用户名: 密码: 验证码:
干旱区土壤盐渍化遥感监测与预警网络传输系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤盐渍化是干旱半干旱地区土地资源退化的主要形式之一。目前,在开发和利用土地和水资源的过程中,特别是新疆等干旱和半干旱地区,土壤盐渍化问题仍然非常突出,是必须重视的关键问题。近年来国内外大量实践表明,利用遥感技术监测土壤盐渍化不仅省时、省力,而且具有快速、宏观、动态等特点,具有其他手段不可替代的优越性。所以利用遥感技术监测盐渍化土壤的性质、而积、程度、地理分布、时空变化及其治理、防止扩散等工作具有重大意义。
     当前,国内外区域尺度土壤盐渍化遥感监测应用已趋于主流,但各种信息提取方法结果不确定性较强,其通用性及定量化并不令人满意。同时,目前土壤盐渍化遥感监测的各种研究结果及决策方案等信息的数字化、智能化、计算机决策自动化技术基础研究比较薄弱,还存在着传输时效差、传播不畅、信息覆盖面有限、受各种制约条件限制等问题。
     本文针对以上科学问题,首先,利用时间序列遥感影像和野外调查数据,通过分析土壤盐渍化程度与地表参数之间的定量关系;提出综合反映盐渍化土壤生物物理特征的指数—盐渍化遥感监测指数SDI;提出了基于遥感影像融合的盐渍地信息提取方法;提出面向对象的土壤盐渍化信息提取方法。其次,分析土壤盐渍化时空演变、预测和预警等问题,对研究区域的土壤盐渍化情况进行评价。最后,利用计算网络和Web GIS技术开发土壤盐渍化多源遥感监测与预警网络传输系统。主要结论有:
     (1)利用面向对象方法的盐渍地信息提取总体精度为89.38%,较传统方法提高8.24%; KAPPA系数为0.88,较传统方法提高0.08。该信息提取方法能实现较为精确的盐渍地信息提取,在高空间分辨率遥感影像盐渍地信息提取中具有一定的优势。(2)与HIS, PCA, Gram-Schmid等传统的影像融合方法相比,WAVELET(小波)融合方法不仅能更好地保持影像光谱扭曲最小,而且能提高空间分辨率。在影像信息熵、清晰度等方面都表现更好,这对盐渍地信息的提取和分类是非常有利的;基于小波融合方法的影像分类相对于单纯的ALOS多光谱影像分类精度而言,分类精度有了一定的提高(提高5%),因此它必将在实际中得到更广泛的应用
     (3)本文选取归一化植被指数(NDVI)和地表反照率(Albedo)等两个地表参数作为揭示土壤盐渍化发生过程和程度的重要参数,并对盐渍化土壤在NDVI-Albedo二维特征空间的分布规律进行相关性分析发现盐渍化土壤在此空间上具有较显著的线性分布规律特征,因此提出了综合反映盐渍化土壤生物物理特征的遥感监测指数(Soil Detection Index,SDI)。由于所选取的指标简单易懂、易于获取,具有明确的生物物理意义,因此该模型比较客观地反映了盐渍化土壤地表覆盖、水热组合及其变化情况,有助于综合分析土壤盐渍化发生的过程和对其进行遥感监测。
     (4)对研究区域从1989年到2010年,通过各类地物的相互转化,动态度以及重心偏移进行定量的分析,从而揭示21a间的土壤盐渍化的时空变化情况。①1989—2001年,各类地物面积呈现五增二减的趋势:耕地、林地、中度盐渍地、水体和其他均有所增加;而轻度盐渍地和重度盐渍地有所减少;2001—2006年,呈现四增三减的趋势:耕地,轻度盐渍地,中度盐渍地和重度盐渍地均有所增加;林地、水体和其他均有所减少;2006—2010年,呈现四增三减的趋势:中度盐渍地,重度盐渍地、水体和其他均有所增加;耕地、林地、轻度盐渍地均有所减少。②通过Markov模型分析,结果表明:从2015年到2030年,耕地从原本占总面积的3.87%,降低至占总面积的2.98%。林地和轻度盐渍地所占总面积的比例也在逐年稳定降低。中度盐渍地、重度盐渍地、水体和其它占总面积的比例均逐步递增。尤其其它类(G)的增长比例最为显著,从2015年的440920hm2,显著增长到2030年的497440hm2,所占比例也完全吻合逐步增长的趋势。③随着时间的推移,各类地物的重心均有所偏移。其中水体的重心于1989—2001年间向北迁移的距离最远,为23.12km;同期重度盐渍地重心迁移距离次之,为22.04km。林地的重心于1989—-2001年间逐年向西南方向迁移,并且迁移的距离逐年增大,中度盐渍地重心总体向西北方向偏移。
     (5)研究区中的盐渍化土壤预警主要以中警、轻警为主,其中重警区域面积达到总面积的15%,主要在库车河下游东南部一带分布;中度警区域面积为总面积的31%,主要在塔里木河的北部和渭干河下游一带分布;轻警区域则占总面积的30%,分布在洪冲积扇下部、库车河两岸和塔里木河灌区;不需要警戒的区域面积较大,占研究区总面积的35%,包括洪冲积扇下部和渭干河、库车河中游的平原地区。从整个研究区来看,盐渍化的警区的分布呈以下特点,一是盐渍化的中警、重警区域呈块状分布,分布的区域较为集中,而轻警区域呈片状或者斑点状断续分布。二是盐渍化预警等级呈现出北部地区高于南部地区,东部地区高于西部地区的趋势。
     (6)给出了土壤盐渍化遥感监测和预测、预警结果的网络发布技术及流程。可视化显示主要实现了在Web GIS支持下的远程土壤盐渍化信息在Internet上快捷的数据发布、地图浏览、历史数据管理、空间数据和属性数据双向定位查询、空间分析、评价等基本功能。该系统具有界面清晰、操作方便、实用性强和功能强大等特点,加强了土壤盐渍化信息资源的计算机管理水平。
Soil salinization is one of the land degradation types in arid and semi arid regions. The global extent of primary salt-affected soils is about955M ha, while secondary salinization affects some77M ha, with58%of these in irrigated areas. The damage of soil salinization to the economy, environment and agricultural ecological system is concerned by some scholars year by year. This requires careful monitoring of the soil salinity status and variation to curb degradation trends, and secure sustainable land use and management. It is very important to study the quality, the scope, the area, the distribution, the dynamic change and the degree of saline soils. The combination of remote sensing with some traditional methods has some important meaning for studying the characteristics, areas, degree, distribution, time and space variation, management and protecting from enlarging of soil salinization. This study aiming at the problems mentioned above, firstly, using time sequence remote sensing image and field measured data, analyze the quantify relationship between the salinization degree and land surface parameters, propose a new index-salinization detecting index (SDI) which can comprehensively reflect salinized soil biophysical features; point out salinized soil information extracting method which based on remote sensing image fusion; establish object-oriented soil salinization information extracting method. Secondly, analyze the problems of soil salinization time and space evolution, early warning and alarming,, evaluate the soil salinization situation at the study area. At the end, using computer network and Web GIS techniques, develop monitoring of the soil salinization using remote sensing and early warning network transmission system.
