用户名: 密码: 验证码:
潮田河流域(岩溶)地质碳汇过程及通量估算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球气候变暖,极端气候等自然灾害频繁,已经引起世界各国的注意,影响着世界各国的经济。目前很多学者认为气候变化与温室气体(主要是C02)的变化有较大的关系。自有监测数据以来,全球CO2浓度在逐年的增加,人类生存环境变化巨大。
     然根据全球碳平衡,目前碳还存一个差值,这个差值被叫做遗失碳汇(missing carbon)。该遗失碳汇随着大气CO2浓度逐年的增加而在逐渐增加。目前对于碳汇的研究主要分两大块,即陆地和海洋。在研究过程中,主要从碳元素影响因子与化学物质或化学元素之间的关系、碳元素与土壤及植被的关系、碳元素在湿地、河流及海洋特征等。但最终目的就是为了寻找遗失的碳汇。
     一般认为,碳酸盐岩与CO2以及水作用,可以较快的吸收CO2,并产生了碳汇。因此短时间内岩溶区碳酸盐岩可较快的吸收大气中CO2;而长时间尺度内,主要认为是硅酸岩岩所产生的碳汇,并认为与碳酸盐岩对碳汇的效应约各占一半。
     根据全球碳平衡,全球还存在着约2.8PgC的遗失碳汇,但多数从一个或几个方面的因素来研究碳汇。很少研究一个完整流域碳汇量,碳汇的影响因素等。本文以潮田河流域为例,通过对潮田河流域的地质背景的调查,选取24个不同地质背景下的研究点,通过野外与室内实验,得到水体中电导率(EC)、水温、PH值等参数,HCO3-、SO42-、K+、Na+、Ca2+、Mg2+等离子浓度,δD、8180、δ13CDIc等稳定同位素以及重金属元素Pb,Cr,Cd,Zn等的浓度。同时检测各岩性土壤中的重金属以及Ca、Mg元素的浓度。通过分析比较可得到一下结论:1、水类型主要决定于地层的岩性以及地层中所含有的矿物等。非岩溶区的主要有Mg·Ca-HCO3-SO4型水,Ca·Mg-HCO3型水;岩溶区的主要为Ca-HCO3型水,Mg·Ca-HCO3型水。然而,Mg·Ca-HCO3-SO4型水还受到混合、浓缩以及施肥等作用影响。在受人为因素影响较大的地方,Mg·Ca-HCO3-SO4型水也比较突出。
     2、δ13在地下河与地表河的变化里相反的趋势。地表河中,8D由上游至下游在不断的变重,而地下河中的8D由上游至下游在不断的变轻;无论是地表河流还是地下河,氘氧同位素整体趋势从2011年8月至2011年11月较2011年12月至2012年7月轻,并且在一年之中成一定的变化趋势,主要原因可能是雨水和温度共同作用所致。该研究区域,δD与δ18O分别介于-45.7‰~-29.40‰之间与-7.50‰~-4.89‰之间,而这两个数值均重于高原中上的,说明季风气候因素影响了降雨中的δD与δ18O同位素。这也说明了潮田河流域的雨水主要来自季风作用,并受温度的影响。
     3、δ13CDIC的变化范围在-18.00‰~-1.86‰,说明碳主要来自于大气,非岩溶区的碳来源受植被等生物作用影响明显,岩溶区主要受岩石的影响明显。随着季节性变化及降雨量的变化,δ13CDIC在一年当中呈周期性变化,在一年的2月份为最高,而到了一年的5-9月份(雨季)为最低,可能原因是植被的光合作用吸收了大量水中的碳源进而导致水中的无机碳(主要是HCO3-)变轻,而到了冬季,温度低,降雨少,植物作用相对较弱,使得δ13CDIC变得更重。
     4、岩溶区与非岩溶区域在空间上水体中HCO3-浓度变化约10倍左右;时间上,沿着河流往下(非岩溶区水—外源水进入岩溶区),河流水体的HCO3-浓度在逐渐增大。HCO3-浓度在季节性变化中,旱季水中的HCO3-浓度略高于雨季,主要原因是水的稀释作用影响;而非岩溶地区,HCO3-浓度年变化不大。而同一天,水中植物丰富的地方,HCO3-浓度昼夜变化较明显。
     5、水体中的PCO2有较明显的差异。岩溶区中的PCO2高于非岩溶区域;地下河中的PCO2高于地表河。
     6、水体中的各种离子主要来自于岩石的风化作用。但碳的来源不同,非岩溶区水体中的碳主要来自于大气,岩溶区碳与岩石的来源在比例上将近一半,岩石来源占57.9%,而大气或土壤来源占42.1%。7、地质碳汇受多种因素的影响。地质背景直接影响土壤中的钙镁元素的量以及水中的Ca2+、Mg2+、HCO3-量,进而影响地质碳汇量,但地质碳汇量不仅仅只受地质背景影响;暴雨可以增加地质碳汇量,但此时水中的HCO3-的浓度低于非暴雨的时候;假设流量不变时,本文认为温度在20.2℃时为潮田河流域岩溶区产生碳汇量最大的时候,若低于20.2℃时,水可继续对碳酸盐岩进行溶解,若高于20.2℃温度时,水体可能将部分HC03-转化成C02和水,进而释放C02生物作用在整个地质碳汇作用中起到重要的作用,尤其是水体中的藻类等植物生长;含硫铅锌矿的开采,导致可被氧化的硫化物减少,水体中的SO42-离子减少,导致碳汇量的减少。一般认为岩溶区5O42-离子只是改变了碳循环的改变,并未增加碳汇,而非岩溶区硫化物的氧化可以增加碳汇量,或者说,非岩溶区由矿物氧化所得并进入水中SO42-离子含量的高低可以指示该区碳汇量的大小。故人类采矿(含硫铅锌矿)可能会导致地质碳汇成倍的较少。
     8、在不考虑水体中的有机碳及悬浮颗粒碳的情况下,通过降雨量、径流深度、径流面积等计算可得:潮田河流域非岩溶区的年碳汇量为1586.9tc/a,岩溶区的碳汇量为4318.3tc/a,另外外源水流入到岩溶区后可以增加碳汇量为2818.8tc/a,故潮田河流域的年碳汇量为8724.0tc/a。故潮田河地质碳汇每平方千米的平均碳汇量分别是:非岩溶区地质碳汇量为5.2tc.a-1.km-2,岩溶区地质碳汇量为25.0tc.a-1.km-2,外源水可增加岩溶地质碳汇量为16.3tc.a-1.km-2,或者说潮田河流域外源水可使得该岩溶区地质碳汇增加到1.7倍。此时,包含水生生物光合作用产生23%的碳汇量以及地下潜流产生的33.8%的碳汇量。故潮田河流域碳汇量的计算需要考虑水生生物作用与潜流作用所产生的碳汇。
     9、通过建立Ca2+、Mg2+与HCO3-关系模型可得:灰岩地区Ca2+就可以与HCO3-建立良好的关系模型,相关性较好,而白云岩区Ca2+、Mg2+与HCO3-的相关关系比Ca2+与HCO3-的相关关系好;Ca2+、Mg2+与HCO3-的关系模型可以间接说明碳汇主要影响因子:由Ca2+Mg2+与HCO3-的关系模型可得岩溶区地表明流段,水生生物的光合作用是碳汇主要影响因子,而地下河或泉水出口处,地质作用、CO2分压可能是碳汇的主要影响因子。
     10、通过SWAT模型的模拟可知,潮田河流量除了受降雨作用的影响下,流域的渗透系数,水库的蓄水与排水直接影响到河流出口的流量,进而影响大潮田河流域的碳汇量;同时土壤的渗透系数变化与潮田河水的流量有直接的关系。经拟合,潮田河流域的流量与实际的流量基本一致。因此碳汇量也基本一致。并将潮田河流域的碳汇量表示为:F=42.43Q+13.98Q1(g)。
