用户名: 密码: 验证码:
太湖蓝藻水华中长期动态及其与相关环境因子的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以大型富营养化浅水湖泊-太湖为研究对象,较系统研究了影响太湖水华蓝藻水华形成的生物和非生物因素,通过测定太湖浮游生物群落初级生产力,确定了太湖浮游生物群落是作为无机碳的源。研究内容包括:(1)通过分析梅梁湾浮游植物历史数据,确立太湖水华蓝藻的种类和时空变化规律;(2)通过多元统计分析手段,对比和筛选各种物理化学因素等不同组合条件下太湖蓝藻水华的表现特征;(3)通过野外大尺度浮游植物监测数据分析,研究太湖非优势种区域湖沼学规律,重点探讨水华蓝藻对其时空分布格局直接或间接的生态影响;(4)通过测定太湖浮游植物初级生产力,研究浮游植物无机碳定量收支状况。
     本文得出的主要结论如下:
     (1)太湖水华蓝藻种类为微囊藻、鱼腥藻、束丝藻等。其中微囊藻占绝对优势种,种类包括铜绿微囊藻、水华微囊藻、惠氏微囊藻等6-7种。而铜绿微囊藻、水华微囊藻和惠氏微囊藻为优势种,其平均值占蓝藻总生物量的85.7%。1992-2002年,西太湖北部微囊藻每年夏秋季形成水华;1993、1994年6月,梅梁湾鱼腥藻与微囊藻生物量相当;1997年6月,梅梁湾浮丝藻生物量显著大于微囊藻生物量,在局部水域形成浮丝藻水华。
     (2)典范对应分析结果,太湖梅梁湾微囊藻与TN: TP显著负相关,与NH4-N:NOX-N、水温和pH显著正相关。水温是微囊藻水华形成的主要驱动因素,同时营养盐质量比值的显著下降。微囊藻在太湖北部形成水华(此时水华定义为微囊藻生物量占总浮游植物生物量的50%以上)的条件为:TN: TP质量比低于30,NH4-N: NOX-N质量比低于1,水温波动范围25℃-30℃,此时太湖水体环境中悬浮质浓度大于10mg/L,pH值大于8.0。研究结果初步证实了全球气温变暖对太湖微囊藻水华形成的促进作用。
     (3)直链硅藻是太湖浮游硅藻的优势种,其它常见种有小环藻、针杆藻等。硅藻总生物量占浮游藻类生物量百分比平均值约20%。太湖浮游硅藻生物量在河口最大,梅梁湾其次,湖心最小,究其原因可能与河口的特殊生态环境(如水流速度)有关,另外,河口丰富的营养盐,特别是磷酸盐和氨氮也是一个重要因素。温度是影响太湖浮游硅藻生物量季节变化的关键因素。营养盐三角图证实了太湖硅限制的湖泊环境,温度和营养盐的超级竞争者水华蓝藻的存在及其可能产生的次生代谢产物,这些条件均限制了太湖浮游硅藻大面积的生长,证实了太湖水华蓝藻优势地位。
     (4)竺山湾内隐藻平均生物量(1.89mg/L)高于梅梁湾(0.87mg/L)、贡湖湾(0.43mg/L)的隐藻平均生物量;2008-2009年隐藻平均生物量(2.12mg/L)高于2005-2007年隐藻平均生物量(0.28mg/L)。与梅梁湾和贡湖湾相比,竺山湾内高营养盐浓度、高有机质浓度和高悬浮质浓度使隐藻更具有竞争优势,而贡湖湾内底栖动物的摄食作用限制了隐藻生物量。太湖隐藻与蓝藻的竞争演替趋势明显:太湖隐藻喜竺山湾和梅梁湾的高营养、高有机质、高浑浊度的水体环境,结合隐藻特有光合色素和兼性营养等特殊生理特点,决定了隐藻可以取代太湖蓝藻,成为新的水华种类,但是太湖底栖动物强烈捕食作用和蓝藻的种群竞争限制作用,且隐藻喜好低温水环境,证实了短期内太湖水华蓝藻的不可取代性。
     (5)太湖的浮游生物初级生产力与呼吸率显著相关(PCR=1.22GPP+0.46,r2=0.80),水柱群体呼吸量大约是光合量的1.22倍,浮游生物的基础呼吸量是0.46gO2m-2d-1。导致太湖浮游生物群落呼吸量大于光合量的主要因素是夏季高温条件促进了浮游生物群落呼吸作用,同时浑浊水体下的弱光照状况抑制了浮游植物的光合作用,其结果是太湖整个浮游生物群体的无机碳收支不平衡,使太湖浮游生物群落成为温室气体CO2的净释放者。
In the present study we chose Taihu as the representative large shallow eutrophic laketo systematically investigate biotic and abiotic factors, which affect the bloom-formingcyanobacteria. The gross primary production of phytoplankton was measured in order toanalyse inorganic carbon quantitatively and predict tendency for bloom formation in LakeTaihu. The main contents included:(1) The history data of phytoplankton were analyzedto determine species of bloom-forming cyanobacteria in Lake Taihu;(2) The multivariatestatistical analysis methods were employed to investigate the effects ofmulti-environmental factors on the growth of cyanobacteria populations in Lake Taihu;(3)By analysing the long-term monitoring data of phytoplankton, the spatial and temporaldistribution of non-dominated phytoplankton and the relationship between dominatedspecies and non-dominated species were explored in Lake Taihu;(4) By measuring thegross primary production of algae, the inorganic carbon was calculated quantitatively inLake Taihu. In general, main observations and conclusions can be summed up as follows:
     (1) Microcystis, Anabaena and Aphanizomenon were included in bloom-formingcyanobacteria. Microcystis was the dominated species in Lake Taihu. There were totallysix to seven kinds of Microcystis spp., such as Microcystis aeruginosa, Microcystisflos-aquae and Microcystis wesenbergii, which their mean biomass accounted to85.7%oftotal cyanobacaterial biomass. Microcystis formed blooms almost every summer-autumnduring the year of1992-2002in the west-north part of Lake Taihu. Anabaena andMicrocystis were the co-dominated species on June1993and June1994in Meiliang Bay.In contrast to Microcystis, Aphanizomenon biomass was significantly higher on June1997in Meiliang Bay.
     (2) A multivariate statistical analysis, canonical correspondence analysis (CCA),revealed a negative correlation between the Microcystis and TN: TP, and a positivecorrelation between the Microcystis and NH4-N: NOX-N, water temperature and pH. Warmwater temperature was the principal force driving Microcystis blooms, which werepreceded declining concentrations of nitrogen compounds. Microcystis tended to dominate(Microcystis contributed above50%to total algal mass) in the north part of Lake Taihu during summer when the TN: TP mass ratio was less than30, NH4-N: NOX-N was below1,and a critical water temperature ranged from25℃to30℃, respectively. Meanwhile,suspended solids (SS) concentrations exceeded10mg/L and pH exceeded8.0duringblooms. Overall, this study advances our understanding of nutrient enrichment and highambient temperature influences on Microcystis biomass. The effects of global warminginclude the direct effects of higher water temperature are beneficial to cyanobacteria inLake Taihu.