     (1) The object-oriented classification method was used to extract soil salinization information from the ALOS images, and the results were compared with the traditional information extraction method. The results show that the overall accuracy was89.38%, with a kappa coefficient value of0.88of this method. And the overall accuracy and kappa coefficient value were increased8.24%and0.08, respectively, compared with the traditional method; the object-oriented method is superior to traditional method in high resolution remote sensing information extraction.
     (2) The ALOS Panchromatic image and Multi-spectral images are selected for the image fusion method, including HIS, PCA, Gram-Schmidt and Wavelet. The performance of each method was analysed by qualitatively and quantitatively.Also supervised classification method used to extract the soil salinization Information from multispectral images and fused images respectively. The results show that the Wavelet fusion method can provide more information, higher spatial resolution and higher classification resultsis accuracy compared with multi-spectral images.It is most effective image fusion method for monitoring the salinized soil, an advantage over the common data fution methods such as HIS, PCA and Gram-Schmidt.
     (3) The relationship between the salinization degree and land surface parameters such as NDVI and albedo, was analyzed quantitatively, using Landsat ETM+and field measured data.The salinization detecion index (SDI) is developed.
     (4) Using4temporal images combined with field survey data. With the application of Remote Sensing and Geographic Information Systems, classified statistic and LUCC transform matrix were acquired. In the period from1989to2001, the areas of farmland,woodland, moderate saline land, water and the other (Gobi, sand and clay, etc.) have increased; slight saline land and heavy saline land has reduced. In the period from2001to2006, the areas of slight saline land, moderate saline land and heavy saline land have increased; the other types of land use/covers have reduced. In the period from2006to2010, the areas of moderate saline land, heavy saline land, water and the other have increased; the other types of land use/covers have reduced; As time went by, the gravity center of every type of land use/covers has changed. The farthest distance is the change of gravity center of water between1989and2001, which is23.12km. At the same period, the distance of the gravity center of heavy saline land moved to the northwest is smaller than that of water, which is22.04km. The gravity center of woodland moved to the southwest, and the transferred distances increased year by year. The gravity center of moderately and slightly saline land in essence transferred to northwest during these21years.
     (5) Under several important principles guidance, using Web GIS technique, the salinization early warning system was made in research area. The system development by the plat-form of Arc GIS server, SQL DBMS, combined with Net. This is very important for decision making for the relevant department.