Natural disasters such as global climate warming, extreme climate events, is becoming more and more frequenct, which has attracted economy development all over the world. So it is focus on by many people or institutional framework. Some scholars believe that climate change have larger relationship with greenhouse gas (mainly CO2) at present. The atmospheric CO2concentration is increased and human survival environment is changed year by year since the monitored data.
     According to the global carbon balance, the carbon has a difference which is called missing carbon. The missing carbon is increasing gradually as the atmospheric CO2concentration increases to this day. The missing carbon was studied in land carbon sink and sea carbon sink. Many scholars also studied the relationship of the carbon element and other elements, the carbon element and soil, the carbon element and vegetation, the carbon element and wetlands, rivers and oceans, etc. The aim is to find out the carbon sink.
     Generally speaking, carbonate rock, the atmosphere CO2and water can rapidly alkaline reaction and produced carbon sinks. So carbonate rock can absort quickly CO2in the atmosphere in a short time, but in a long time scale, the carbonate-weathering-related carbon sink and silicate-weathering-related carbon sink are about the same.
     According to the global carbon balance, there are about2.8PgC missing carbon now. The carbon sinks were studied in one or several aspects. For a comprehensive basin, few studies focus on the carbon sinks. Chaotian watershed, located on Guilin city, China, as a research site was choosed to study carbon sink.24points which come from different geological background were selected. And some water parameters such as electrical conductivity(EC), temperature, PH, HCO3-, SO42-, K+, Na+, Ca2+, Mg2+, stable isotope such as δD,δ18O,δ13CDIC, heavy metal elements such as Pb, Cr, Cd, Zn, were monitored. At the same time, the element Ca, Mg and some heavy metals which came from soil and rock were detected. All data were analyzed, and found that:
     1, The type of water mainly depends on the formation of lithologic and the mineral. So the non-karst area water belongs to Mg·Ca-HCO3-SO4and Ca·Mg-HCO3mainly; The karst area water belongs to Ca-HCO3and Mg·Ca-HCO3mainly. However, Mg9Ca-HCO3-SO4water also affected by many factors,for example, mixing, enrichment, and fertilization etc. The water type of Mg·Ca-HCO3-SO4is influenced greatly by human activities.
     2,8D isotope has an opposite trend to surface water and groundwater. When the process that flow from upstream to downstream,δD become heaverier in surface water and become lighter in groundwater; δD and δ18O also have an trend, from August2011to November2011,δD and δ18O are lighter than December2011to July2012, the reason may be that rainy and temperature. In study area,δD and δ18O are between-45.70%o~29.40%o and-7.50%o~4.89%o, respectively, and the value is hearvier than plateau. It shows that monsoon climate influence the rainfall. It also illustratesmost of the Chaotian watershed water comes from rain that is imported by monsoon climate.