     (3) The most abundant planktonic diatom was Aulacoseira sp. in addition to mainlyunicellular diatoms as Cyclotella sp. and Synedra sp. At the lake Mouth, diatoms occurredmore frequently and appeared at higher densities than in the Meiliang Bay and the LakeCentre. The higher water flowing where the river enters the lake seemed to maintain ahigh abundance of diatoms at the Lake Mouth. In contrast, nutrients as PO4-P and NH4-Nplayed the critical role shaping the spatial distribution of diatoms in Lake Taihu. Watertemperature appeared to be important in the timing of the annual onset of diatom growth.Our results showed the poor SRSi contents environment, the dominated cyanobacteriawhich is superior competitor for high temperature and nutrients, and secondarymetabolites and microcystins produced by cyanobacteria, all of which limited the growthof planktonic diatoms in Lake Taihu.
     (4) The mean biomass of the cryptophytes in Zhushan Bay (1.89mg/L) was muchhigher than that of Meiliang Bay (0.87mg/L) and Gonghu Bay (0.43mg/L). The averagebiomass value of cryptophytes during2008-2009(2.12mg/L) was much higher than thatof2005-2007(0.28mg/L). Principally, cryptophytes were most prevalent in Zhushan Baywhich was marked by higher nutrient levels, higher organic matter and SS concentrations.The succession of cryptophytes was mainly affected by the grazing of zooplankton inGonghu Bay. Furthermore, we found that cryptophytes and cyanobacteria abundanceswere inversely correlated, temporally, in Lake Taihu. Higher nutrient levels, higherorganic matter and SS concentrations environment, coupled with exclusive combination ofphotosynthetic pigments and, mixotrophically exploit available inorganic as well asorganic nutrients, all of which make cryptophytes a unique group able to potentiallyout-compete cyanobacteria in Lake Taihu. Our results proved the effects of increased grazing pressure and cyanobacteria competition pressure on cryptophytes which arecommon in cooler water. It is also said that cyanobacterial blooms are likely to dominatein Lake Taihu for longer time periods than they present do.
     (5) The significant positive correlations between gross primary production (GPP) andplankton community respiration (PCR) noted in Lake Taihu (PCR=1.22GPP+0.46,r2=0.80). Form the GPP and PCR regression equation, the value of PCR was0.46gO2m-2d-1, which was1.22times as much as GPP. The conditions here may be related tolimitation of phytoplankton photosynthesis by the poor underwater light climate (due toelevated SS and nutrients originating in the catchment) and the preferential enhancementof respiration by high water temperatures. The results indicated that plankton communitywas net heterotrophic. Partial pressure estimated for CO2also indicated that planktoncommunity was a net source of CO2in Lake Taihu.
引文
[1]孔繁翔,宋立荣.蓝藻水华形成过程及其环境特征研究.北京:科学出版社,2011.
    [2]王苏民,窦鸿身.中国湖泊志.北京:科学出版社,1998.
    [3]金相灿,屠清瑛.湖泊富营养化调查规范.北京:中国环境科学出版社,1990:138-207.
    [4] Reynolds C.S. Cyanobacterial Water-Blooms. Advances in Botanical Research,1987,13:67-143.
    [5] Anzecc A. National Water Quality Management Strategy, Policies and Principles,Australian Water Quality Guideline for Fresh and Marine Waters. Australian andNew Zealand Environment and Conservation Council, Canberra,1992.
    [6]郭沛涌.杭州西湖水体富营养化的控制.环境保护科学,2005,2:9-11.
    [7]饶钦止,章宗涉.武汉东湖浮游植物的演变(1956-1975)和富营养化问题.水生生物学集刊,1980,7(1):1-17.
    [8]秦伯强,王小冬,汤祥明等.太湖富营养化与蓝藻水华引起的饮用水危机—原因与对策.地球科学进展,2007,22(9):896-906.
    [9]屠清瑛,顾丁锡,徐桌然等.巢湖富营养化的研究.合肥:中国科学技术大学出版社,1991.
    [10]郭怀成,孙延枫.滇池水体富营养化特征分析及控制对策探讨.地理科学进展,2002,21(5):500-506.
    [11] Cronberg G. Changes in the phytoplankton of Lake Trummen induced byrestoration. Hydrobiologia,1982,86:185-193.
    [12] Annadotter H., Cronberg G., Aagren R., et al. Multiple techniques for lakerestoration. Hydrobiologia,1999,395-396:77-85.
    [13] Reeders H.H., Boers P.C.M., van der Molen D.T., et al. Cyanobacterial dominancein the lakes Veluwemeer and Wolderwijd, The Netherlands. Water Science andTechnology,1998,37:85-92.
    [14] Jagtman E., Molen D.T., Vermij S. The influence of flushing on nutrient dynamics,composition and densities of algae and transparency in Veluwemeer, TheNetherlands. Hydrobiologia,1992,233:1-3.
    [15] Gulati R.D., van Donk E. Lakes in the Netherlands, their origin, eutrophication andrestoration: state-of-the-art review. Hydrobiologia,2002,478:73-106.
    [16] Meijer M.L., Hosper H. Effects of biomanipulation in the large and shallow LakeWolderwijd, The Netherlands. Hydrobiologia,1997,342-343(0):335-349.
    [17] Dokulil M.T., Mayer J. Population dynamics and photosynthetic rates of aCylindrospermopsis-Limnothrix association in a highly eutrophic urban lake, AlteDonau, Vienna, Austria. Archiv für Hydrobiologie/Algological Studies,1996,117:179-195.
    [18] Mayer J., Dokulil M.T., Salbrechter M., et al. Seasonal successions and trophicrelations between phytoplankton, zooplankton, ciliate and bacteria in ahypertrophic shallow lake in Vienna, Austria. Hydrobiologia,1997,342-343:165-175.
    [19] Ripl W. Biochemical oxidation of polluted lake sediments with nitrate: a newrestoration method. Ambio,1976,5(3):132-135.
    [20] Dokulil M.T., Teubner K. Eutrophication and restoration of shallow lakes-theconcept of stable equilibria revisited. Hydrobiologia,2003,506-509:29-35.
    [21]古滨河.美国Apopka湖的富营养化及其生态修复.湖泊科学,2005,17(1):1-8.
    [22] Bachmann R.W., Hoyer M.V., Canfield D.E.J. Internal heterotrophy following theswitch from macrophytes to algae in Lake Apopka, Florida. Hydrobiologia,2000,418:217-227.
