用户名: 密码: 验证码:
南水北调东线泵站(群)运行的相关优化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南水北调工程是解决我国北方地区水资源严重短缺的重大举措,是关系到我国经济、社会可持续发展的重大水利基础设施建设项目。由于其输水线路长、扬程高、流量大,且涉及自然科学、社会科学等多个领域,是一项结构复杂、形式多样的多水源、多地区、多目标的高维复杂系统。工程分东、中、西三条线路,其中东线工程是我国水资源总体格局中的重要组成部分。从长江下游引水,基本沿京杭运河逐级提水北送,向黄淮海平原东部供水,终点天津。东线工程的实施,将促进地区经济发展和社会进步,有效扼制生态环境不断恶化的状况,改善人民生活质量,此外,东线工程疏浚和治理河道、湖泊,还将极大改善防洪、航运和生态环境条件,有着巨大的综合效益。南水北调东线一期工程设有13级泵站,总装机容量392.59MW,年运行时间一般为5000-6000h,年运行费用达9.8-11.8亿元。由于运行时间长,装机容量大,优化、高效运行对降低调水成本、实现工程良性运行至关重要。因此,采用现代决策理论的最新成果,结合工程管理决策的实际情况,对该跨流域调水系统运行开展优化运行研究,提出先进、实用的系统优化理论与方法,对提高复杂环境下工程运行优化决策质量(包括决策成果的精度、有效性、成本等)具有重要意义。
     目前,针对泵站(群)系统优化运行的相关研究大多对优化模型作了大量简化,且采用复杂系统理论研究较少,其成果不能充分利用大型泵机组的工况调节功能来进一步节省能耗、降低运行成本。本文提出了大系统分解-动态规划聚合等方法,对泵站多机组(淮安四站、淮阴三站)、并联泵站群(淮安一、二、四站,淮阴一、三站)、梯级泵站群(淮安一、二、四站~淮阴一、三站)开展了全面的研究,主要有以下几个方面:
     (1)考虑峰谷电价影响,系统针对泵站多机组、并联泵站群、梯级泵站群开展了全面的研究,提出了一整套优化运行理论方法。
     ①提出了大系统分解-动态规划聚合法,求解泵站多机组叶片全调节日优化运行数学模型,以淮安四站为工程实例,获得一系列日优化运行方案;并与采用动态规划逐次逼近法获得的优化成果进行比较分析。该方法可以解决安装不同型号泵机组或同型号各机组性能存在差异的泵站多机组日优化运行问题。
     ②采用大系统分解-动态规划聚合法,求解泵站多机组变频变速日优化运行数学模型,考虑变频装置效率随机组转速变化情况下,以淮阴三站为工程实例,获得一系列日优化运行方案。
     ③提出了大系统二级分级-动态规划聚合法,针对并联泵站群日优化运行问题,分别考虑站间相同调节方式、不同调节方式下,求解并联泵站群日优化运行数学模型,分别以淮安一、二、四站并联站群(叶片全调节优化运行)、淮阴一三站并联站群(淮阴一站叶片全调节优化运行,淮阴三站变频变速优化运行)为例,获得并联泵站群优化运行方案。该方法可以解决并联泵站群各站间不同调节方式、不同时段划分、及不同日均扬程下的日优化运行问题。
     ④采用并联泵站群优化运行与级间输水渠道一维非恒定流数值模拟(流量~水位关系)相结合的方法,针对梯级泵站群优化运行问题,初步提出了上下梯级泵站提水扬程与泵站优化运行相结合的综合优化方法。以淮安一、二、四站~淮阴
     三站梯级泵站群为例,获得了梯级泵站群优化运行方案。
     ⑤在泵站单机组日优化运行数学模型求解基础上,考虑峰谷电价影响,分别采用动态规划法和线性规划法,针对单机组叶片全调节日优化运行与定角恒速运行,开展了受潮汐影响的泵站最优开机时刻研究,分析了月内最优开机时刻的规律性分布。
     (2)提出的一整套泵站多机组叶片全调节日优化运行、泵站多机组变频变速日优化运行、并联泵站群同工况调节、不同工况调节日优化运行、梯级泵站群优化方案,丰富和发展了跨流域调水理论,获得的研究成果对南水北调东线大型泵站(群)优化运行具有较高的应用价值。
     (3)提出的大系统分解-动态规划聚合法、大系统二级分解-动态规划聚合法,对形如泵站多机组日优化运行数学模型、并联泵站群日优化运行数学模型的复杂非线性数学模型求解具有一定指导意义,丰富和发展了大系统理论。
The South-to-North Water Diversion Project is a great action for solving the serious shortage problem of water resources in northern China. Also it is an important construction project of water infrastructure related to the economic and social sustainable development of China. Because of the long water conveyance line, high lift, large flow, and involving multiple fields such as natural science and social science, the South-to-North Water Diversion Project is a high dimensional complex system with complex structures, various forms, multi-water resources, multi-areas and multi-objects. There are the Eastern Route, Middle Route and Western Route included in the South-to-North Water Diversion Project, in which the Eastern Route Project is an important part of general pattern of water resources in China. Raising water from downstream of yangtze river, the eastern route project transports the water resources northward through each stage of pumping stations for eastern Huang-Huai-Hai Plain with the destination of Tianjin City. The project implementation will improve the economic development and social progress of local areas, effectively restrain the continuous deterioration situation of ecological environment, by which to improve people's living quality. In addition, the dredging and regulation of rivers and lakes will greatly improve the conditions of flood prevention, shipping and ecological environment. Therefore, it has a significant comprehensive benefit. There are13stages of pumping stations with total installed capacity of392.59MW consisted in the first phase project of Eastern Route of South-to-North Water Diversion Project. Because of the yearly running time of5000-6000h, the annual operation cost reaches0.98-1.18billion yuan. It is important to take optimal and high efficient operation for reducing water transfer cost and healthy operation of project as a result of long time operation and large installed capacity. Therefore, by means of adopting the latest achievement of modern decision theories and combining with actual situation of project decision management, it is necessary for optimal operation study of interbasin water diversion system to propose advanced and practical theories and methods of system optimization, which has an important significance to improve the decision quality of optimal operation under complicated environment (such as the precision of decision achievements, effectiveness and operation cost).