     3、The δ13CDIC ranges from-18.00‰to-1.86‰proves that carbon from the atmosphere, the carbon source in non-karst area affected obviously by vegetation, and karst area is mainly affected by rock. With the seasonal and precipitation changes,δ13CDIC present cyclical changes in a year, which reaches the heaviest point in February, while to the lightest point from May to September (rainy season). It possible results from vegetation photosynthesis absorbs a large number of carbon leading to lighten the DIC in water, especially inorganic carbon (HCO3-) lighter. Low temperature and little rainfall in the winter, and plant is relatively weak, makes δ13CDIC heavier.
     4、The HC03-concentration in Karst water is about10times than non-karst area water. Along the river (non-karst area water (allogenic water) come into the karst area), the HCO3-concentration increases gradually. In seasonal changes, the HCO3-concentration in the dry season is slightly higher than the rainy season, mainly due to the dilution effects; Annual change of HCO3-concentration in non-karst area is small. But in the same day, HCO3-concentration diurnal variation is obvious in the rich aquatic plants.
     5、PCO2in water have obviously differences which in Karst area is Higher than non-karst area; And the groundwater is higher than the surface water in Karst area.
     6、Most of the ions in the water mainly come from the rocks weathering. And there is a different carbon source between karst and non-karst area. Most of Carbon source come from atomsphere in non-karst area, to the contrary, the carbon source is almost the same in karst area where are57.9%come from bedrock and42.1%.
     7、There are many factors affecting geological carbon sink. Amount of calcium and magnesium elements in the soil and water are controled by the geological background directly, even though the amount of HCO3-. But the amount of geological carbon sinks are not just influenced by the geological background; heavy rain can increase the amount of geological carbon sinks, but the HCO3-concentration of water in rainstorm is lower than non rainstorm; Assume the flow is a constant, the largest carbon sinks occur at20.2℃in the Chaotian watershed karst area. If the tempreature is lower than20.2℃, the water can continue to dissolve carbonate rocks. To the contary, the tempreature is higher than20.2℃, parts of HCO3-converted into CO2and H2O, and then release the CO2; Also, biological action play an important role in the entire geological carbon sinks, especially the growth of algae and other plants in Water; The ore mining caused the geological carbon sinks to decrease, and the amount of geological carbon sinks reduce to half of the original. The reason is that the sulphur lead-zinc mining was ored, led to the oxidation of sulfide can be reduced, and the SO42-in water decreased. Also the SO42-in water can chang the carbon cycle in karst area, but the SO42-in water in non-karst area stand for the carbon sinks increased. So the sulphur lead-zinc mining can increased carbon sinks more quickly.
     8、 Not consider the organic carbon and suspended particulate carbon of water, according to the rainfall, runoff depth, runoff area and available:the non-karst area in Chaotian watershed the amount of annual carbon sinks are1586.9tc/a, while in karst area the amount of carbon sinks are4318.3tc/a, allogenic water flow into the karst area can increase carbon sinks about2818.8tc/a. By all account, the amount of annual carbon sinks are about8724.0tc/a in Chaotian watershed. So the average geological carbon sinks per square kilometer in Chaotian watershed are:non-karst geological carbon sinks is5.2tc.a-1.km-2, karst geological carbon sinks is25.0tc.a-1.km-2, the allogenic water can increase the karst geological carbon sinks is16.3tc.a-1.km-2, that is to say extraterritorial source of water can make the karst geological carbon sinks increase to1.7times. Including23%of carbon sinks produced by aquatic photosynthesis and33.8%of carbon sinks generated by undercurrent. Therefore, the calculation of the amount of carbon sinks Chaotian watershed need to consider the the aquatic biological and undercurrents.
     9, Through the establishment of Ca2+, Mg2+and HCO3-relationship model can obtained:Ca2+and HCO3-established a good model in limestone area, the correlation is well; While in dolomite zone, Ca2+, Mg2+and HCO3-1s relationship is better than the correlation of Ca2+and HCO3-. So Ca2+, Mg2+and HCO3-relationship model can indirectly illustrate the major impact factor of carbon sinks; From Ca2+, Mg2+and HCO3-relationship model, it can come to a conclusion that the stream segments, waterborn organisms photosynthesis is the major impact factors affect carbon sink in flow, but for the underground river or at the outlet of spring water geological processes, CO2partial pressure may be the main factors affecting carbon sinks.10、The SWAT model simulation shows Chaotian watershed flow not only affected by rainfall,
     also the permeability coefficient, the storage and drainage of the reservoir affect the export flow of the river, thereby affect the amount of the carbon sinks in Chaotian watershed; There is a direct relationship between drainage of the reservoir, permeability coefficient and the Chaotian river's flow. The results show that the flow fitting curve and actual flow are basically the same in Chaotian watershed. So carbon sinks are basically the same. And the Chaotian watershed carbon sinks can be represented as:F=42.43Q+13.98Q1(g)
引文
[001]Intergovernmental Panel on Climate Change. Climate Change 1995:Impacts, Adaptations and Mitigation of Climate Change Scientific-Technical Analyses:Contribution of Working Group II to the Second Assessment of the Intergovernmental Panel on Climate Chang[R]. Cambridge University Press,1996,pp478.
    [002]WMO. Water Resource and Climate Change[R]. Geneva,1987,pp50.
    [003]IPCC. Climate Change 2007:Impacts, Adaptations and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Chang[R]. Cambridge UK and New York, USA:Cambridge University Press,2007,pp 10-20.
    [004]Keeling C D and Whorf T P. Atmospheric CO2 concentrations--Mauna Loa Observatory, Hawaii,1958~1997.1998 (revised August 2000).NDP-001. Carbon Dioxide Information AnAlysis Center, Oak Rideg National Laboratory, Oak Rideg, Tennessee (http:PPwww. co2science.org).