    [23] Tsujimura S., Tsukada H., Nakahara H., et al. Seasonal variations of Microcystispopulations in sediments of Lake Biwa, Japan. Hydrobiologia,2000,434:183-192.
    [24] Takamura N., Otsuki A., Aizaki M., et al. Phytoplankton species shift accompaniedby transition from nitrogen dependence to phosphorus dependence of primaryproduction in Lake Kasumingaura. Japanese Journal of Archiv fuer Hydrobiologie,1992,124:129-148.
    [25] Nishihiro J., Nishihiro M.A., Washitani I. Restoration of wetland vegetation usingsoil seed banks: lessons from a project in Lake Kasumigaura, Japan. LandscapeEcol Eng,2006,2(2):171-176.
    [26]金相灿.湖泊富营养化控制和管理技术.北京:化学工业出版社,2001.
    [27]沈满洪.滇池流域环境变迁及环境修复的社会机制.中国人口与资源环境,2003,13(6):76-80.
    [28]李原,张梅,王若南.滇池的水华蓝藻的时空变化.云南大学学报(自然科学版),2005,27(3):272-276.
    [29]万能,宋立荣,王若南等.滇池藻类生物量时空分布及其影响因子.水生生物学报,2008,32(2):184-188.
    [30]路娜,尹洪斌,邓建才等.巢湖流域春季浮游植物群落结构特征及其与环境因子的关系.湖泊科学,2010,22(6):950-956.
    [31]殷福才,张之源.巢湖富营养化研究进展.湖泊科学,2003,15(4):377-384.
    [32]胡鸿钧,魏印心.中国淡水藻类-系统、分类及生态.北京:科学出版社,2006.
    [33] Anagnostidis K., Komárek J. Modern approach to the classification system ofCyanophytes.1-Introduction. Archiv für Hydrobiologie/Algological Studies,1990,38-39:291-302.
    [34]谢平.太湖蓝藻的历史发展与水华灾害.北京:科学出版社,2008.
    [35]孔繁翔,高光.大型浅水湖泊的蓝藻水华形成机理研究的思考.生态学报,2005,25(3):589-595.
    [36] Anagnostidis K., Komárek J. Modern approach to the classification system ofCyanophytes.3-Oscillatoriales. Archiv für Hydrobiologie/Algological Studies,1988,50-53:327-472.
    [37] Suda S., Watanabe M.W., Otsuka S., et al. Taxonomic revision ofwater-bloom-forming species of oscillatorioid cyanobacteria. International Journalof Systematic and Evolutionary Microbiology,2002,52:1577-1595.
    [38] Chorus I., Bartram J. Toxic cyanobacteria in water: a guide to their public healthconsequences, Monitoring and Management. London: E&FN Spon,1999:41-111.
    [39]吴忠兴,余博识,彭欣等.中国水华蓝藻的新记录属-拟浮丝藻属.武汉植物学研究,2008,26(5):461-465.
    [40]吴忠兴,虞功亮,施军琼等.我国淡水水华蓝藻-束丝藻属新记录种.水生生物学报,2009,6:1140-1144.
    [41] Fogg G.E. The physiology of an algal nuisance. Proceeding of the Royal Society ofLondon Series B,1969,173:175-189.
    [42] Paerl H.W. Nuisance phytoplankton blooms in coastal, estuarine, and inland waters.Limnology and Oceanography,1988,33:823-847.
    [43] Dokulil M.T., Teubner K. Cyanobacteria dominance in lakes. Hydrobiologia,2000,438:1-12.
    [44] Tilman D., Liesling R.L. Freshwater algal ecology: taxonomic trade-offs in thetemperature dependence of nutrient competitive abilities. In: Klug M.J., ReddyC.A.(eds), Current Perspectives in Microbial Ecology: Proceeding of the ThirdInternational Symposium on Microbial Ecology, Washington, D.C.(USA):1984.American Society for Microbiology,314-319.
    [45] McQueen D.J., Lean D.R.S. Influence of water temperature and nitrogen tophosphorus ratios on the dominance of blue-green algae in Lake St. George,Ontario. Canadian Journal of Fisheries and Aquatic Sciences1987,44:598–604.
    [46] Robarts R.D., Zohary T. Temperature effects on photosynthetic capacity,respiration, and growth rates of bloom-forming cyanobacteria. New ZealandJournal of Marine and Freshwater Research,1987,21:391-399.
    [47] Zevenboom W. N2-fixing cyanobacteria: why they do not become dominant inshallow hypertrophic lakes. Aquatic Ecology,1982,16:289-290.
    [48] Nicklisch A., Kohl J.G. Influence of light on the primary production of twoplanktic blue-green algae. Archiv für Hydrobiologie, Ergeb Limnology,1989,33:451-455.
    [49] Schreurs H. Cyanobacterial dominance relations to eutrophication and lakemorphology.[Ph.D. thesis]. University of Amsterdam,1992.
    [50] King D.L. The role of carbon in eutrophication. Journal of Water Pollution ControlFederation,1970,42:2035-2051.
    [51] Shapiro J. Current beliefs regarding dominance by blue-greens: the case for theimportance of CO2and pH. Internationale Vereinigung fuer Theoretische undAngewandte Limnologie,1990,24:38-54.
    [52] Smith V.H. Low nitrogen to phosphorus ratios favor dominance by bluegreen algaein lake phytoplankton. Science,1983,221:669-671.
    [53] Blomqvist P., Pettersson A., Hyenstrand P. Ammonium-nitrogen: a key regulatoryfactor causing dominance of non-nitrogen-fixing cyanobacteria in aquatic systems.Archiv fuer Hydrobiologie, Advances in Limnolology,1994,132(2):141-164.
    [54] Rueter J.G. Petersen R.R. Micronutrient effects on cyanobacterial growth andphysiology. New Zealand Journal of Marine and Freshwater Research,1987,21:435-445.
    [55] Morton S.D., Lee T.H. Algae blooms: possible effects of iron. EnvironmentalScience and Technology,1974,8(7):673-674.
    [56] Burns C.W. Insight into zooplankton–cyanobacteria interactions derived fromenclosure studies. New Zealand Journal of Marine and Freshwater Research,1987,21:477-482.
    [57] Haney J.F. Field studies on zooplankton-cyanobacteria interactions. New ZealandJournal of Marine and Freshwater Research,1987,21:467-475.
    [58] Lampert W. Laboratory studies on zooplankton-cyanobacteria interactions. NewZealand Journal of Marine and Freshwater Research,1987,21:483-490.
    [59] Murphy T.P., Lean D.R., Nalewajko C. Blue-green algae: their excretion ofiron-selective chelators enables them to dominate other algae. Science,1976,192:900-902.