引文
[1]Graciela mattemicht,J.alfred zinck. Remote Sensing of soil salinization-impact on land Management [M]. New York:CRC press,2008.
    [2]杨劲松.中国盐渍土研究的发展历程与展望[J].土壤学报,2008,45(5):837-846.
    [3]田长彦,周宏飞,刘国庆.21世纪新疆土壤盐渍化调控与农业持续发展研究建议[J].干旱区地理,2006,23:178-181.
    [4]许志坤.新疆盐渍土的形成、分类、特点和利用改良[M].国际盐渍土改良学术讨论会论文集,1985,109-112.
    [5]木合塔尔·吐尔洪,木尼热·阿布都克力木,西崎·泰.新疆南部地区盐渍化土壤的分布及性质特征[J]. 环境科学与技术,2008,31(40):22-27.
    [6]翁永玲.土壤盐渍化遥感应用研究进展[J].地理科学,2006,26(3):371-372.
    [7]亢庆,于嵘,张增祥等.土壤盐碱化遥感应用研究进展[J].遥感技术与应用,2005,20(4):447-455.
    [8]牛宝茹.塔里木河上游表土积盐量遥感信息提取研究[J].土壤学报,2005,42(4):674-677.吴加敏,姚建华,张永庭.银川平原土壤盐渍化与中低产田遥感应用研究[J].遥感学报,2007,11(3):413-419.
    [9]P.garci'a rodri'guez, M e. perez gonzalez,A. guerra zaballos. Mapping of salt-affected soils using TM images [J]. International Journal of Remote Sensing,2007,28 (12) 2713-2722.
    [10]Dwivedi, R.S., Ramana, K.V., Thammappa, S.S., and Singh, A.N. Mapping salt-affected soils from IRS-1C LISS-III and PAN data. Photogrammetric Engineering and Remote Sensing [J], 2001,67:1167-1175.
    [11]Farifteh, J., Farshad, A., and George, R.J.2006. Assessing salt-affected soil using remote sensing, solute modelling and geophysics. Geoderma 130:191-206.
    [12]Farifteh, J., Van der Meer, F., Atzberger,et,all. Quantitative analysis of salt-affected soil reflectance spectra:A comparison of two adaptive methods (PLSR and ANN).Remote Sensing of Environment [J].2007,100:59-78.
    [13]Dwivedi R.S. Monitoring and the study of the effects of image scale on delineation of salt-affected soils in the Indio-Gangetic Plains [J]. International Journal of Remote Sensing, 1992,13 (8):1527-1536.
    [14]Dwivedi R S, Rao B R M. The selection of the best possible Landsat TM band combination for delineating salt-affected soils[J]. International Journal of Remote Sensing,1992,13(11): 2051-2058.
    [15]Bao B R M, Sankar T R, Dwivedi R S, et al. Spectral Behavior of salt-affected soils[J]. International Journal of Remote Sensing,1995,16 (12):2125-2136.
    [16]Kalra N K, Joshi D C. Potentiality of Landsat, Spot and IRS satellite images, for recognition of salt-affected soils in Indian arid zone [J]. International Journal of Remote Sensing,1996, 17 (15):3001-3014.
    [17]Taylor G R, Mah A H, et al. Characterization of saline soils using Airbrone Radar Imagery [J]. Remote Sensing of Environment,1996,57 (3):127-142.
    [18]Rao B R M, Dwivedi R S, et al. An inventory of salt affected soils and waterlogged areas in the Nagarajunsagar canal command area of southern India, using space-borne multi-spectral data [J]. Land degradation and Development,1998, (9):357-367.
    [19]Dwivedi R S, Sreenivas K. Delineation of salt-affected soils and waterlogged areas in the Indo-Gangetic Plains using ERS-1C, LISS-Ⅲ[J]. International Journal of Remote Sensing, 1998,19 (14):2739-2751.
    [20]Dvived R S, Sreenivas K, Ramana K V, et al. An inventory of salt affected soils and waterlogged areas:A remote sensing approach [J]. International Journal of Remote Sensing, 1999,20 (8):1589-1599.
    [21]Dwivedi.R.S,Sreenivas.K. Image transforms as a tool for the study of soil salinity and alkalinity dynamics[J]. International Journal of Remote Sensing.1998,19 (4):605-619.
    [22]G.I. Metternicht. Fuzzy classification of JERS-1 SAR data an evaluation of its performance for soil salinity mapping[J]. Ecological Modelling,1998,111:61-74.
    [23]Dehaan R L,Taylor G R, Field-derived spectra of salinized soils and vegetation as indicators of irrigation-induced soil salinization[J].Remote Sensing of Environment,2002, (80):406-418.