    [005]M Anklin, J Schwander, B Stauffer J.Tschumi,A.Fuchs, J.M.Barnol,D.Raynaud,CO2 record between 40 and 8 kyr BP from the Greenland Ice Core Project ice core[J]. Journal of geophysical resarch,1997,C 12(102):26539-26545.
    [6]H.M.L.Wigley,D.S.Schimel. The carbon cycle [M]. New York, Cambridge University Press,2000.
    [007]N. C. Pepin and J. D. Lundquist. Temperature trends at high elevations:Patterns across the globe[J].2008. GEOPHYSICAL RESEARCH LETTERS, VOL.35, L14701.
    [008]陈志凯.全球气候变暖对水资源的影响[J].中国水利.2007:1-3.
    [009]1850-2008中国及世界主要国家的碳排放——碳排放与社会发展Ⅰ[J].北京大学学报(自然科学),2010,4(46),497-504.
    [010]袁道先.地球系统的碳循环和资源环境效应[J].第四纪研究,2001,21(3):223-232.
    [011]Mackenzie F T,Mackenzie J A,Our changing planet,An introduction to earth system science and global environmental change,New Jersey,Prentice Hall,1995,123.
    [012]袁道先,地球系统的碳循环和资源环境效应[J].第四纪研究,2001,21(3):223-232.
    [013]蒋忠诚,蒋小珍,雷明堂.运用gis和溶蚀试验数据估算中国岩溶区大气CO2的汇[J].中国岩溶,2000,19(03):212-217
    [014]刘再华.大气CO2两个重要的汇[J].科学通报,2000,45(21):2348-2351.
    [015]Gombert P. Role of karstic dissolution in global carbon cycle[J]. Global and Planetary Change,2002,33(1-2):177-184.
    [016]Yuan Daoxian, Contributuion of IGCP 379"karst processes and carbon cycle" to global change, Episodes,1998,21(3):198.
    [017]袁道先,刘再华等.碳循环与岩溶地质环境[M].科学出版社,2003,pp1-240.
    [018]刘再华.大气CO2的两个重要的汇[J].科学通报,2000,45(21):2348-2351.
    [019]Yuan Daoxian, The carbon cycle in karst.Z Geomorph N F, Suppl-Bd,1997,108,91~102;
    [020]袁道先,朱德浩,翁金桃等.中国岩溶学[M].北京:地质出版社,1994:1-13.
    [021]邹建文,黄耀,宗良纲,郑循华,王跃思等.稻田CO2、CH4和N20排放及其影响因素[J].环境科学学报,2003,6(23):758-764.
    [022]徐仲均,郑循华,王跃思,韩圣慧,黄耀,朱建国等.开放式空气CO2增高对稻田CH4和N2O排放的影响[J].生态应用学报,2002,10(13):158-165.
    [023]张东升,王洪杰,史学正,黄标,黄耀,常青等.城乡交错区蔬菜生态系统肥料利用率的模型模拟[J].土壤通报,2008,1(39):87-93.
    [024]Kerry T. B. MacQuarrie and David J. Z. Chen.Numerical simulation of organic carbon, nitrate, and nitrogen isotope behavior during transport in a riparian zone aquifer[R].Seattle Annual Meeting.2003,35(6):526.
    [025]DAVE S. REAY, FRANK DENTENER,PETE SMITH, JOHN GRACE, RICHARD A. FEELY. Global nitrogen deposition and carbon sinks[J]. nature geoscience,2008.VOL 1:430-437.
    [026]Magnani, F. et al. Th e human footprint in the carbon cycle of temperate and boreal forests[J]. Nature,2007.447,848-851.
    [027]Magnani, F. et al. E3-E4 Nature.2008:451.
    [028]汪业勖,赵士洞,牛栋.陆地土壤碳循环的研究动态[J].生态学杂志,1995,18(5):29-35
    [029]孙国栋,LPJ模型对1981-1998年中国区域潜在植被分布和碳通量的模拟[J].气候与环境研究,2009,4(14):341-350.
    [030]赵广东,王兵,杨晶,张志坚等.LI-8100开路式土壤碳通量测量系统及其应用[J].气象科技,2005,4(33):363-365.
    [031]杨金艳,王传宽等,东北东部森林生态系统土壤碳贮量和碳通量[J].生态学报,2005,11(25):2875-2882.
    [032]秦小光,蔡炳贵,吴金水,刘东生,王国安等.北京灵山草地土壤CO2源汇和排放通量与温度湿度昼夜变化的关系[J].生态环境,2004,13(4):470-475.
    [033]Eric A. Davidson & Ivan A. Janssens.Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J].Nature,440:165-173.
    [034]冉景丞,何师意,曹建华,熊志斌等.亚热带喀斯特森林土壤CO2排放量动态研究[J].贵州科学,2002,2(20):42-47.
    [035]刘留辉,邢世和,高承芳等.土壤碳储量研究方法及其影响因素[J].武夷科学,2007,23:220-226.
    [036]彭镇华,王妍,任海青,孙启祥,周金星等.安庆杨树林生态系统碳通量及其影响因子研究[J].农业科学研究,2009,22(2):237-242.
    [037]王宇,周广胜,贾丙瑞,李帅,王淑华等.中国东北地区阔叶红松林与兴安落叶松林的碳通量特征及其影响因子比较[J].生态学报,2010,30(16):4376-4388.