    [60] Keating K.I. Blue-green algal inhibition of diatom growth: transition frommesotrophic to eutrophic community structure. Science,1978,199:971-973.
    [61] Lindholm T., Eriksson J.E., Meriluoto J.A.O. Toxic cyanobacteria and waterquality problems-Examples from a eutrophic lake on Aland, South West Finland.Water Research,1989,23:481-486.
    [62] Paerl H.W., Fulton R.S. Ecology of Harmful Cyanobacteria. In: Granéli E., TurnerJ.T.(eds), Ecology of Harmful Alga, New York:2006. Springer Berlin Heidelberg,95-96.
    [63] Chen Y.W., Gao X.Y. Study on variations in spatial and temporal distribution ofMicrocystis in Northwest Taihu. Lake and its relations with light and temperature.In: Q.M. C.(eds), Ecology of Taihu Lake, Beijing:1998. China MeteorologicalPress,142-148.
    [64]李小龙,耿亚红,李夜光等.从光合作用特性看铜绿微囊藻(Microcystisaeruginosa)的竞争优势.武汉植物学研究,2006,24(3):225-230.
    [65] Oliver R.L., Ganf G.G. Freshwater blooms. In: Whitton B.A., Potts M.(eds), TheEcology of Cyanobacteria, The Netherlands:2002. Kluwer Academic Publishers,149-194.
    [66] Paerl H.W., Tucker J., Bland P.T. Carotenoid enhancement and its role inmaintaining blue-green algal (Microcystis aeruginosa) surface blooms. Limnologyand Oceanography,1983,28:847-857.
    [67] Zhang Y.L., Qin B.Q., Chen W.M., et al. Analysis on distribution and variation ofbeam attenuation coefficient of Taihu Lake's water. Analysis in water science,2003,14:447-453.
    [68] Qin B.Q., Hu W.P., Gao G., et al. Driving mechanism of sediment resuspensionand conceptual pattern of internal release in Taihu Lake. Chinese Science Bulletin,,2003,48:1822-1831.
    [69] Fan C.X., Zhang L., Qin B.Q., et al. Estimation of dynamic release of phosphorusfrom suspended particles under wave in Lake Taihu. Science in China (Series D),2003,33:760-768.
    [70] Schindler D.W. Eutrophication and recovery in experimental lakes: implicationsfor lake management. Science,1974,184:897-899.
    [71] Schindler D.W. Evolution of Phosphorus Limitation in Lakes. Science,1977,195:260-262.
    [72] Schindler D.W. Recent advances in the understanding and management ofeutrophication. Limnology and Oceanography,2006,51(1, Part2):356-363.
    [73] Sas H., Ahlgren I. Lake restoration and reduction of nutrient loading: expectations,experiences, extrapolations. Sankt Augustin: Academia Verlag Richarz,1989.
    [74] Chen Y.W., Qin B.Q., Teubner K., et al. Long-term dynamics of phytoplanktonassemblages: Microcystis-domination in Lake Taihu, a large shallow lake in China.Journal of Plankton Research,2003,25:445-443.
    [75] Chen Y.W., Fan C.X., Teubner K., et al. Changes of nutrients and phytoplanktonchlorophyll-a in a large shallow Lake Taihu, China: an8-year investigation.Hydrobiologia,2003,506-509:273-279.
    [76] An S., Gardner W.S. Dissimilatory nitrate reduction to ammonium (DNRA) as anitrogen link, versus denitrification as a sink in a shallow estuary (LagunaMadre/Baffin Bay, Texas). Marine Ecology Progress Series,2002,237:41-50.
    [77] Gardner W.S., McCarthy M.J., An S., et al. Nitrogen fixation and dissimilatorynitrate reduction to ammonium (DNRA) support nitrogen dynamics in Texasestuaries. Limnology and Oceanography,2006,51(1, part2):558-568.
    [78] Havens K.E., Bierman Jr V.J., Flaig E.G., et al. Historical trends in the LakeOkeechobee ecosystem. VI. Synthesis. Archiv für Hydrobiologie,1995,107:101-111.
    [79] Smith V.H., BiermanI Jr. V.J., Jones B.L., et al. Historical trends in the LakeOkeechobee ecosystem.4. Nitrogen:phosphorus ratios, cyanobacterial dominance,and nitrogen fixation potential. Archiv fuer Hydrobiologie, Advances in Limnology,1995,107:71-88.
    [80] Noges T., Laugaste R., Noges P., et al. Critical N: P ratio for cyanobacteria andN2-fixing species in the large shallow temperate lakes Peipsi and Vortsjarv,North-East Europe. Hydrobiologia,2008,599:77-86.
    [81] Oviatt C., Doering P., Nowicki B., et al. An ecosystem level experiment on nutrientlimitation in temperate coastal marine environments. Marine Ecology ProgressSeries,1995,116:171-179.
    [82] Xu H., Paerl H.W., Qin B.Q., et al. Nitrogen and phosphorus inputs controlphytoplankton growth in eutrophic Lake Taihu, China. Limnology andOceanography,2010,55(1):420-432.
    [83] Paerl H.W., H. X., M.J. M., et al. Controlling harmful cyanobacterial blooms in ahyper-eutrophic lake (Lake Taihu, China): The need for a dual nutrient (N&P)management strategy. Water research,2011,45:1973-1983.
    [84] Tilman D., Kilham S., S. K., P. Phytoplankton community ecology: the role oflimiting nutrients. Annual Review of Ecology and Systematics,1982,13:349-372.
    [85] Flett R.J., Schindler D.W., Hamilton R.D., et al. Nitrogen fixation in CanadianPrecambrian Shield lakes. Canadian Journal of Fisheries and Aquatic Sciences,1980,37(3):494-505.
    [86] Xie L., Xie P., Li S., et al. The low TN: TP ratio, a cause or a result of Microcystisblooms? Water Research,2003,37:2073-2080.
    [87] Kromkamp J., Van den Heuvel A., Mur L.R. Phosphorus uptake andphotosynthesis by phosphate-limited cultures of the cyanobacterium Microcystisaeruginosa. British Phycological Journal,1989,24:347-355.
    [88] Sommer U. Comparison between steady state and non-steady state competition:experiments with natural phytoplankton. Limnology and Oceanography,1985,30(2):335-346.
    [89] Fujimoto N., Sudo R. Nutrient-limited growth of Microcystis aeruginosa andPhormidium tenue and competition under various N:P supply ratios andtemperatures. Limnology and Oceanography,1997,42:250-256.
    [90] Hudson J.J., Taylor W.D., Schindler D.W. Planktonic nutrient regeneration andcycling efficiency in temperate lakes. Nature,1999,400:659-661.
    [91] Reynolds C.S., Reynolds S.N., Munawar I.F., et al. The regulation ofphytoplankton population dynamics in the world’s largest lakes. AquaticEcosystem Health and Management,2000,3:1-21.