     Currently, the relevant studies on optimal operations of pumping stations systems mostly take a lot of simplifications into the optimal models and adopt few complex system theories, which could not obtain further energy saving and lower operation cost carried out by working-condition adjusted function of large-scale pump units. This paper carried out systematic researchs on single pumping station (No.4Huai'an pumping station, No.3Huaiyin pumping station), parallel pumping stations (No.1,2,4Huai'an pumping stations, No.1,3Huaiyin pumping stations), multistage pumping stations (No1,2,4Huai'an~No.1,3Huaiyin pumping stations) based on the proposing decomposition-dynamic programming aggregation method, and following aspects were developed:
     (1) Considering peak-valley electricity prices, a series of optimal operation theories were systematically proposed after the comprehensive studies on single pumping station with multiple units, parallel pumping stations and multistage pumping stations being carried out.
     ①ecomposition-dynamic programming aggregation method for large-scale system was put forward to solve the mathematical model of optimal daily operation for single pumping station with adjustable-blade. After taking No.4Huai'an pumping station as a study case, a series of optimal daily operation schemes were obtained. The comparison and analysis were taken out according to the optimal achievements obtained by decomposition-dynamic programming aggregation method and dynamic programming with successive approximation. This method could solve the optimal operation issues for single pump station with different unit types or the same type with performance differences.
     ②ccording to the optimal mathematical model of daily variable speed operation with VFD, the decomposition-dynamic programming aggregation method was also applied to solve the model and to obtain a series of optimal daily operation schemes after No.3HuaiYin pumping station was used as a study case, in which the variable efficiency of frequency conversion device with the pump speed changing was under consideration.
     ③As for optimal daily operation issues for parallel pumping stations with the same and different working-condition adjective modes, two stages decomposition-dynamic programming aggregation method was proposed to solve the mathematical model of optimal daily operation for parallel pumping stations. With the consideration of peak-valley electricity prices, a series of optimal daily operation schemes were obtained after taking No.1,2,4Huai'an parallel pumping stations(optimal operation with adjustable-blade) and No.1,3Huaiyin parallel pumping stations(optimal operation with adjustable-blade for No.1and optimal variable speed operation with VFD for No.3) as study cases. This method could solve the optimal operation issues for parallel stations with various operation modes, time period divisions and average daily heads of each station.
     ④According to optimal operation issues for multistage pumping stations, with the combination of mathematical model of optimal operation for parallel pumping stations with one-dimensional numerical simulation of unsteady channel flow in water supply channel of interstages(the relationship between flow and head), the comprehensive optimization method with the combination of water pumping head in two stages pumping stations and optimal operation of pumping stations were proposed. A series of preliminary optimal daily operation schemes were obtained after taking No,1,2,4Huai'an parallel pumping stations-No.1,3Huaiyin parallel pumping stations as a study case.
     ⑤Based on mathematical model solution of daily optimal operation for single pump unit, with the peak-valley electricity price considered, according to the optimal daily operation of single pump unit with adjustable-blade and operation with fixed blade angle and constant speed, the dynamic programming method and linear programming were carried out to study the optimal start-up time of pumping station influenced by tidal levels, by which the regular distribution of optimal start-up time in a month was obtained.
     (2) The obtained optimal operation schemes for single pumping station with adjustable-blade, single pumping station with variable speed, parallel pumping stations with the same or different working-condition adjective modes and multistage pumping stations could enrich and develop the inter-basin water transfer theories, and has a great application value for optimal operation of large-scale pumping stations in Eastern Route of South-to-North Water Diversion Project.