    [038]Elaine Matthews, Inez Fung, Methane emission from natural wetlands:Global distribution, area, and environmental characteristics of sources[J], GLOBAL BIOGEOCHEMICAL CYCLES,1987(1):61-86.
    [039]Maltby E, Immirzi CP.Carbon dynamics in peatlands and other wetland soils:regional and global perspectives[J]. CHEMOSPHERE,1993,27:999-1023
    [040]杨红霞,王东启,陈振楼,陈华,王军,许世远,杨龙元等.长江口潮滩湿地-大气界面碳通量特征[J].环境科学学报,2006,26(4):667-673.
    [041]王伟强,黄宣宝,张远辉.南印度洋海-气二氧化碳分压差及其通量[J].台湾海峡1998,17(3):262-268.
    [042]Wu Peizhong. The study of remote sensing for ocean color in China during 1981-1991 [J]. Remote Sensing For Land and Resources,1994,2:5214.
    [043]Clark D K. Phytoplankton algorithms for the Nimbus-7 CZCS [A]. In:Gower J R F. Oceanography from Space [C]. New York:Plenum Press,1981.227-238.
    [044]Balch W M, Abbott M R, Eppley R W. Remote sensing of primary production—I. A comparison of empirical and semi-analytical algorithms[J]. Deep Sea Research,1989,36: 281-295.
    [045]Antoine D, MorelA. Oceanic primary production:I. Adaptation of a spectral light photosynthesis model in view of application to satellite chlorophyll observations[J]. Global Biogeochemical Cycles,1996,10:43-55.
    [046]Antoine D, Andre J M, Morel A.. Oceanic primary production:Ⅱ. Estimation at global scale from satellite (Coastal Zone Color Scanner) chlorophyll [J]. Global Biogeochemical Cycles, 1996,10:57-69.
    [047]刘再华.岩石风化碳汇研究的最新进展和展望[J].科学通报,2012,57(2):95-102
    [048]环境地球化学国家重点实验室,2010.(?)http://www.skleg.cn/
    [049]Nikolai B. Melnikov, Brian C. O'Neill. Learning about the carbon cycle from global budget data.2006Geophysical Research Letters 33, L02705. doi:10.1029/2005GL023935.
    [050]Zaihua Liu, Wolfgang Dreybrodt, Haijing Wang.A new direction in effective accounting for the atmospheric CO2 budget:Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J]. Earth-Science Reviews,2010,99:162-172
    [051]U Siegenthaler, J.L.Sarmiento. Atmospheric carbon dioxide and the ocean[J].Nature,1993, 365:119-125.
    [052]LIU ZaiHua,Wolfgang DREYBRODT, WANG HaiJing.A possible important CO2 sink by the global water cycle[J]. Chinese Science Bulletin,2008.3(53):402~407.
    [053]邱冬生,庄大方,胡云锋,姚锐.中国岩石风化作用所致的碳汇能力估算[J].地球科学,2004.2(29):177-183
    [054]Velbel M A. Temperature dependence of silicate weathering in nature:How strong a negativefeedback onlong. term accumulation of atmospherie CO2 and global greenhouse warming?[J]. Geology,1993,21(12):1059-1062.
    [055]Satin M M. Biogeochemistry of Himalayan rivers as all agent of Climate change[J]. CurtSci, 2001,81(11):1446~1450.
    [056]宋春青,张振春.地质学基础[M].北京:高等教育出版社,1999:pp20-42
    [057]Ce'line Dessert, Bernard Dupre, Je'ro'me Gaillardet,Louis M. Francois, Claude J. Allegre. Basalt weathering laws and the impact of basalt weathering on the global carbon cycle[J]. Chemical Geology 2003,202:257-273.
    [058]蒋倩,李心清,丁文慈等.岩溶水系统对大气C02的潜在影响[J].矿物岩石地球化学通报.2006,25(3):226-234.
    [059]P. Falkowski, R. J. Scholes, E. Boyle, J. Canadell, D. Can(?)eld, J. Elser, N. Gruber, K. Hibbard, P. Ho(?)gberg, S. Linder, F. T. Mackenzie, B. Moore Ⅲ, T. Pedersen, Y. Rosenthal, S. Seitzinger, V. Smetacek,W. Steffen。The Global Carbon Cycle:A Test of OurKnowledge of Earth as a System[J]. Scinence,2000.290-295.
    [060]袁道先,章程.岩溶动力学的理论探索与实践[J].地球学报,2008,6:356-365.
    [061]徐胜友,蒋忠诚.我国岩溶作用与大气温室气体CO2源汇关系的初步估算[J].科学通报,1997:953-956.
    [062]沈继芳,万军伟,王增银等.岩溶动力系统的演化及其资源环境效应[J].中国岩溶,2000,19(2):109-114.
    [063]Meybeek M. Global chemical weathering of surficial rocks estimated from river dissolved loads[J]. Am J Sci,1987,287(5):401-428.
    [064]Raymo M E, Ruddimoll W F. Tectonic forcing of late Cenozoic climate [J].Nature,1992, 359(6391):117-122.
    [065]Slum J D. The efect oflate Cenozoic glaciation and tectonic uplift on silicate weathering rates and the marine 87sr/86Sr record[M]//Ruddiman W F. Tectonic Uplift and Climate Change. New York:Plenum Press,1997:259-288.