    [92] Guildford S.J., Hendzel L.L., Kling H.J., et al. Effects of lake size onphytoplankton nutrient status. Canadian Journal of Fisheries and Aquatic Sciences,1994,51:2769-2783.
    [93] Zhang M., Shi X.L., Jiang L.J., et al. Effects of two exogenous phosphorus andshake on the growth of Microcystis aeruginosa. Chinese Journal of Applied&Environmental Biology,20028:507-510.
    [94] Paerl H.W., Ustach J.F. Blue-green algal scums: an explanation for theiroccurrence during freshwater blooms. Limnology and Oceanography,1982,27:212-217.
    [95] Agusti S., Philips E.J. Light absorption by cyanobacteria: Implications of thecolonial growth form. Limnology and Oceanography,1991,37:434-441.
    [96] Ganf G.G., Oliver R.L. Vertical separation of light and available nutrients as afactor causing replacement of green algae in the plankton of stratified lake. Journalof Ecology,1982,70:829-844.
    [97] Reynolds C.S. Phytoplankton periodicity: the interactions of from, function andenvironmental variability. Freshwater Biology,1984,14:111-142.
    [98] Berg K., Skulberg O.M., Skulberg R., et al. Observations of toxic blue-green algae(Cyanobacteria) in some Scandinavian lakes. Acta Veterinaria Scandinavica,1986,27(3):440-452.
    [99] Lung’Ayia H.B.O., M’Harzi A., Tackx M., et al. Phytoplankton communitystructure and environment in the Kenyan waters of Lake Victoria. FreshwaterBiology,2000,43(4):529-543.
    [100] Carrick H.J., Aldridge F.J., Schelske C.L. Wind influences phytoplankton biomassand composition in a shallow, productive lake. Limnology and Oceanography,1993,38:1179-1192.
    [101] Dokulil M.T., Mayer J. Population dynamics and photosynthetic rates of aCylindrospermopsis: Limnothrix association in a highly eutrophic urban lake, AlteDonau, Vienna, Austria. Algological Studies/Archiv für Hydrobiologie,Supplement Volumes1996,83:179-195.
    [102] Sommer U., Gliwicz Z.M., Lampert W., et al. The PEG-model of seasonalsuccession of planktonic event in freshwaters. Archiv für Hydrobiologie,1986,106:433-471.
    [103] Reynolds C.S. The Ecology of Phytoplankton. New York: Cambridge UniversityPress,2006.
    [104] Williams P.J.l.B. The balance of plankton respiration and photosynthesis in theopen oceans. Nature,1998,394:55-57.
    [105] Manning M.R., Edmonds J., Emori S., et al. Misrepresentation of the IPCC CO2emission scenarios. Nature Geoscience,2010,3:376-377.
    [106] De Senerpont Domis L.N., Mooij W.M., Huisman J. Climate-induced shifts in anexperimental phytoplankton community: a mechanistic approach. Hydrobiologia,2007,584:403-413.
    [107] Joehnk K.D., Huisman J.E.F., Sharples J. Summer heatwaves promote blooms ofharmful cyanobacteria. Global change biology,2008,14:495-512.
    [108] Huisman J., Oostveen P.v., Weissing F.J. Species dynamic in phytoplanktonblooms: incomplete mixing and competition for light. The American Naturalist,1999,154:46-68.
    [109] Qin B.Q. Lake Taihu,China:Dynamics and Environmental Change. Springer,2008.
    [110]蔡启铭.太湖生态环境研究(一).北京:气象出版社,1998.
    [111]钱奎梅,陈宇炜,宋晓兰.太湖浮游植物优势种长期演化与富营养化进程关系.生态科学,2008,27(2):65-70.
    [112]孙顺才,黄漪平.太湖.北京:海洋出版社,1993.
    [113]袁和忠,沈吉,刘恩峰.太湖重金属和营养盐污染特征分析.环境科学,2011,32(2):649-657.
    [114]马荣华,孔繁翔,段洪涛等.基于卫星遥感的太湖蓝藻水华时空分布规律认识.湖泊科学,2008,20(6):687-694.
    [115]诸敏.太湖水质变化趋势及其保护对策.湖泊科学,1996,8(2):133-138.
    [116]林泽新.太湖流域水环境变化及缘由分析.湖泊科学,2002,14(2):111-116.
    [117] Forsberg C., Ryding S.O. Eutrophication parameters and trophic state indices in30Swedish waste receiving lakes. Archiv für Hydrobiologie,1980,89:189-207.
    [118]陈宇炜,陈开宁,胡耀辉.浮游植物叶绿素a测定的“热乙醇法”及其测定误差的探讨.湖泊科学,2006,18(5):550-552.
    [119] Teubner K., Crosbie N.D., Donabaum K., et al. Enhanced phosphorusaccumulation efficiency by the pelagic community at reduced phosphorus supply:a lake experiment from bacteria to metazoan zooplankton. Limnology andOceanography,2003,48(3):1141-1149.
    [120] Vollenweider R.A. A manual on methods for measuring primary production inaquatic environments. Int Biol. Programme Handbook12. Blackwell ScientificPublications,1974:225.
    [121] Kirk J.T.O. Light and Photosynthesis in Aquatic Ecosystems. Cambridge:Cambridge University Press,1983.
    [122] ter Braak C.J.F., Smilauer P. Reference Manual and user’s guide to Canoco forWindows: Software for Canonical Community Ordination (Version4). Ithaca, NY,USA: Microcomputer Power,1998.
    [123]杨清心.太湖水华成因及控制途径初探.湖泊科学,1996,8(1):67-73.
    [124]陈宇炜,高锡云,秦伯强.西北太湖夏季藻类中间关系的初步研究.湖泊科学,1998,10(4):35-40.
    [125] Bucka H. Ecology of selected planktonic algae causing water blooms. Archiv fürHydrobiologie,1990,31:207-258.
    [126] Reynolds C.S. The Ecology of Freshwater Phytoplankton. Cambridge, UK:Cambridge University Press,1984.
    [127] Nixon S.W. Coastal marine eutrophication: a definition, social causes and futureconcerns. Ophelia,1995,41:199-219.
    [128] Smith V.H., Joye S.B., Howarth R.W. Eutrophication of freshwater and marineecosystems. Limnology and Oceanography,2006,51:351–355.
    [129] Smith V.H. Eutrophication of freshwater and coastal marine ecosystems: a globalproblem. Environmental Science and Pollution Research,2003,10:126-139.
    [130] Moss B., Madgwich J., Philips G. A guide to the restoration of nutrientenrichedshallow lakes. Norwich, UK: Broads Authority,1996:180.
    [131] Cai Q., Gao X., Chen Y., et al. Dynamic variations of water quality in Lake Taihuand multivariate analysis of its influential factors. Chinese Geography Science,1996,6(4):364-374.