    [24]Silvestri S Marani M, Settl.J etal. Salt marsh vegetation radiometry Data analysis and scaling[J]. Remote Sensing of Environment,2002,80:473-482.
    [25]D. WANG, C. WILSON, M. C. SHANNON. Interpretation of salinity and irrigation effects on soybean canopy reflectance in visible and near infrared spectrum domain [J]. International Journal of Remote Sensing,2002,23 (5):811-824.
    [26]Bui E N, Henderson B L.Vegetation indicators of salinity in northern Queensland [J]. Austral Ecology,2003, (28):539-552.
    [27]Fouad AI-Khaier Soil Salinity Detection using satellite remote sensing[M]. Master's thesis International institute for Geo-information science and earth observation, enschede, the Nether lands,2003.3.
    [28]Dregne H E. Desertification of arid lands.New York:Harwood Academic Publishers,1983
    [29]Hisao N. Sensitivity and stability of flow networks. Ecological Modeling,1992,62: 123-133
    [30]Clemente R S,Prasher SO, Bonnell R. Application of pestfade to simulate salt movement in soils[J]. Canadian Water Resources Journal,1997,22 (2):167-181.
    [31]Molly E.Brown.Famine Early Warning Systems and Remote Sensing Data[M].New York: CRC press,2008.
    [32]A.A. Paulo, E. Ferreira, Coelho et al.Drought class transition analysis throughMarkov and Loglinear models,an approach to early warning[J]. Agricultural Water Management.77, (2005):59-81.
    [33]Luca Salvati,Sofia Bajocco.Land sensitivity to desertification across Italy:Past,present,and future [J]. Applied Geography,2011, (31):223-231.
    [34]Monia Santini,et all A multi-component GIS framework for desertification risk assessment by an integrated index[J]. Applied Geography,2010, (30):394-415.
    [35]Amrita G deSoyza,Walter G.Whitford, Jeffrey E. Herrick,Early warning indicators of desertification:examplesof tests in the ChihuahuanDesert[J].Journal of Arid Environments,1998 (39):101-112.
    [36]曾志远.卫星图像土壤类型自动识别与制图研究:计算机分类及其结果的光谱学分析[J].土壤学报,1984,21(2):183-193.
    [37]戴昌达,扬瑜,石晓日.黄淮海平原地产土壤的遥感清查[J].环境遥感,1986,1(2):81-91.
    [38]王杰生,戴昌达,胡德永.土地利用变化的卫星遥感监测—以河北省南皮县为例[J].环境遥感,1989,4(4):243-248.
    [39]王西川.豫东平原盐渍土的遥感分析[J].遥感信息,1992,(4) :24-27.
    [40]曾志远.卫星图像土壤类型自动识别与制图研究:II自动识别结果的成图及其与常规土壤土的比较[J].土壤学报,1985,22(3):265-273.
    [41]张恒云,尚淑招.NOAA. AVNRR资料在监测土壤盐渍化程度中的应用[J].遥感信息,1992(1)24-26.
    [42]彭望琮,李天杰.TM数据的Kauth-Thomas变换在盐渍土分析中的作用-以阳高盆地为例[J].环境遥感,1989,4(3):183-190.
    [43]骆玉霞,陈焕伟.GIS支持下的图像土壤盐渍化分级[J].遥感信息,2000,(4):12-15.
    [44]刘庆生,骆剑承,刘高焕.资源一号卫星数据在黄河三角洲地区的应用潜力初探[J].地球信息科学,2000,2(2):56-57.
    [45]关元秀,刘高焕,刘庆生,等.黄河三角洲盐碱地遥感调查研究[J].遥感学报,2001,5(1):46-52.
    [46]赵庚星,窦益湘,田文新,等.卫星遥感影象中耕地信息的自动提取方法研究[J].地理科学,2001,21(4): 224-229.
    [47]张定祥,刘顺喜,尤淑撑,等.基于机载成像光谱数据的宜兴市十地利用/土地覆盖分类方法对比研究[J].地理科学,2004,24(2):193-198.
    [48]许迪,王少丽.利用NDVI指数识别作物及土壤盐碱分布的应用研究[J].灌溉排水学报,2003,22(6):5-8.
    [49]刘志明,晏明,何艳芬.吉林省西部土地盐碱化研究[J].资源科学,2004,26(5):111-116.
    [50]李晓燕,张树文.吉林省大庆市近50年土地盐碱化时空动态及成因分析[J].资源科学,2005,27(3):92-97.
    [51]塔西甫拉提·特依拜,张飞,赵睿,等.新疆干旱区土地盐渍化信息提取及实证分析[J].土壤通报,2007,38(4):625-630.
    [52]何祺胜,塔西甫拉提·特依拜,丁建丽.基于决策树方法的干旱区盐渍地信息提取研究—以渭干河-库车河三角洲绿洲为例[J].资源科学,2006,28(6):134-140.