     (3) The proposed decomposition-dynamic programming aggregation method and two stages decomposition-dynamic programming aggregation method has a general guiding significance for complex nonlinear models such as optimal daily operation model of single pumping station and parallel pumping stations, which could enrich and develop large-scale system theory.
引文
[1]徐元明.国外跨流域调水工程建设与管理综述[J].人民长江,1997,28(3):11-13.
    [2]杨立信.哈萨克斯坦额尔齐斯-卡拉干达运河调水工程[J].水利发展研究,2002,2(6):45-48.
    [3]#12
    [4]#12
    [5]#12
    [6]Qiun F J. Water transfers-Canadian style.Canada[J]. Water Resour.1981,6(1):64-76.
    [7]蔡敬荀等.美国西部跨流域调水与水资源开发情况[C].中国水利学会.国外水利水电考察报告.北京:水利电力出版社,1993:8-22.
    [8]美、加长距离调水工程规划与管理考察团.美国中央亚利桑那调水工程的规划与管理[C].水利部国际合作与科技司,水利部信息研究所,国(境)外水利水电考察与学习报告选编.北京:海洋出版社,2000:31-35.
    [9]鸟尔里·克库夫纳(刘东译).中东水的调配规划[J]水利水电快报,1993(17):16.
    [10]马小杰摘译.西班牙大型调水计划[J].水利水电快报,2002(8):20.
    [11]马元艇摘译.从法国向西班牙巴塞罗那输水计划[J].水利水电快报,2001(22):24.[12]法国至西班牙的调水方案[J].水利水电快报,1996(23):9.
    [13]Berghese B G.Sardar Sarovar Project Revalidated by Suppreme Court[J].International Journal of Water Resources Development,2001,17(1):79-88.
    [14]Jay Narayan Vyas. Large Dams and Sustainable Development: A case-study of the Sardar Sarovar Project, India[J]. International of Water Resources Development,2001,17(4):601-609.
    [15]Joshi M B.Operation of Sardar Sarovar Conveyance System[J],International Journal of Water Resources Development,2001,17(1):109-124.
    [16]李运辉,陈献耘,沈艳忱.印度萨达尔萨罗瓦调水工程[J].水利发展研究,2003,(5):49-52.
    [17]#12
    [18]李培蕾译.印度的水资源规划问题[J].水信息,2000(10):19-21.
    [19]赵纯厚,朱振宏,等.世界江河与大坝[M].北京:中国水利水电出版社,2000.
    [20]Monitoring environmental changes in the La Grande system[C].In:Poc. Study Group Seession Soc. d' Enerfie de la Baile Sames Montreal,1977:36.
    [21]杨立信.哈萨克斯坦额尔齐斯-卡拉干达运河调水工程[J].水利发展研究,2002,2(6):45-48.
    [22]梁宜,汪秀丽编译.世界各国水权制度[J].水利电力科技,2001(3-4):4-20.
    [23]Maurizio Aricari. Draft Article on the of International Watercourses Aricari by the International Law Commission:An Overview and some Remarks on Selected Issues[J]. Natural Resources Forum. 1997(3):167-179.
    [24]冯彦,何大明.国际河流的水权及其有效利用和保护研究[J].水科学进展,2003(1):124-128.
    [25]徐元明.国外跨流域调水工程建设与管理概述[J].人民长江,2001(3):28.
    [26]刘松深.关于跨流域调水工程建设管理体制的探讨[J].水利发展研究,2001(2):3-5.
    [27]Inter Basin Water Transfer. International Workshop on Interbasin Water Transfer[M]. UNESCO, Paris,1999(4):25-27.
    [28]Genereux, David P. Wood, Sharon J. Pringle, Catherine M.. Chemical tracing of interbasin groundwater transfer in the lowland rainforest of Costa Rica[J]. Journal of Hydrology,2002, 258(1-4):163-178.
    [29]Genereux, David. Comparison of naturally-occurring chloride and oxygen-18 as tracers of interbasin groundwater transfer in lowland rainforest, Costa Rica[J]. Journal of Hydrology,2004, 295(1-4):17-27.
    [30]#12
    [31]#12
    [32]#12
    [33]Aagard K, Coachman L.Diverting Soviet rivers to prevent flooding might defrost the Arctic-but what about the weather[J]. New Scientist,1985,67(957):13-17.
    [34]#12
    [35]#12
    [36]#12
    [37]#12
    [38]Gill G S, Gray E L, The California Water Plan and Its Critics, A Brief Review[C]. In:Seckler, D.California Water, A Study in Resource Management.University of California Press, CA.1971.
    [39]万咸涛,华用生.国外长距离调水灌溉对生态环境的影响[J].水资源保护,1994(1):25-29.
    [40]Afzal Muhammad. Farming in Pakistan[M]. Islamabad,1976.
    [41]Pakistan.Food and Agriculture Ministry of Information and Broadcasting/Govt. of Pakistan[M]. Islamabad,1981:52.