    [066]Jacobson A Dl, Slum J D, Walter L M. Reconciling the elemental and Sr isotope composition of Himalayan weathering fluxes:Insights from the carbonate geochemistry of stream waters[J]. Geochim Cosmoehim Aeta,2002,66(19):3417-3429.
    [067]WhiteA F, Slum A E. Efects of climate on chemical weathering in watersheds[J]. Geochim Cosmoehim Acta,1995,59(9):1729-1747.
    [068]Sehwartzman D W, Volk T. Biotic enhancement of weathering and the habitability of Earth[J]. Nature,1989,340(6233):457-460
    [069]Schlesinger W H1 Changes in soil carbon storage and associated properties with disturbance and recovery[A]. In:Tuabalka J R, Reichle DE, eds. The Changing Carbon Cycle:A Global Analysis:Proceedings of the Sixth Annual Oak Ridge National Laboratories Life Sciences Symposium[C]. New York:Springer-Verlag,1986,194-220.
    [070]Post WM, Mann L M. Changes in soil organic carbon and nitrogen as a result of cultivation [A].In:Bowman A F, ed. Soils and the Greenhouse Effect:Proceedings of the International Conference on Soils and the Greenhouse Effect [C]. New York:John Wile & Sons,1990, 401-407.
    [071]姚冠荣,高全洲.河流碳输移与陆地侵蚀--沉积过程关系的研究进展[J].水科学进展,2007.(1)17:133-139.
    [072]李晶莹,张经.流域盆地的风化作用与全球气候变化[J].地球科学进展.2002.3(17):411-419.
    [073]刘再华.碳酸盐岩溶效应对大气CO2沉降的影响[J].中国岩溶,2000.4(19):293-300.
    [074]唐伟,康志强,殷建军,林玉石,黄芬,曹敏.降雨条件下岩溶碳汇的动态变化特征—以桂林毛村地下河为例[J].地球与环境.2011,.39(2):161-166.
    [075]曾成,赵敏,杨睿,刘再华,罗洪远.不同土地利用下岩溶水系统水化学日动态强度小波分析[J].水文地质工程地质,2011.1(38):86-93
    [076]章程.不同土地利用下的岩溶作用强度及其碳汇效应[J].科学通报,2011,56(26):2174-2180
    [077]曹建华,潘根兴,袁道先等.岩溶地区土壤溶解有机碳的季节动态及环境效应[J].生态环境,2005,14(2):224-229.
    [078]曹建华,杨慧,康志强.区域碳酸盐岩溶蚀作用碳汇通量估算初探:以珠江流域为例[J].科学通报,2011,26(56):2181-2187
    [079]J. J. Cole, Y. T. Prairie, N. F. Caraco, W. H. McDowell, L. J. Tranvik,R. G Striegl,C. M. Duarte, P. Kortelainen, J. A. Downing,J.J. Middelburg, and J. Melack. Plumbing the Global Carbon Cycle:Integrating Inland Waters into theTerrestrial Carbon Budget. Ecosystems, 2007,10:171-184
    [080]周石硚;中尾正义,坂井亚规子,松田好弘,段克勤,蒲健辰.祁连山七一冰川积雪和大气降水中的氢氧稳定同位素变化[J].科学通报,2007,52(18):2187-2193.
    [081]张应华,仵彦卿.黑河流域中上游地区降水中氢氧同位素与温度关系研究[J].干旱区地理,2007.1(30):16-21.
    [082]Sepstein, Rbuchsbaum, H. Alowenstam and H. Curey.Revised Carbonate-water Isotopic Temperature Scale[J].Geological Society of America Bull,1953,64:1315-1326.
    [083]Y Horibe, T Oba.Temperature scales of aragonite-water and calcite-water systems Fossils[J]. 1972,23/24:69-79
    [084]Anne Juillet Leclerc and Laurent Labeyrie. Temperature dependence of the oxygen isotopic fractionation between diatom silica and water [J]. Earth and Planetary Science Letters,1987, 1(84):69-74.
    [085]A. Longinelli and S. Nuti.Revised phosphate-water isotopic temperature scale[J]. Earth and Planetary Science Letters,1973.3(19):373-376.
    [086]崔军,安树青,徐振,徐庆,王中生,刘世荣.卧龙巴郎山高山灌丛降雨和穿透水稳定性氢氧同位素特征研究.自然资源学报,2005.4(20):666-668.
    [087]贾秀梅,孙继朝,陈玺,黄冠星,吴学华,郁冬梅.银川平原承压水氢氧同位素组成与14C年龄分布特征.现代地质,2009.1(23):15-22.
    [088]Juske Horita and David J. Wesolowski. Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature[J]. Geochimicaet Cosmochimica Acta,1994,16(58):3425-3437.
    [089]黎廷宇.岩溶洞穴系统稳定碳同位素演化的地球化学过程及其环境意义[D].中国科学院地球化学研究所,2004,6:3.
    [090]Mackenzie FT, Maekenzie JA. An Introduction to Earth System Science and Global Environmeotal Change[M].New Jersey:Prentice Hall,1995.
    [091]ID Clark,Pfridz.Environmental Isotopes in Hydrogeology[M], New York:Taylor & Francis LLC.1997.
    [092]康志强.表层岩溶系统水循环碳汇效应—以贵州板寨河流域为例[D].中国地质大学(武汉),2011.
    [093]陈俊,王鹤年.地球化学[M].科学出版社,2004.
    [094]P. Kroopnick, R.F. Weiss and H. Craig. Total CO2,13C, and dissolved oxygen-18O at Geosecs Ⅱ in the North Atlantic[J]. Earth and Planetary Science Letters,1992.1(16):103-110.