    [53]江红南.基于3S技术的干旱区土壤盐渍化时空演变研究[D].新疆大学硕士论文,2007.
    [54]江红南,塔西甫拉提·特依拜,徐佑成,等.于田绿洲土壤盐渍化遥感监测研究[J].干旱区研究,2007,24(2):168-173.
    [55]买买提·沙吾提,丁建丽,塔西甫拉提·特依拜.多源信息融合技术在干旱区盐渍地信息提取中的应用研究[J].资源科学,2008,30(5):792-800.
    [56]李海涛,P. Brunner,李文鹏等.ASTER遥感影像数据在土壤盐渍化评价中的应用[J]. 水文地质工程地质,2006,5(1):75-79.
    [57]关文彬,谢春华,孙保平,等.荒漠化危害预警指标体系框架研究[J].北京林业大学学报,2001,23(1):442-247.
    [58]傅伯杰.区域生态环境预警的原理与方法[J].资源开发与保护,1991,7(3):138-141.
    [59]王熙章,吴薇,姚发芬.沙漠化灾害监测评价信息据分类编码研究[J].中国沙漠,1994,14(1): 41-44.
    [60]汤洁,卞建民,林年丰,等.GIS-PModflow联合系统在松嫩平原西部潜水环境预警中的应用[J].水科学进展,2006,17(4):483-489.
    [61]王少丽,杨继富,李杰,等.新疆盐渍化灌区水盐平衡现状及对策[J].中国农村水利水电,2006,(4):12-15.
    [62]李凤全,吴樟荣. 半干旱地区土地盐碱化预警研究[J].水土保持通报,2002,22(1):56-59.
    [63]李凤全,卞建民,张殿发.半干旱地区土壤盐碱化预报研究—以吉林省西部洮儿河流域为例[J].水土保持通报,2000,20(2):1-4.
    [64]邵芸,吕远.含水含盐土壤的微波介电特性分析研究[J].遥感学报,2002,(6):416-423.
    [65]胡庆荣.含水含盐土壤介电特性试验研究及对雷达图像的相应分析[D].北京:遥感应用研究所,2003.
    [66]Geoffrey R.Taylor,Abdul lah H.Mah.Characterization of saline soils using airborne radar Imagery [J].Remote Sens. Eviron,1996,57:127-142.
    [67]D. Bel 1,C. Menses,W. Ahmad,et al. The application of dielectric retrieval algorithms for mapping soil salinity in a tropical coastal environment using airborne polarimetric SAR[J].Remote Sensing of Environment,2001,75:375-384.
    [68]Fouad Al-Khaier.Soil Salinity Detection Using Satellite Remote Sensing [J]. International Institute ForGeo Information Science And Earth Observation Enschede,2003.
    [69]满苏尔·沙比提,热合漫·玉苏甫,阿布拉江·苏莱曼.渭干河-库车河三角洲绿洲土地资源合理利用对策分析[J].干旱区资源与环境,2004,18(1):111-115.
    [70]满苏尔·沙比提,陈冬花.渭干河-库车河三角洲绿洲形成演变和可持续发展研究[J].资源科学,2005,27(6):118-124.
    [71]库车县水利志编纂委员会编.库布县水利志[M].乌鲁木齐:新疆科技卫生出版社,1993.22-23.
    [72]郝毓灵.新疆绿洲[M].乌鲁木齐:新疆人民出版社,2000,358-359.
    [73]张飞.干旱区典型绿洲盐渍地地物光谱特征研究[D].新疆大学博士学位论文,2010.
    [74]苏里坦,宋郁东,张展羽.新疆渭干河流域地下含盐量的时空变异特征[J].地理学报,2003,58(6):855-862.
    [75]陈小兵,杨劲松,杨朝晖等.渭干河灌区灌排管理与水盐平衡研究[J].农业工程学报,2008,24(4):59-61.
    [76]满苏尔·沙比提,帕尔哈提·艾孜木,玉素浦江.渭干河—库车河三角洲绿洲近50a来生态环境变化特征及防治对策[J].干旱区资源与环境,2004,18(4):14-16.
    [77]毛炜峄,魏顺芝,谭艳梅,王书峰.渭干河流域上游地表水水质变化分析[J].干旱区研究,2006,23(3):392-398.
    [78]新疆农科院农业现代化研究所·库车、沙雅、新和、拜城区域水资源开发与供需平衡[R].1990.16-18.
    [79]新疆维吾尔自治区水利厅和新疆水利学会.新疆河流水文水资源[M].乌鲁木齐:新疆科技卫生出版社,1999.
    [80]杨德刚,许涛,李秀萍.新疆绿洲农业、农业产业结构调整方向与途径的重新审视[J].干旱区资源与环境,2002(4):1-8.