    [42]#12
    [43]迪克逊JA.一个跨流域调水工程范例的经济分析模式[J].水利水电快报,1987(19):1-7.
    [44]Harris C. The Urban Economics,1985:A Multiregional Multi-Industry Forecasting Model[M]. Lexington Books, Lexington, MA,1973.
    [45]#12
    [46]#12
    [47]#12
    [48]Baltimore, Johns Hopkins Press.Interbasin transfers of water: Economic issues and impacts[J]. Journal of Hydrology,1972,15(4):341-342.
    [49]Bruk, Stevan. Interbasin water transfer: Rapporteur:Stevan Bruk. Participants:110[J]. Water Policy,2001,3(1):167-169.
    [50]Feldman. David Lewis Tennessee's Inter-Basin Water Transfer Act: a changing water policy agenda [J].Water Policy,2001,3(1):1-12.
    [51]Basson, M. S.;Van Rooyen, J. A. Tunnelling into the Future:the Role of Water Resources Development in South Africa[J]. Tunneling and Underground Space Technology,1998,13(1):35-38.
    [52]刘超.泵站经济运行[M].北京:水利电力出版社,1995.
    [53]冯晓莉,仇宝云,黄海田.大型泵站经济运行研究进展[J].流体机械,2006,34(4):32-37.
    [54]朱满林,杨晓东,张言禾.梯级泵站优化调度研究[J].西安理工大学学报,1991,15(1):67-70.
    [55]刘超,耿卫明.泵站经济运行的数值解法[J].排灌机械,2004,23(3):14-17.
    [56]马文正,丘传忻,贺贵明.泵站运行的优化调度[J].水利学报,1993,24(3):35-41.
    [57]汪亚超.动态规划法在泵站运行管理中的应用[J].江苏水利科技,1991,(2):47-53.
    [58]雷声隆,覃强荣,郭元裕,等.自优化模拟及其在南水北调东线工程中的应用[J].水利学报,1989,20(5):1-13.
    [59]冯平.引滦入津引供水枢纽泵站机组的优化调度[J].水力发电学报,2001,20(4):90-95.
    [60]王宏江,陆桂华.遗传算法在尔王庄枢纽泵站优化调度中的应用[J].水利水电技术,2003,34(3):50-53.
    [61]龙新平,朱劲木,刘梅清,等.基于性能曲面拟合的泵站优化调度分析[J].水利学报,2004,35(11):27-31.
    [62]邵东国,李苏杰.梯级泵站供水系统水资源优化调度模型研究[J].中国农村水利水电,2000(2):40-43.
    [63]鄢碧鹏,刘超.混沌优化算法在泵站经济运行中的应用[J].灌溉排水学报,2004(3):38-40.
    [64]刘正祥,蒋丽娟,张平燕.动态规划、模拟技术在多级泵站优化调度中的应用[J].灌溉排水学报,2000,19(2):62-64,68.
    [65]陈守伦,芮钧,徐青,等.泵站日优化运行调度研究[J].水电能源科学,2003,21(3):82-83.
    [66]金明宇,徐青,陈守伦.大型引水工程梯级水位优化模型研究[J].水电自动化与大坝监测,2004,28(1):67-69.
    [67]汪安南,伍杰.大型轴流泵站最优运行方式探讨[J].农田水利与小水电,1993(11):36-38.
    [68]戴振伟,朱兆通,储训,等.多级泵站优化调度研究[J].排灌机械工程学报,1997(3):37-41.
    [69]程芳,陈守伦.泵站优化调度的分解协调模型[J].河海大学学报:自然科学版,2003,31(2):136-139.
    [70]刘德祥,何忠人,郑玉春,等.大岗坡-石台寺多级泵站群优化调度模型研究[J].水电能源科学,1995,13(4):236-241.
    [71]李世芳,马树元.梯级泵站扬程优化调度算法[J].水利水电工程设计,2002,21(2):45-46.
    [72]A. Borzi, P. Cutore, R. Gueli. A methodology for the evaluation of optimal pumping system operation through synthetic indices[C]. Proceedings of the 10th Annual Water Distribution Systems Analysis Conference WDSA2008:532-542.
    [73]Edson da Costa Bortoni, Roberto Alves de Almeida, Augusto Nelson Carvalho Viana. Optimization of parallel variable-speed-driven centrifugal pumps operation[J]. Energy efficiency, 2008,1(3):167-173.
    [74]Lindell E. Ormsbee, Srinivasa L. Reddy. Nonlinear heuristic for pump operations[J]. Journal of water resources planning and management,1995(7):302-309.
    [75]Srinivasa Lingireddy, Don J. Wood. Improved operation of water distribution systems using variable-speed pumps[J]. Journal of energy engineering,1998(12):90-103.
    [76]Ryszard Klernpous, Jerzy Kotowski, Jan Nikodem, et al. Optimization algorithms of operative control in water distribution systems[J]. Journal of computational and applied mathematics, 1997(84):81-89.