    [095]Mook.W.G, Kraft.p.Oxygen isotope fraction between CO2 and H2O[J].Isotope Geoscience, 1983,1:181-190.
    [096]Drever JI. The geochemistry of nature water:Surface and Groundwater Environments [M]. Englewood Cliffs New Jersey:Prentice-Hall,1997.
    [097]P.L. Parker.The biogeochemistry of the stable isotopes of carbon in a marine bay[J]. Geochimica et Cosmochimica Acta,1964,7(28):1155-1164.
    [098]M.L. Keith and J.N. Weber. Carbon and oxygen isotopic composition of selected limestones and fossils[J]. Geochimica et Cosmochimica Acta,1964,10/11(28):1787-1816.
    [099]Z.-F. Zhao, Y.-F. Zheng, C.-S. Wei and B. Gong. Carbon concentration and isotope composition of granites from Southeast China[J]. Physics and Chemistry of the Earth,Part A: Solid Earth and Geodesy,2001.9/10(26):821-833.
    [100]JC Vogel, PM Grootes, W G Mook. Isotopic fractionation between gaseous and dissolved carbon dioxide[J]. Zeitschrift fur Physik A Hadrons and Nuclei,1970,3 (230):225-238.
    [101]PM Grootes, WG Mook, JC Vogel.Isotopic fractionation between gaseous and condensed carbon dioxide[J]. Zeitschrift fur Physik A Hadrons and Nuclei,1969,3 (221):257-273.
    [102]Y Bottinga. Calculation of fractionation factors for carbon and oxygen isotopic exchange in the system calcite-carbon dioxide-water [J]. The Journal of Physical Chemistry,1968,3 (72):800-808.
    [103]Y Bottinga. Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite-carbon dioxide-graphite-methane-hydrogen-water vapor[J]. Geochimica et CosmochimicaActa,1969,1 (33):49-64.
    [104]WG Mook, JC Bommerson,WH Staverman.Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide[J]. Earth and Planetary Science Letters,1974,2(22):169-176.
    [105]Amiotte. S,Probst J. L, Flux de CO2 consomme par alteration chimique continentale: Influences du drainageet de la lithologie[J]. C. R. Acad.Sci. Paris,1993,317:615-622
    [106]Neitsch S L, Arnold J G, Kiniry J R, et al. Soil and Water assessment Tool Users Manual[M]. Temple:Grassland, Soil and Water Research Laboratory, Agricultural Research Service,2002:1-3.
    [107]刘昌明,李道峰,田英等.基于DEM的分布式水文模型在大尺度流域应用研究[J].地理科学进展,2003,22(5):437-445.
    [108]Romanowicz A A, Vanclooster M, RounsevellM, et al. Sensitivity of the SWAT Model to the Soil and Land Use Data Parametrisation:a case study in the Thyle catchment, Belgium[J].Ecological Modelling,2005,187 (1):27-39.
    [109]Prem B. Parajuli, Nathan O. Nelson, Lyle D. Frees and Kyle R. MankinComparison of AnnAGNPS and SWAT model simulationresults in USDA-CEAP agricultural watershedsin south-central Kansas[J]. HYDROLOGICAL PROCESSES.2009.23,748-763.
    [110]Iran Samira Akhavan, Jahangir Abedi-Koupai, Sayed-Farhad Mousavia,Majid Afyuni, Sayed-Saeid Eslamian, Karim C. Abbaspour. Application of SWAT model to investigate nitrate leaching in Hamadan-Bahar Watershed[J], Agriculture, Ecosystems and Environment,2010:675-688
    [111]庞靖鹏,徐宗学,刘昌明.SWAT模型研究应用进展[J].水土保持研究.2007,14(3):31-35.
    [112]王中根,刘昌明,黄友波.SWAT模型的原理、结构及应用研究[J].地理科学进展,2003,22(1):79-86.
    [113]黄清华,张万昌SWAT分布式水文模型在黑河干流山区流域的改进及应用[J].南京林业大学学报,2004,28(2):22-26.
    [114]杨桂莲,郝芳华,刘昌明等.基于SWAT模型的基流估算及评价—以洛河流域为例[J].地理科学进展,2003,22(5):464-469.
    [115]张东,张万昌,徐全芝.汉江上游流域蒸散量计算方法的比较及改进[J].资源科学,2005,27(1):97-102.
    [116]N Goldscheider,D drew. Methods in Karst hydrogeology[M],New York:Taylor & Francis, 2007.
    [117]鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,1999.
    [118]张泓,吕维君,茅建人,吴连茂.微波消解—原子吸收分光光度法、原子荧光分光光度法测定土壤中的铜锌铅镉铬砷汞[J].中国卫生检验杂志,2005,7(15):830-831.
    [119]周福俊,李绪谦,杜全友.水文地球化学[M].长春:吉林大学出版社,1993.
    [120]吴沿友,邢德科,刘莹.植物利用碳酸氢根离子的特征分析[J].地球与环境.2011,Vol.39,NO.2:273-277
    [121]Smith BN, Epstein S. Two Categories of 13C/12C Ratios for Higher Plants[J]. Plant Physiology,1971,47(3):380-384.
    [122]Wickman FE. Variations in the Relative Abundance of the Carbon Isotopes in Plants[J]. Nature,1952,169(4312):1051-1051.