    [81]库车县、沙雅县和新和县土地利用总体规划.库车县、沙雅县和新和县人民政府,1999.
    [82]买买提·沙吾提,塔西甫拉提·特依拜,丁建丽,鹿岛薰. 基于遥感的渭干河库车河三角洲绿洲土地盐渍化监测及成因分析[J]. 地理科学,2011,31(8):976-981.
    [83]吐尔逊·艾山,塔西甫拉提·特依拜,买买提·沙吾提.基于BP神经网络的盐碱土盐分反演模型研究[J].环境污染与防治,2011,33(2):23-28,34.
    [84]ZHANG Fei,TASHPOLAT. Tiyip, Hsiang-te KUNG, DING Jian-li, MAMAT. Sawut. A Method of Soil Salinization Information Extraction with SVM Classfication Based on ICA and Texture Features[J]. Agricultural Science and Technology,2011,12(7):1046-1074.
    [85]塔西甫拉提·特依拜, 吐尔逊·艾山,海米提·司马义,等.土壤盐渍化遥感监测研究进展综述[J].新疆大学学报(自然科学版),200,25(1),1-7.
    [86]关元秀,王劲峰,刘高焕.黄河三角洲土地盐碱化遥感监测、预测和治理研究[D]. 中国科学院地理科学与资源研究所,博士学位论文,2001: 178-181.
    [87]霍东民,张景雄,张家柄.利用CBERS-1卫星数据进行盐碱地专题信息提取研究[J].国土资源遥感,2001,18(2):48-52.
    [88]王西川.豫东平原盐渍土的遥感分析[J].遥感信息,1992,10(4):24-27.
    [89]李海涛,P. Brunner,李文鹏,等.ASTER遥感影像数据在土壤盐渍化评价中的应用[J].水文地质工程地质,2006,5:75-80.
    [90]何祺胜.星载雷达图像在干旱区盐渍地信息提取中的应用研究[D].新疆大学,2007:17-19.
    [91]戴昌达,姜小光.遥感图像应用处理与分析[M].北京:清华大学出版社,2004.
    [92]肖鹏峰,刘顺喜,冯学智,等.基于中分辨率遥感图像的土地利用与覆被分类系统构建[J].遥感信息,2006,20‘(2):33-36
    [93]陈秋晓. 基于多特征的遥感影像分类方法[J].遥感学报,2004,8(5):239-245.
    [94][朱国宾.面向多分辨率层次结构的遥感影像分析方法[J].武汉大学学报,信息科学版,2003,28(3):315-320.
    [95]陈云浩,冯通,史培军,等.基于面向对象和规则的遥感影像分类研究[J].武汉大学学报信息科学版,2006,31(4):316-320.
    [96]陈忠.高分辨率遥感图像分类技术研究[D].北京:中国科学院遥感应用研究所,2006.
    [97]易文斌,唐宏,杨晋科.面向对象的灾害信息遥感提取框架及其应用[J].自然灾害学报.2009,18(5):154-460.
    [98]关元秀,程晓样.高分辨率卫星影像处理指南[M].北京:科学出版社,2008,142—221.
    [99]祝振江.基于面向对象分类法的高分辨率遥感影像矿山信息提取应用研究[J].北京:中国地质大硕士论文,2010年.
    [100]赵福军.遥感影像震害信息提取技术研究[D].北京:中国地震局工程力学研究所博士论文,2010年.
    [101]易文斌,唐宏,杨晋科.面向对象的灾害信息遥感提取框架及其应用[J].自然灾害学报,2009,18(5),55-86
    [102]高伟.基于特征知识库的遥感信息提取研究[D].北京:中国地质大学博士论文,2010年
    [103]王少华.基于多源遥感数据的矿山开发占地信息提取技术研究[D],北京:中国地质大硕士论文,2011年.
    [104]张俊,王宝山,张志强.面向对象的高空间分辨率影像分类研究[J].测绘信息与工程.2010,35(3):4-5
    [105]王鹏新,龚健雅.基于植被指数和土地表面温度的干旱监测模型[J].地球科学进展,2003,18:527-533.
    [106]Price J C. Using spatial context in satellite data to infer regional scale evapotranspiration [J]. IEEE Transactions on Geoscience and Remote Sensing,1990,28:940-948.
    [107]Brest Christopher L. Deriving surface albedo measurement form narrow band satellite data [J]. International journal of remote sensing,1987,8:351-367.
    [108]Carlson T N, Perry E M, Schmugge T J. Remote estimation of soil moisture availability and fractional vegetation cover for agricultural fields[J]. Agricultural and Forest Meteorology, 1990,52:45-69.