    [77]A. Burcu Altan Sakarya, Larry W. Mays. Optimal operation of water distribution pumps considering water quality[J]. Journal of water resources planning and management,2000(7): 210-220.
    [78]D. R. Broad, H. R. Maier, G. C. Dandy. Optimal operation of complex water distribution systems using metamodels[J]. Journal of water resources planning and management,2010(7): 433-443.
    [79]Chad Wegley, Muzaffar Eusuff, Kevin Lansey. Determining pump operations using particle swarm optimization[J]. Joint Conference on Water Resource Engineering and Water Resources Planning and Management,2004(104):1-6.
    [80]Leszek Szychta. System for Optimizing Pump Station Control[J]. World Pumps,2004(449): 45-48.
    [81]Leszek Szychta. System for Optimizing Pump Station Control--Part II [J]. World Pumps. 2004(454):32-34.
    [82]Mahdi Moradi-Jalal. Optimal Desigh and Operation of Irrigation Pumping Station[J]. Journal of Irrigation and Drainage Engineering,2003,129(3):149-154.
    [83]Pulido-Calvol, J.Rolda'n, R. Lo'pez-Luque, et al. Water Delivery System Planning Considering Irrigation Simultaneity [J]. Journal of Irrigation and Drainage Engineering,2003,129(4): 247-255.
    [84]Dritan Nace, Sabrina Demotier, Jacques Carlier, et al. Using linear Programming methods for optimizing the real-time pump scheduling[C]. Proceedings of the World Water and Environmental Resources Congress 2001.2004:111.
    [85]Vilas Nitivattananon, Elaine C.Sadowski, Rafael G.Qunimpo. Optimization of Water Supply Operation[J]. Water Resources Planning and Management,1996,122(5):374-384.
    [86]Rodin, S.I. Use of genetic algorithms for optimal control of bulk water supply[J]. Journal of Irrigation and Drainage Engineering,2004,130(5):357-365.
    [87]Zheng Wu, Paul Boulos, Werner de Schaetzen, et al. Using Genetic Algorithms for Water Distribution System Optimization[M]. World Water Congress,2001.
    [88]S.Pezeshk, O.J.Helweg. Adaptive Search Optimization in Reducing Pump Operating Costs[J]. Journal of Water Resources Planning and Management,1996,122(1):57-63.
    [89]Dragan A.Savic, Godfrey A.Walters, Mark Randall Smith, et al. Cost Savings on Large Water Distribution Systems:Design through Genetic Algorithm Optimization[J]. Water Resources,2000: 1-10.
    [90]I.Pulido-Calvo, J.Rolda'n, R.Lo'pez-Luque, et alDemand Forecasting for Irrigation Water Distribution Systems[J]. Journal of Irrigation and Drainage Engineering,2003,129(6):422-432.
    [91]K.Takeuchi et al. Optimal control of multiunit interbasion water resource systems[J]. Water resources research,1974,9(1):43-50.
    [92]M.Hossein Sabet, James Q.Coe. Models for water and power scheduling for the California state water project[J]. Water resources bulletin,1986,22(4):587-596.
    [93]M.A.Marino, H.A.Loaiciga. Dynamic model for multireservoir operation[J]. Water Resources Rearch.1985,21(5):619-630.
    [94]George W.Barnes Jr. Operational planning for California water system[J]. Journal of water resources planning and management,1986,112(1):71-86.
    [95]William W-G.Yeh. Reservoir management and operation models:A State-of-the-Art review[J]. Water resources research,1985,21(12):1797-1818.
    [96]D.G.Mohile. Planning long distance water transfers-need for a compatible set of policies[C]. In: Proceedings of IWRA seminar on inter-basin water transfer,67-75,June 15-19,1986, Beijing, China.
    [97]程吉林.大系统试验选优理论与应用[M].上海:上海科技出版社,2002.
    [98]陈禹六.大系统理论及其应用[M].北京:清华大学出版社,1988.
    [99]郭元裕,李寿生.灌排工程最优规划与管理[M].北京:水利水电出版社,1994.
    [100]张礼华,龚懿.基于大系统分解协调技术的中小型圩区除涝排水规划探讨[J].中国农村水利水电,2010,(10):142-144.
    [101]李桂香,王挺,温进化.水资源优化配置的大系统分解协调模型研究[J].电脑知识与技术,2010,6(26):7346-7349.
    [102]黄志中,周之豪.大系统分解-协调理论在库群实时防洪调度中的应用[J].系统工程理论方法应用,1995(3):53-59.
    [103]王永,郭志忠,彭茂君,等.基于分解协调算法的互联电力系统状态估计[J].电网技术,2008,32(10):79-83.
    [104]陈鹏飞,顾世祥,谢波,等.分解协调技术在水资源大系统优化配置中的应用[J].中国农村水利水电,2006,(11):44-47.
    [105]娄山佐,史忠科.基于分解协调原理的大规模动态车辆调度[J].系统仿真学报,2006,18(4):998-1001.