    [123]Cerling TE. The stable isotopic composition of modern soil carbonate and its relationship to climate[J]. Earth and Planetary Science Letters,1984,71(2):229-240.
    [124]Aucour A.M, Sheppard SMF, Guyomar O, et al. Use of 13C to trace origin and cycling of inorganic carbon in the Rhone river system[J]. Chemical Geology, 1999,159(1-4):87-105.
    [125]张兴波,蒋勇军,邱述兰.农业活动对岩溶作用碳汇的影响:以重庆青木关地下河流域为例[J].地球科学进展,2012,27(4):466-476.
    [126]袁道先.中国岩溶学[M].北京:地质出版社,1993,p120-200.
    [127]裴建国.寨底地下河系统水演化趋势及碳汇通量分析[C].中国地质大学(北京),2012,p79-87.
    [128]唐伟,康志强,殷建军,林玉石,黄芬,曹敏.降雨条件下岩溶碳汇的动态变化特征—以桂林毛村地下河为例[J]..地球与环境,2011,vol.39,NO.2:161-166.
    [129]Pulina M. Preliminary studies on denudation in SW Spitsbergen[J]. Biull I'Acad Polonaise Sci, Ser Sci Terre,1974,22:2-3.
    [130]Smith K S, Jakubzick C, whittam T S, Ferry J G, Carboric anhydrase is an ancient enzyme wide spread in prokaryotes[J]. Proc Nat/Accd Sci. USA,1999,96:15184-15189.
    [131]Tripp B C, Smith K S, Ferry J G, Carbonic anhydrase in photosynthesis[J]. Annu Rev Plant Physiol Plant Mol Bio,1994,45:369-392.
    [132]王倩,支崇远.硅藻碳酸酐酶对石灰岩岩溶的作用及其生态意义[J].上海地质, 2007,4:25-27.
    [133]刘再华,W. Dreybrodt,李华举.灰岩和白云岩溶解速率控制机理的比较[J].地球科学-中国地质大学学报,2006,Vol 31.NO.3:411-416.
    [134]吴沿友,邢德科,刘莹.植物利用碳酸氢根离子的特征分析[J].地球与环境.2011,Vol.39,NO.2:273-277.
    [13]张强.岩溶地质碳汇的稳定性—以贵州草海地质碳汇为例[J].地球学报.2012,33(6):947-952.
    [136]Jiang Z, Yuan D. CO2 Source-sink in karst processes in karst areas of China[J]. Episodes, 1999,22:33-35.
    [137]杨景成,韩兴国,黄建辉,潘庆民.土地利用变化对陆地生态系统碳贮量的影响[J].应用生态学报,2003,14(8):1385-390.
    [138]林庞锟.矿山污染及环境破坏问题的思考[J].环境研究与监测,2011,24:58-60.
    [139]张力,王树.浅谈金属矿山土壤重金属污染及其修复[J].有色金属,2007,4(59):38-40.
    [140]翟丽梅,陈同斌,廖晓勇,阎秀兰,王莉霞,谢华.广西环江铅锌矿尾砂坝坍塌对农田土壤的污染及其特征[J].环境科学学报,2008,Vol.28.NO.6:1206-1211.
    [141]周永章,宋书巧,张澄博,杨小强,刘春莲.河流对矿山及矿山开发的水环境地球化学响应—以广西刁江水系为例[J].地质通报,2005,Vol.24.NO.10-11:940-944.
    [142]张国平,刘丛强,杨元根,吴攀.碳酸盐岩地区铅锌矿山水系中铅、锌、铜的迁移及其硫同位素示踪[J].矿物学报,2002,Vol.22.NO.3:249-254.
    [143]倪师军,李珊,李泽琴等.矿山酸性废水的环境影响及防治研究进展[J].地球科学进展,2008,23(5):501-508
    [144]陶贞,高全洲,姚冠荣,沈承德,邬俏钧,吴志才,刘冠超.增江流域河流颗粒有机碳的来源、含量变化及输出通量[J].环境科学学报,2004,24:789-795.
    [145]李强,孙海龙,汪进良.典型表层岩溶泉水化学对暴雨响应特征研究—以广西马山弄拉兰电堂泉为例[J].水资源保护.2008,24(2):14-17.
    [146]刘再华,Chris GROVES,袁道先等.水-岩-气相互作用引起的水化学动态变化研究—以桂林岩溶试验场为例[J].水文地质工程地质,2003,30(4):13-17.
    [147]Dreybrodt W.P. Processes in Karst Systems, physics, chemistry, and geology. Heidelberg Springer,1988,pp288.
    [148]刘立才,郑凡东,张春义.南水北调水源与北京地下水混合的水质变化特征[J].水文地质 工程地质.2012,39(1):1-7.
    [149]王张辉.含硫矿石自燃过程及机理的热重实验研究[D].西安科技大学,2010.
    [150]Patrick V.Brady,卢鸿.CO2和温度对硅酸盐风化作用的影响——对气候控制的可能影响[J].地质科学译丛,1995,12(2):16-19.
    [151]涂林玲,王华,冯玉梅,桂林地区大气降水的D和18O同位素的研究[J].中国岩溶,2004,23(4):304-309.
    [152]Liu Z., Dreybrodt W., Wang H.. A new direction in effective accounting for the atmospheric CO2 budget:Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J]. Earth-Science Reviews. (2010)99:162-172.
    [153]吴卫华,郑洪波,杨洁东等.中国河流流域化学风化和全球碳循环[j].第四纪研究,2011,31(3):397-406.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700