    [109]Ridd M. Exploring a V-I-S (vegetation-impervious surface-soil) odel for urban ecosystem analysis through remote sensing:comparative anatomy of cities[J]. International Journal of Remote Sensing,1995,16:2165-2185.
    [110]Carlson T N, Gillies R R, Schmugge T J. An interpretation of methodologies for indirect measurement of soil water content[J]. Agricultural and Forest Meteorology,1995,77: 191-205.
    [111]Gillies R R, Carlson T N. Thermal remote sensing of surface soil water content with partial vegetation cover for incorporation into climate models[J]. Journal of Applied Meteorology, 1995,34:745-756.
    [112]Moran M S, Rahman A F, Washbume J C, et al. Combining the Penman-Monteith equation with measurements of surface temperature and reflectance to estimate evaporation rates of semi-arid grassland [J]. Agricultural and Forest Meteorology,1996,80:87-109.
    [113]Sandholt I,Rasmussen K,Andersen J.A simple interpretation of the surface temperature/vegetation index space for assessment of soil moisture status[J]. Remote Sensing of Environment,2002,79:213-224.
    [114]Chen J H,Kan C E,Tan C H,et al. Use of spectral information for wetland evapotranspiration assessment[J]. Agricultural Water Management,2002,55:239-248.
    [115]Roerink G J,Su Z,Menenti M. S-SEBI:A simple remote sensing algorithm to estimate the surface energy balance[J]. Physicsand Chemistry of the Earth:Hydrology Oceans and Atmosphere,2000,25:147-157.
    [116]Sobrino J A.Gomez M,Jimenez-Munoz J,et al.A simple algorithm to estimate evapotranspiration from DAIS data:Application o the DAISEX campaigns[J]. Journal of Hydrology,2005,315:117-125.
    [117]詹志明,秦其明,阿布都瓦斯提·吾拉木,等.基于NIR-RED光谱特征空间的土壤水分监测方法[J]. 中国科学D辑地球科学,2006,36 (11):1020-1026.
    [118]Ghulam A, Qin Q, Zhan Z. Designing of the Perpendicular Drought Index (PDI) [J]. Environmental Geology,2007,52,1045-1052.
    [119]曾永年,向南平,冯兆东,等.Albedo-NDVI特征空间及沙漠化遥感监测指数研究.[J]地理科学,2006,26(1): 75-81.
    [120]哈学萍,丁建丽,塔西甫拉提·特依拜等.基于SI-Albedo特征空间的干旱区盐渍化土壤信息提取研究-以克里雅河流域绿洲[J].土壤学报,2009,46(3):381-390.
    [121]力华,柳钦火,邹杰,基于MODIS数据的长株潭地区NDBI和NDVI与地表温度的关系研究[J].地理科学,2009,29(20):262-267.
    [122]Liang. Narrow band to broadband conversions of land surface albedo:Algorithms[J].Remote Sensing of Environment,2001,76 (2):213-238.
    [123]徐青,张艳,邢帅,等.遥感影像融合与分辨率增强技术[M].北京:科学出版社,2007.
    [124]贾永红.多源遥感影像数据融合方法及其应用的研究[D].武汉:武汉大学,2001.
    [125]贾永红.多原遥感影像数据融合技术[M].北京:测绘出版社,2005:31-55.
    [126]吴见,彭道黎.基于面向对象的QuickBird影像退耕地树冠信息提取[J].光谱学与光谱分析,2010,30(9):2533-2536.
    [127]易文斌,蒋卫国,国巧真,等.基于ALOS数据的城市景观格局信息提取研究[J].遥感信息,2008,(4):33-35.
    [128]张海龙,蒋建军.SAR与TM影像融合及在BP神经网络分类中的应用[J].测绘学报,2006,35(3):230-241.
    [129]何祺胜.星载雷达图像在干旱区盐渍地信息提取中的应用研究[D].乌鲁木齐:新疆大学硕士学位论文,2007.
    [130]依力亚斯江·努尔麦麦提.雷达与TM图像融合及分类的土壤盐渍化信息遥感监测研究[D]. 乌鲁木齐:新疆大学硕士学位论文,2008.
    [131]张永生,巩丹超. 高分辨率遥感卫星应用[M].北京:科学出版社,2004.
    [132]翁永玲,田庆久.遥感数据融合方法分析与评价综述[J].遥感信息,2003,3:49-54.
    [133]康耀红.数据融合理论与应用[M].西安电子科技大学出版社,1997.
    [134]Pohl C,Van Genderen J L. Multisensor image fusion in remote sensing:concepts,methods and applications [J].International Journal of Remote Sensing,1998,19(5):823-854.
    [135]Hall David L.,Llinas James,An Introduction to Multi-sensor Data Fusion,Proceedings of IEEE,1997,85(1),6-23.