    [106]都金康,张健挺,王腊春,等.防洪减灾决策中的分解协调优化方法[J].南京大学学报(自然科学),2001,37(3):288-295.
    [107]王增发,黄强,畅建霞,等.城市供水水源优化调度模型的分解协调算法[J].中国农村水利水电,2000(2):42-44,63.
    [108]杨侃,董增川,张静怡.长江防洪系统网络分析分解协调优化调度研究[J].河海大学学报,2000,28(3):77-81.
    [109]周玉琴,王丽萍等.深圳市东部水库群联合供水调度模型探讨[J].水电能源科学,2005(2):25-28.
    [110]竺慧珠,夏富洲.大系统分解—聚合法在拱式渡槽整体结构优化中的应用[J].水利学报,1995(10):1-7.
    [111]江全元,程时杰,曹一家,等.基于Lyapunov分解聚合法的汽轮发电机组轴系扭振稳定性分析[J].电力系统自动化,2002,26(13):47-51.
    [112]Javad Sadr, Roland P. Malhame. Decomposition/Aggregation-Based Dynamic Programming Optimization of Partially Homogeneous Unreliable Transfer Lines[J]. Transactions on automatic control,2004,49(1):68-81.
    [113]程吉林,张礼华,张仁田,等.泵站单机组叶片调节与变速组合运行优化方法研究[J].水力发电学报,2010,29(6):217-222.
    [114]程吉林,张礼华,张仁田,等.叶片可调单机组日运行优化方法研究[J].水利学报,2010,41(4):499-504.
    [115]仇锦先,程吉林,张仁田,等.江都站不同型号机组叶片全调节优化运行效果分析[J].南水北调与水利科技,2009,7(6):85-89.
    [116]程吉林,张礼华,张仁田,等.泵站单机组变速运行优化方法研究[J].农业机械学报,2010,41(3):72-76.
    [117]仇锦先,程吉林,张仁田,等.江都站不同型号机组变速优化运行效果分析,灌溉排水学报,2009,28(4):32-36.
    [118]程吉林,金兆森,沈洁,等.高维动态规划试验选优方法[J].系统工程理论与实践,1996(2):31-35.
    [119]程吉林,金兆森,沈洁,等.大系统数学规划试验优选方法及应用[J].中国科学(E辑),1998,28(3):105-108.
    [120]张礼华,程吉林,张仁田,等.基于DPSA方法的江都四站单机组优化运行[J].排灌机械工程学报,2010,28(5):439-443.
    [121]河海大学水利水电工程学院.南水北调东线工程江都四站水泵模型装置性能试验研究报告[R].扬州:江都水利工程管理处,2008,3.
    [122]杜治潮.同步电动机励磁装置应用技术[M].南京:东南大学出版社,2001.
    [123]Cooper L, Cooper Mary W. Introduction to Dynamic Programming [M]. Pergramon Press, 1981.
    [124]张有为译.动态规划导论(L.Cooper, Mary W.Cooper. Introduction to Dynamic Programming)北京:国防工业出版社,1981.
    [125]GONG Yi, CHENG Jilin, ZHANG Lihua, et al. Study on Operation Optimization of Pumping Station's 24 Hours Operation under Influences of Tides and Peak-Valley Electricity Prices[C]. The 10TH Asian International Conference on Fluid Machinery, AIP conference proceedings 1225: 137-146.
    [126]刘超.泵站经济运行[M].北京:中国水利水电出版社,1995.
    [127]徐青.大型电力排灌站经济运行研究[D].南京:河海大学,2001.
    [128]冯晓莉.南水北调东线一期工程源头泵站优化运行研究[D].扬州:扬州大学,2006.
    [129]仇宝云,冯晓莉,袁寿其.大型泵站变速-变角综合经济运行研究[J].农业机械学报,2005,36(10):58-61.
    [130]冯晓莉,仇宝云,黄海田.南水北调东线江都排灌站优化运行研究[J].水力发电学报,2008,27(4):130-134.
    [131]Menon E. Shashi., Menon Pramila S. Working Guide to Pumps and Pumping Stations Calculations and Simulations[M]. Elsevier LTD,2010.
    [132]龚懿,程吉林,张仁田,等.泵站多机组叶片全调节优化运行分解-动态规划聚合方法[J].农业机械学报,2010,41(9):27-31.
    [133]河海大学水利水电工程学院.南水北调东线工程淮安四站水泵模型装置性能试验研究报告[R].南京:河海大学,2006,2.
    [134]ZHANG Lihua, CHENG Jilin, ZHANG Rentian, et al. Research on Optimal Operation by Adjusting Blade Angle in Jiangdu No.4 Pumping Station of China[C]. The 10TH Asian International Conference on Fluid Machinery, A1P conference proceedings 1225:297-303.
    [135]张礼华,程吉林,张仁田,等.江都四站站内多机组变角优化运行方式研究[J].扬州大学学报,2010,13(2):75-78.