    [132] Huang Y., Zhu M. The water quality of Lake Taihu and its protection. GeoJournal,1996,40(1):39-44.
    [133] Pu P., Yan J. Taihu Lake—a large shallow lake in the East China Plain. Journal ofLake Sciences,1998,10(Suppl.):1-12.
    [134] Jacoby J.M., Collier D.C., Welch E.B., et al. Environmental factors associated witha toxic bloom of Microcystis aeruginosa. Canadian Journal of Fisheries andAquatic Sciences,2000,57:231-240.
    [135] Hansel-welch N., Butler M.G., Carlson T.J., et al. Changes in macrophytecommunity structure in Lake Christina (Minnesota), a large shallow lake,following biomanipulation. Aquatic Botany,2003,75:323-337.
    [136] Ke Z., Xie P., Guo L. Controlling factors of spring-summer phytoplanktonsuccession in Lake Taihu (Meiliang Bay, China). Hydrobiologia,2008,607:41-49.
    [137] Tan X., Kong F.X., Zeng Q.F., et al. Seasonal variation of Microcystis in LakeTaihu and its relationships with environmental factors. Journal of EnvironmentalSciences,2009,21:892-899.
    [138] Reynolds C.S. What factors influence the species composition of phytoplankton inlakes of different trophic status? Hydrobiologia,1998,369/370:11-26.
    [139] Gobler C.J., Davis T.W., Coyne K.J., et al. Interactive influences of nutrientloading, zooplankton grazing, and microcystin synthetase expression oncyanobacterial bloom dynamics in a eutrophic New York lake. Harmful Algae,2007,6:119-133.
    [140] Nalewajko C., Murphy T.P. Effects of temperature, and availability of nitrogen andphosphorus on the abundance of Anabaena and Microcystis in Lake Biwa, Japan:an experimental approach. Limnology,2001,2:45-48.
    [141] Jeppesen E., Meerhoff M., Jacobsen B.A., et al. Restoration of shallow lakes bynutrient control and biomanipulation-the successful strategy varies with lake sizeand climate. Hydrobiologia,2007,581:269-285.
    [142] Mooij W.M., Hulsmann S., Domis L., et al. The impact of climate change on lakesin the Netherlands: a review. Aquatic Ecology,2005,39:381-400.
    [143] Paerl H.W., Huisman J. Blooms like it hot. Science,2008,320:57-58.
    [144] IPCC. A report of working group of the Intergovernmental Panel on ClimateChange. Summary for Policymakers and Technical Summary,2001.
    [145] Huang J.X., Xu Z.X. Spatial–temporal characteristics of long-term trends forclimate change in the Taihu Basin during1954–2006Resource and Environment inthe Yangtze Basin,2009,18:33-39(in Chinese).
    [146] Wilhelm S., Adrian R. Impact of summer warming on the thermal characteristics ofa polymictic lake and consequences for oxygen, nutrients and phytoplankton.Freshwater Biology,2008,53:226-237.
    [147] Wagner C., Adrian R. Cyanobacteria dominance: quantifying the effects of climatechange. Limnology and Oceanography,2009,54:2460-2468.
    [148] Davis T.W., Berry D.L., Boyer G.L., et al. The effects of temperature and nutrientson the growth and dynamics of toxic and non-toxic strains of Microcystis duringcyanobacteria blooms. Harmful Algae,2009,8:715-725.
    [149] Meehl G.A., Stocker T.F., Collins W.D., et al. Global climate projections [M]//QinD., Manning M., Marquis M., et al. Climate change2007: The physical sciencebasis. Solomon, S.2007:747-845.
    [150] Teubner K., Feyerabend R., Henning M., et al. Alternative blooming ofAphanizomenon flos-aquae or Planktothrix agardhii induced by the timing of thecritical nitrogen:phosphorus ratio in hypertrophic riverine lakes. Archiv fuerHydrobiologie, Advances in Limnolology,1997,54:325-344.
    [151] Hallegraeff G.M. A review of harmful algal blooms and their apparent globalincrease. Phycologia,1993,32:79-99.
    [152] McCarthy J.J., Taylor W.R., Taft J.L. Nitrogenous nutrition of the plankton in theChesapeake Bay1. Nutrient availability and phytoplankton preferences.Limnology and Oceanography,1977,22:996-1011.
    [153] Berg G.M., Balode M., Purina I., et al. Plankton community composition inrelation to availability and uptake of oxidized and reduced nitrogen. AquaticMicrobial Ecology,2003,30:263-274.
    [154] Kappers F.I. On population dynamics of the cyanobacterium Microcystisaeruginosa.[Ph.D. thesis]. Amsterdam, The Netherlands. University of Amsterdam,1984.
    [155] Nelson D.M., Tréguer P., Brezezinski M.A. Production and dissolution of biogenicsilica in the ocean: revised global estimates, comparison with regional data andrelationship to biogenic sedimentation. Global Biogeochemical Cycles,1995,9:359-372.
    [156] Sch llhorn E., Granéli E. Influence of different nitrogen to silica ratios andartificial mixing on the structure of a summer phytoplankton community from theSwedish west coast (gullmar fjord). Journal of Sea Research,1996,35:159-167.
    [157] Reynolds C.S. The long, the short and the stalled: on the attributes ofphytoplankton selected by physical mixing in lakes and river. Hydrobiologia,1994,289:9-22.
    [158] Hoetzel G., Croome R. Population dynamics of Aulacoseira granulata (EHR.)SIMONSON (Bacillariophyceae, Centrales), the dominant alga in the MurrayRiver, Australia. Archiv für Hydrobiologie,1996,136:191-215.
    [159] Vanni M.J., Temte J. Seasonal patterns of grazing and nutrient limitation ofphytoplankton in a eutrophic lake. Limnology and Oceanography,1990,35:697-709.
    [160] Colman S.M., Peck J.A., Karabanov E.B., et al. Continental climate response toorbital forcing from biogenic silica records in lake Baikal. Nature,1995,378:769-771.
    [161] Horner R.A., Garrison D.L., Plumley F.G. Harmful algal blooms and red tideproblems on the U.S. west coast. Limnology and Oceanography,1997,42:1076-1088.
    [162]郭蔚华,李楠,张智等.嘉陵江出口段三类水体蓝绿硅藻优势种变化机理.生态环境学报,2009,18(1):51-56.
    [163] Liu X., Lu X.H., Chen Y.W. The effects of temperature and nutrient ratios onMicrocystis blooms in Lake Taihu, China: an11-year investigation. Harmful Algae,2011,10:227-343.
    [164] Rice E.L. Allelopathy.2nd ed. N.Y.: Academic Press,1984.