    [136]许民.高分辨率遥感影像融合方法研究及融合效果评价[D].兰州:兰大学硕士学位论文,2010.
    [137]郭雷,李晖晖,鲍永生.图像融合[M].北京:电子工业出版社2008.
    [138]章孝灿,黄智才,赵元洪.遥感数字图像处理[M].浙江: 浙江大学出版社,1997.9.
    [139]牛凌宇.多源遥感图像数据融合技术综述[J].空间电子技术,2005.30(8):276-281.
    [140]Liu J GSmoothing.filter-base dintensity modulation:a spetral Preserve image fusion teehnique forim proving spatial details [J].International Journal of Remote Sensing,2000,20(18):3641-3472.
    [141]胡召玲.多源多时相卫星遥感图像数据融合与应用研究[M].徐州:中国矿业大学出版社,2006
    [142]王广亮,李英成,曾钰,等.ALOS数据像素级融合方法比较研究[J].测绘科学,2008,33(6):121-124.
    [143]孙家柄,刘继琳,李军.多源遥感影像融合[J].遥感学报,1998,2(1):47-50.
    [144]张海龙,蒋建军. SAR与TM影像融合及在BP神经网络分类中的应用[J]. 测绘学报2006,35(3):230-241.
    [145]何春阳,史培军,陈晋,等.北京地区土地利用/覆盖变化研究[J].地理研究,2001,(6):679—687.
    [146]李凤全,吴樟荣.半干旱地区土地盐碱化预警研究—以吉林省西部土地盐碱化预警为例[J].水土保持通报,22(2):57-59.
    [147]刘敦利.基于栅格尺度的土地沙漠化预警模式研究[D].乌鲁木齐:新疆大学硕士论文,2010.
    [148]王雪梅.干旱区典型绿洲土壤盐渍化及其生态效应研究[D].乌鲁木齐:新疆大学博士论文,2010
    [149]何祺胜,塔西甫拉提·特依拜,丁建丽.基于决策树方法的干旱区盐渍地信息提取研究—以渭干河-库车河三角洲绿洲为例[J].资源科学,2006,28(6):134-140.
    [150]买买提·沙吾提,塔西甫拉提·特依拜,丁建丽,等.基于遥感的渭干河-库车河三角洲绿洲土地盐渍化监测及成因分析[J].地理科学,2011,31(8):976-981.
    [151]王宏卫.干旱区绿洲土壤盐渍化时空动态遥感分析及可持续发展研究-以渭干河-库车河三角洲绿洲为例[D],乌鲁木齐,新疆大学博士论文,2010.
    [152]李凤全,吴樟荣.半干旱地区土地盐碱化预警研究—以吉林省西部土地盐碱化预警为例[J].水土保持通报,2002,22(1):53-57.
    [153]李凤全,卞建民, 张殿发.半干旱地区土壤盐碱化预报研究-以吉林省西部洮儿河流域为例[J].水土保持通报,2000,22(1):1-5.
    [154]卞建民,汤洁,林年丰.松嫩平原西南部土地碱质荒漠化预警研究[J].环境科学研究,2001,14(6):47-49.
    [155]张东.浑善达克沙地荒漠化灾害预警指标体系的研究[D].北京:北京林业大学,2005.
    [156]徐建华.现代地理学中的数学方法[M].北京:高等教育出版社:2002,224-229.
    [157]王洲平.浙江省地质灾害现状及防治措施[J].灾害学,2001,164):63-66.
    [158]殷坤龙.滑坡灾害预测预报[M].北京:中国地质大学出版社,2004.
    [159]黄崇福.自然灾害风险评价理论与实践[M].北京:科学出版社,2005.
    [160]Pradhan B,Singh R P,Buehroithner M F. Estimation of stress and its use in evaluation of landslide Prone region susing remote sensing data[J].Advance in Spaee Researeh, 2005:1-12.
    [161]文宝萍.滑坡预测预报研究现状与发展趋势[J].地学前缘,1996,3(2):86-92.
    [162]杨忠.边坡变形监测与滑坡预报[J].露天采矿技术,2003(1):17.
    [163]王俊卿,刘振红,石守亮.东苗家滑坡体变形监测系统设计[J].华北水利水电学报,2004,25(4):52-54.
    [164]陈正江,汤国安,任晓东.地理信息系统设计与开发[M].北京:科学出版社,2005.
    [165]刘光媛,聂庆华,赵明.基于Arc IMS开发Web GIS的农业环境信息系统研究[J].地理空间信息,2007,5(1):40-43.
    [166]文斌马,新辉,基于WebGIS的流域环境信息系统设计与开发-以江苏省为例[J].西北大学学报(自然科学版),2002,32(3):292-293
    [167]戴长雷,迟宝明,等.基于GIS的地下水信息管理系统分析[J].世界地质,2004(6):158-162.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700