcrosoft. com/download/7/2/f/72fef3b0-9545-46a4-8886-a94f265df9c4/EVA-2.9-OS-CE-01-I01.pdf ,2004-08-18
    [24]刘必慰,陈书明,汪东,先进微处理体系结构及其发展趋势,计算机应用研究,2007,24(3):16~26
    [25]黄卫平,浅析ARM微处理器嵌入式系统的应用,时代经贸,2008,6(99):230
    [26]林夕,嵌入式系统架构的发展趋势及比较分析,电子测试,2008,4:23~28
    [27]ARM Corporation ,Processor Families,http:// www. arm. com/ products/ cpus/ families. html. 2008/,2008
    [28]仇洁婷,陈儒军,何展翔,嵌入式系统在电磁法勘探仪器中的应用概述,地球物理学进展,2011,26(2):746~753
    [29]屠祁,屠立德等,操作系统基础,北京:清华大学出版社,2000
    [30]吕跃刚,张新房,徐大平等,Windows CE在嵌入式工业控制系统中的应用思考,单片机与嵌入式系统应用,2002,9:10~13
    [31]韦东山,嵌入式Linux应用开发完全手册,北京:人民邮电出版社,2008
    [32]LabrosJ.J,嵌入式实时操作系统μC/OS-II(第2版)(邵贝贝等译),北京:北京航空航天出版社,2003
    [33]吕秀平,李小民,Windows CE.NET的定制和裁剪,科学技术与工程,2006,21:3483~3486
    [34]Microsoft Corporation,Windows embedded CE Product features,http://www.microsoft.com/ windowsembedded/en-us/products/windowsce/product-features.mspx,2009
    [35]辛雁峰,夏海宝,基于S3C2440移动终端的Windows CE开发,微计算机信息,2009,3(2):71~73:
    [36]Microsoft Developer Network. Developing an OEM Adaptation Layer ,http://msdn.microsoft.com/en-us/library/aa447042.aspx,2006-01
    [37]司浩乐,基于Windows CE的显示控制手柄设计:[硕士学位论文],西安;西安电子科技大学,2008
    [38]李瑛达,车载导航系统的硬件设计与WinCE系统内核定制:[硕士学位论文],大连;大连海事大学,2007
    [39]韩斌杰,GPRS原理及其网络优化,北京:机械工业出版社,2003
    [40]夏军,胡景春,基于ARM的Windows CE移植及应用开发,计算机技术与发展,2011,21(4):129~132
    [41]Chris Newman, SQLite, Sam Publishing, 2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700