    [165] Teubner K., Dokulil M. Ecological stoichiometry of TN: TP: SRSi in freshwaters:nutrient ratios and seasonal shifts in phytoplankton assemblages. Archiv fürHydrobiologie,2002,154(4):625-646.
    [166]邓建明,徐彩萍,陈宇炜等.太湖流域主要河道浮游植物类群对比研究.资源科学,2011,33(2):210-216.
    [167] Nogueira M.G. Phytoplankton composition, dominance and abundance asindicators of environmental compartmentalization in Jurumirim Reservoir(Paranapanema River), S o Paulo, Brazil. Hydrobiologia,2000,431:115-128.
    [168] Takano K., Ishikawa Y., Mikami H., et al. Analysis of the change in dominantphytoplankton species in unstratified Lake Oshima-Ohnuma estimated by a bottleincubation experiment. Limnology and Oceanography,2001,2:29-35.
    [169] Wang C., Li X., Lai Z., et al. Seasonal variations of Aulacoseia granulatapopulation abundance in the Pearl River Estuary. Estuarine, Coastal and ShelfScience,2009,85:585-592.
    [170] Tsukada H., Tsujimura S., Nakahara H. Seasonal succession of phytoplankton inLake Yogo over2years: effect of artificial manipulation. Limnology,2006,7:3-14.
    [171] Suikkanen S., Fistarol G.O., Graneli E. Effects of cyanobacterial allelochemicalson a natural plankton community. Marine Ecology Progress Series,2005,287:1-9.
    [172]胡智泉,刘永定.微囊藻毒素对细长聚球藻生长及生理生化特性的影响.水生生物学报,2004,28(2):155-158.
    [173] Song L.R., Chen W., Peng L., et al. Distribution and bioaccmulation ofmicrocystins in water column: A systermatic investigation into the environmentalfate and the risk associated with microcystins in Meiliang Bay, Lake Taihu. WaterResearch,2007,41:2853-2864.
    [174] Officer C.B., Ryther J.H. The possible importance of silicon in marineeutrophication. Marine,1980.
    [175] Kilham P. A hypothesis concerning silica and the freshwater planktonic diatoms.Limnology and Oceanography,1971,16:10-18.
    [176] Schelske C.L., Eadie B.J., Krause G.L. Measured and predicted fluxes of biogenicsilica in Lake Michigan. Limnology and Oceanography,1984,29:99-110.
    [177] Martin-Jézéquel V., Hildebrand M., Brzezinski M.A. Silicon metabolism indiatoms: implications for growth. Journal of Phycology,2000,36:821-840.
    [178] Egge J.K. Are diatoms poor competitors at low phosphate concentrations? Journalof marine systems,1998,16:191-198.
    [179] Schelske C.L. Silica and nitrate depletion as related to rate of eutrophication inLakes Michigan, Huron, and Superior. In Coupling of land and water systems.New York: Springer Verlag,1975.
    [180] Brussaard C.P.D., Noordeloos A.M., Riegman R. Autolysis kinetics of the marinediatom Ditylum brightwellii (Bacillariophyceae) under nitrogen and phosphoruslimitation and starvation. Journal of Phycology,1997,33:980-987.
    [181] Parslow J.S., Harrison P.J., Thompson P.A. Saturated uptake kinetics: transientresponse of the marine diatom Thalassiosira pseudonana to ammonium, nitrate,silicate or phosphate starvation. Marine Biology,1984,83:51-59.
    [182] Harrison P.J., Thompson P.A., Calderwood G.S. Effects of nutrient and lightlimitation on the biochemical composition of phytoplankton. Journal of AppliedPhycology,1990,2:45-56.
    [183] Fiala M., Semeneh M., Oriol L. Size-fractionated phytoplankton biomass andspecies composition in the Indian sector of the Southern Ocean during australsummer. Journal of marine systems,1998,17:179-194.
    [184] Higashi Y., Seki H. Ecological adaptation and acclimatization of natural freshwaterphytoplankters with a nutrient gradient. Environmental Pollution,2000,109:311-320.
    [185] Lewitus A., Caron D., Miller K. Effect of light and glycerol on the organization ofthe photosynthetic apparatus in the facultative heterotroph Pyrenomonas salina(Cryptophyceae). Journal of phycology,1991,27:578-587.
    [186] Gervais F. Light-dependent growth, dark survival, and glucose uptake bycryptophytes isolated from a freshwater chemocline. Journal of phycology,1997,33:18-25.
    [187] Cauwet G. DOM in the coastal zone. In: Hansell DA, ed. Biogeochemistry ofMarine Dissolved Organic Matter. California: Academic Press,2002.
    [188] Giroldo D., Vieira A.A.H. Assimilation of14C in a tropical strain of Cryptomonasobovata (Cryptophyceae) exposed to several irradiances. Journal of planktonresearch,1991,21:1911-1921.
    [189] Barone R., Naselli-Flores L. Distribution and seasonal dynamics of Cryptomonadsin Sicilian water bodies. Hydrobiologia,2003,502:325-329.
    [190]饶钦止.五里湖1951年湖泊学调查:三、浮游植物.水生生物集刊,1961,1:74-92.
    [191] Jensen J.P., Jeppesen E., Olrik K., et al. Impact of Nutrients and Physical Factorson the Shift from Cyanobacterial to Chlorophyte Dominance in Shallow DanishLakes. Canadian Jouranl of Fisheries and Aquatic Sciences,1994,51:1692-1699.
    [192] Olive J.H., Karn B.P. Trophic assessment of ten publicly-owned northeastern Ohiolakes. The Ohio Journal of Science,1980,80:223-231.
    [193]秦伯强,胡维平,陈伟民.太湖水环境演化过程与机理.北京:科学出版社,2004.
    [194]李江,金相灿,姜霞等.太湖不同营养水平湖区沉积物理化性质和磷的垂向变化.环境科学研究,2007,20(4):64-69.
    [195]蔡永久,龚志军,秦伯强.太湖大型底栖动物群落结构及多样性.生物多样性,2010,18(1):50-59.
    [196]中国科学院南京地理与湖泊研究所.太湖梅梁湾2007年蓝藻水华形成及取水口污水团成因分析与应急措施建议.湖泊科学,2007,19(4):357-358.
    [197]宋晓兰,刘正文,潘宏凯等.太湖梅梁湾与五里湖浮游植物群落的比较.湖泊科学,2007,19(6):643-651.
    [198] Smith S.V., Hollibaugh J.T. Coastal metabolism and the oceanic organic carbonbalance. Reviews of Geophysics,1993,3:75-89.
    [199] Del Giorgio P.A., Peters R.H. Patterns in planktonic P:R ratios in lakes: influenceof lake trophy and dissolved organic carbon. Limnology and Oceanography,1994,39:772-787.
    [200] Duarte C.M., Agustí S. The CO2balance of unproductive aquatic ecosystems.Science,1998,281:234-236.