    [136]仇锦先,程吉林,张仁田,等.动态规划逐次渐近法在江都三站叶片全调节优化中的应用[J].水利水电科技进展,2010,30(6):71-73,83.
    [137]龚懿,程吉林,张仁田,等.基于试验选优方法的淮安四站多机组叶片全调节优化运行方法研究[J].灌溉排水学报,2010,29(4):42-46.
    [138]姚林碧.灯泡贯流泵机组变频装置特点与节能分析[J].南水北调与水利科技,2010,8(3):9-12.
    [139]龚懿,程吉林,张仁田,等.淮阴三站变频变速优化运行的分解-动态规划聚合法[J].农业工程学报,2011,27(3):79-83.
    [140]WL Delft Hydraulics. Results Fimal Scale Model Test-Pump and System Performance (Pump Type HPL1-3200.340, Pump Station Huaiyin 3)[R]. Nijhuis Pompen, the Nertherlands, June,2007.
    [141]Yi Gong, Jilin Cheng, Rentian Zhang, etal. Study of Optimal Operation for Huai'an Parallel Pumping Stations with Adjustable-Blade Units Based on Two Stages Decomposition-Dynamic Programming Aggregation Method[C]. The Fourth International Conference on Computer & Computing Technologies in Agriculture, IFIPAICT 346, PART3:554-562.
    [142]江苏机电排灌工程研究所.淮安一站技术改造泵装置模型试验报告[R].扬州:江苏机电排灌工程研究所,2000,1.
    [143]河海大学水利水电工程学院.淮安二站水泵装置模型试验报告[R].扬州:江苏省水利勘测设计院,1975,10.
    [144]龚懿,程吉林,张仁田,等.并联泵站群日优化运行方案算法[J].排灌机械工程学报,2011,29(3):230-235.
    [145]江苏省水利勘测设计院.江水北调淮阴抽水站初步设计书[R].淮安:淮阴地区水利局,1981,10.
    [146]郑邦民,槐文信,齐鄂荣.洪水水力学[M].湖北:湖北科学技术出版社,2000.
    [147]金菊良,丁晶.水资源系统工程[M].成都:四川科学技术出版社,2002.
    [148]Volk, Michael W. Pump Characteristics and Applications[M]. CRC Press,2005.
    [149]Wahren, Uno. Practical Introduction to Pumping Technology:A Basic Guide to Pumps, From Specifications to Installation and Operation[M]. Elsevier LTD,1997.
    [150]Miller Rex., Miller Mark R., Stewart Harry L. Pumps and Hydraulics[M]. John Wiley & Sons, Inc. (US),2004.
    [151]Powell, Warren B. Approximate Dynamic Programming:Solving the Curses of Dimensionality[M]. John Wiley & Sons, Inc. (US),2007.
    [152]Lew Art. Dynamic Programming:A Computational Tool[M]. Springer Science & Business Media,2007.
    [153]Boudarel R., Delmas J., Guichet P. Dynamic Programming and Its Application to Optimal Control[M]. Elsevier LTD,1971.
    [154]Distefano, Nestor. Nonlinear Processes in Engineering:Dynamic Programming, Invariant Imbedding, Quasilinearization, Finite Elements, System Identification, Optimization[M]. Elsevier LTD,1974.
    [155]Sennott, Linn I. Stochastic Dynamic Programming and the Control of Queueing Systems[M]. John Wiley & Sons, Inc. (US),1999.
    [156]Haimes Yacov Y., Hall Warren A., Freedman Herbert T. Multiobjective Optimization in Water Resources Systems:the Surrogate Worth Trade-off Method[M]. Elsevier LTD,1975.
    [157]Casti, J. L. Nonlinear System Theory[M]. Elsevier LTD,1985.
    [158]Zhu Jizhong. Optimization of Power System Operation[M]. John Wiley & Sons, Inc. (US), 2009.
    [159]Ghassemi F., White Ian. Inter-basin Water Transfer:Case Studies From Australia, United States, Canada, China and India[M]. Cambridge University Press,2007.
    [160]Wylie E.B., V.L. Streeter. Fluid Transients in Systems[M]. Englewood Cliffs,NJ:Prentics Hall, 1993.
    [161]Brion Lehar M., Mays Larry W. Methodology for optimal operation of pumping stations in water distribution systems[J]. Journal of Hydraulic Engineering,1991,117(11):1551-1569.
    [162]Burt C M, Gart rell G. Irrigation-Canal-Simulation Model Usage[J]. Journal of Irrigation and Drainage Engineering,1993,119(4):631-636.
    [163]The ASCE Task Committee on Irrigation Canal System Hydraulic Modeling. Unsteady Flow Modeling of Irrigation Canals[J]. Journal of Irrigation and Drainage Engineering,1993,119(4): 615-630.
    [164]Holly Jr F M, Parrish Ⅲ John B. Description and Evaluation of Program:CARIMA[J]. Journal of Irrigation and Drainage Engineering,1993,119(4):703-713.
    [165]Merkley G P, Rogers D C. Description and Evaluation of Program:Canal[J]. Journal of Irrigation and Drainage Engineering,1993,119(4):714-723.
    [166]Clemmens A J, Bautista E, Wahlin B T, et al. Simulation of Automatic Canal Control Systems[J]. Journal of Irrigation and Drainage,2005,131(4):324-335.
    [167]LINDELL E O,KEVIN E L. Optimal control of water supply pumping systems[J]. Water Resources Planning and Management,ASCE,1994,120(2):237-252.
    [168]Zarrati A R. Mathemateicalm modelling of air-water mixtures in open channels. Journal of Hyeraulic Research.1994,32(5):713-714.
    [169]SZYCHTA L. System for optimizing pump station control[J]. World Pumps,2004(2):45-48.
    [170]SinghM G,TitliA大系统分解优化与控制[M].周斌等译.北京:机械工业出版社,1983.
    [171]Christian L, Luiz R, Ferreira M. A multiobjectiv approach to the short-term scheduling of a hydroelec-tric power system[J]. IEEE Trans on Power Sys-tems,1995,11(4):184-188.
    [172]Pursimo M J, Antila K H, Vilkko K M. A short-term scheduling for a hydropower plant chain[J]. In-ternational Journal of Electrical Power & EnergSystems,1998,20(8):525-532.
    [173]Robin W, Mohd S. Evaluation of genetic algorithm for optimal reservoir system operation[J]. Journal of Water Resources Planning and Management,1999,125(1):25-33.
    [174]Naresh R, Sharma J. Hydro system scheduling usin ANN approach[J]. IEEE Trans on Power Systems2002,14(2):388-395.
    [175]Qiun F J. Water transfers-Canadian style.Canada[J]. Water Resour.1981,6(1):64-76.
    [176]Shamir U. Computer applications for real-time operation of water distribution systems. Specialty conference on computer applications in water resource. ASCE. London,1985:379-390.
    [177]仇宝云,冯晓莉,林海江,等.南水北调东线工程梯级泵站机组变工况方式选择[J].水力发电学报,2006,25(3):121-124.
    [178]李虹,孙松.施行峰谷电价后调速水泵供水费用探讨[J].中国给水排水,1999,15(4):35-36.
    [179]程吉林,张仁田,邓东升,等.南水北调东线泵站变频优化运行模式的适应性研究[J].排 灌机械工程学报,2010,28(5):434-438.
    [180]Bellman R E. Introduction to the Mathematical Theory of Control Processes. New York: Academic Press,1967.
    [181]Bellman R E. and Dreyfus S E, Applied Dynamic Programming, Princeton University Press, Princeton,1962.
    [182]Yeh W, et al. Optimization of Water Resource Development: Optimization of Capacity Specification for Components of Regional, Complex, Integrated, Multi-Purpose Water Resource Systems, VCLA Eng. Rep. UCLA-ENG-7 245,1972.
    [183]Giles J E, et al. Weekly Multipurpose planning Model for TVA Reservoir System. J. of the Water Resource. Plan Manage Div. ASCE,107(WRI),1981.
    [184]Nopmongcol P, et al. Multi-Level Incremental Dynamic Programming. Water Resource Research,1976(6).
    [185]Mesarovic M D, Macko D, Takahara Y. Theory of Hierarchical Multilevel System. New York: Academic Press,1970.
    [186]Haimes Y Y. Hierarchical Analysis of Water Resources Systems:Modeling and Optimization of Large Scale Systems. New York:Me Graw-Hill,1977.
    [187]叶秉如.二维分解法块角线性与非线性规划问题.河海大学情报室,1980.
    [188]胡振鹏.大系统多目标分解聚合算法及应用[D].武汉:武汉水利电力大学,1985.
    [189]董增川.大规模多目标系统决策理论、方法及应用[D].南京:河海大学,1989.
    [190]Cohon G. Optimization by Decomposition and Coordination:A Unified Approach. IEEE A-23, 1978:222-232.
    [191]Cohon G. Auxiliary Problem Principle and Decomposition of Optimization Problems, Jounal of Optimization Theory and Application,1980(2):277-305.
    [192]王新华.组合式复杂大系统优化的解耦方法[J].系统工程,1996(5):11-17.
    [193]丘传忻,李继珊.泵站改造[M].北京:中国水利水电出版社,2004.
    [194]江苏机电排灌工程研究所.江都一站、二站综合技术改造鉴定材料[R].扬州:江都水利工程管理处,2000,12.
    [195]张仁田,邓东升,朱红耕,等.不同型式灯泡贯流泵的技术特点[J].南水北调与水利科技,2008(6):6-9.
    [196]Jilin Cheng, Lihua Zhang, Rentian Zhang, et al. Optimal Operation of Variable Speed Pumping System in China's Eastern Route Project of S-to-N Water Diversion Project[C]. The 10TH Asian International Conference on Fluid Machinery, AIP conference proceedings 1225:169-178.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700