    [201] Caffrey J.M. Factors controlling net ecosystem metabolism in U.S. estuaries.Estuaries,2004,27:90-101.
    [202] Dodds W.K., Cole J.J. Expanding the concept of trophic state in aquaticecosystems: it's not just the autotrophs. Aquatic Sciences,2007,69:427-439.
    [203] Odum H.T. Primary production in flowing waters. Limnology and Oceanograohy,1956,1:112-117.
    [204] Cole J.J., Caraco N.F., Kling G.W., et al. Carbon dioxide supersaturation in thesurface waters of lakes. Science,1994,265:1568-1570.
    [205] Carignan R., Planas D., Vis C. Planktonic production and respiration inoligotrophic Shield lakes. Limnology and Oceanography,2000,45:189-199.
    [206] Depew D., Smith R., Guildford S. Production and respiration in Lake Erieplankton communities. Journal of Great Lakes Research,2006,32:817-831.
    [207] Marie-Helene F., Richard C., Christiane H. Influence of diel cycles of respiration,chlorophyll, and photosynthetic parameters on the summer metabolic balance oftemperate lakes and rivers. Canadian Journal of Fisheries and Aquatic Sciences,2009,66:1048-1058.
    [208] Urban N.R., Apul D.S., Auer M.T. Community respiration rates in Lake Superior.Journal of Great Lakes Research,2005,30:230-244.
    [209] Chang W.Y.B. Large lakes of China. Journal of Great Lakes Research,1987,13:235-249.
    [210] Hanson P.C., Bade D.L., Carpenter S.R. Lake metabolism: relationship withdissolved organic carbon and phosphorus. Limnology and Oceanography,2003,48:1112-1119.
    [211] Blight S.P., Bentley T.L., Lefevre D., et al. Phasing of autotrophic andheterotrophic plankton metabolism in a temperate coastal ecosystem. Marineecology progress series,1995,128:61-75.
    [212] Del Giorgio P.A., Cole J.J., Caraco N.F., et al. Linking planktonic biomass andmetabolism to net gas fluxes in northern temperate lakes. Ecology,1999,80:1422-1431.
    [213] Huang Y.P., Fan C.X., Pu P.M., et al. The aquatic environment and pollutioncontrol in Lake Taihu. Beijing: Chinese Science and Technology Press,2001:1-367(in Chinese).
    [214] Dokulil M.T. Environmental control of phytoplankton productivity in turbulentturbid systems. Hydrobiologia,1994,289:65-72.
    [215] Jansson M., Bergstr m A.K., Blomqvist P., et al. Allochthonous organic carbonand phytoplankton/bacterioplankton production relationships in lakes. Ecology,2000,81:3250-3255.
    [216] Karlsson J., Jansson M., Jonsson A. Similar relationships between primary andbacterial production in clearwater and humic lakes. Ecology,2002,83:2902-2910.
    [217] Smith E.M., Kemp W.M. Size structure and the production/respiration balance in acoastal plankton community. limnology and Oceanograohy,2001,46:473-485.
    [218]钱奎梅,陈宇炜.太湖浮游生物分尺度呼吸率研究.中国海洋湖沼学会藻类学分会第七届会员大会暨第十四次学术讨论会论文摘要.2007.
    [219] Cotner J.B., Biddanda B.A. Small players, large role: microbial influence onbiogeochemical processes in pelagic aquatic ecosystems. Ecosystems2002,5:105-121.
    [220] Del Giorgio P.A., Cole J.J., Cimbleris A. Respiration rates in bacteria exceedphytoplankton production in unproductive aquatic systems. Nature,1997,385:148-151.
    [221] Cole J.J., Pace M.L., Carpenter S.R., et al. Persistence of net heterotrophy in lakesduring nutrient addition and food web manipulations. Limnology andOceanography,2000,45:1718-1730.
    [222] Prairie Y.T., Bird D.F., Cole J.J. The summer metabolic balance in the epilimnionof south eastern Quebec lakes. Limnology and Oceanograohy,2002,47:316-321.
    [223] Waiser M.J., Robarts R.D. Net heterotrophy in productive prairie wetlands withhigh DOC concentrations. Aquat Microb Ecol,2004,34:279-290.
    [224] Zhang Y.L., Qin B.Q., Chen W.M., et al. A preliminary study of chromophoricdissolved organic matter (CDOM) in Lake Taihu, a shallow subtropical lake inChina. Acta hydrochimica et hydrobiologica,2005,33:315-323.
    [225] Herczeg A.L. A stable carbon isotope study dissolved inorganic carbon cycling in asoftwater lake. Biogeochemistry,1987,4:231-263.
    [226] Fan C.X., Ford P.W., Hu W.P., et al. Divergence of carbon dioxide fluxes indifferent trophic areas of Lake Taihu, China. Journal of Environmental Sciences,2003,15:433-442.
    [227] Stumm W., Morgan J.J. Aquatic Chemistry,3nd ed. Wiley,1996.
    [228] Robinson C. Plankton gross production and respiration in the shallow waterhydrothermal systems of Milos, Aegean Sea. Journal of Plankton Research,2000,22:887-906.
    [229] Cole J.J., Caraco N.F., Peierla B.L. Can phytoplankton maintain a positive carbonbalance in a turbid, freshwater, tidal estuary? Limnology and Oceanography,1992,37:1608-1617.
    [230] Findlay S., Pace M.L., Lints D., et al. Weak coupling of bacterial and algaeproduction in a heterotrophic ecosystem: the Hudson River estuary. Limnology andOceanography,1991,36:268-278.
    [231] Dokulil M.T. Assessment of components controlling phytoplankton photosynthesisand bacterioplankton production in a shallow, alkaline, turbid lake (Neusiedler See,Austria). Internationale Revue der gesamten Hydrobiologie,1984,69:679-727.
    [232] Berman T., Parparov A., Yacobi Y.Z. Planktonic community production andrespiration and the impact of bacteria on carbon cycling in the photic zone of LakeKinneret. Aquat Microb Ecol,2004,34:43-55.
    [233] Caraco N.F., Cole J.J., Raymond P.A., et al. Zebra mussel invasion in a large,turbid river: phytoplankton response to increased grazing. Ecology,1997,78:588-602.
    [234] Jeppesen E., S ndergaard M., Sortkj r O., et al. Interactions betweenphytoplankton, zooplankton and fish in a shallow, hypertrophic lake: a study ofphytoplankton collapses in Lake S byg rd, Denmark. Hydrobiologia,1990,191:149-164.
    [235] Jeppesen E., Sortkj r O., S ndergaard M., et al. Impact of a trophic cascade onheterotrophic bacterioplankton production in two shallow fish manipulated lakes.Arch Hydrobiol Beih Ergebn Limnol1992,37:219-231.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700