用户名: 密码: 验证码:
上海中心城区暴雨积水机理分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
上海,位于东海之滨,亚洲第一大河长江的入海口及亚太城市群的地理中心,全市总面积6340km2。长江三角洲地区地势平坦低洼,河网纵横交错,气候四季分明、降水丰沛。作为长三角第一大城市,2011年上海共有常住人口2302万,GDP产值19195.69亿元,约占全国总产值的4.07%,是我国经济发展最快、人口密度最大、城市化水平最高的地区。城市建设是经济发展的基础,实现上海城市的全面、健康、协调、可持续建设,规避可能由高速城市化引起的城市水文灾害,对长三角地区乃至全国经济的发展都有着举足轻重的作用。
     暴雨积水,是制约世界各大主要沿海城市发展的城市水文灾害之一;“看海”,已成为许多沿海城市的一道独特风景。近年来,在全球变暖及区域相对海平面上升的影响下,沿海城市的暴雨积水灾害研究已成为国际学术界及各国城市水文学家普遍关注的热点问题和科学前沿。通过系统梳理与借鉴前人研究成果,探讨了沿海城市暴雨积水的成因,分析主要驱动因子的时空分布演化特征。同时,提出了沿海城市暴雨积水概念模型,并以上海历年主要暴雨积水事件为依据,对上海中心城区暴雨积水过程进行模拟及情景分析。在针对大量基础数据资料进行综合分析及模型构建基础之上,主要研究工作和结论如下:
     (1)总结了沿海城市暴雨积水灾害的主要驱动因子,及其相互之问的关联与制约。在相对海平面上升带动下,沿海城市感潮河道的高低潮位相应抬高,潮流对入海河流的顶托作用增强,直接造成入河雨水管网系统排水能力。同时,在全球变化影响下,长江中下游地区的突发性降水事件呈逐年增多且频率集中趋势。加之快速的城市化发展在一定程度上不利于暴雨发生时下垫面对雨水径流的渗透,导致低洼地段向外排水能力急剧下降。此外,原有排水管网系统陈旧落后,致使城市自流排水发生困难、低洼地排水不畅、泵站抽排效率降低、市区积水时间延长、积水水位加深、内涝灾害的发生频率及严重程度增加。
     (2)选取上海中心城区作为典型研究区,深入分析了上海城区降水、河网及土地利用的时空演化特征。结果显示,降水作为上海积水内涝灾害的首要制约因素,年际变化呈“三上三下”趋势,总量略有减小但无明显突变。汛期降水作为全年降水的重要组成部分,在20世纪80年代后有明显增长。夏季降水量自90年代末以来增加明显,其中以8月份降水量的增加表现得尤为显著,而春季降水量则自2006年开始出现明显减少。各主要年份降水天数与总量一样呈减少趋势,但汛期降水天数则有小幅回升。同时,大于等于25mm/50mm日降水量的天数却有所增加。说明上海近年来虽然降水总量略有减少,但降水分布趋于集中,且降水强度更大、暴雨出现频率更高、连续降水天数增长明显。受筑路、建房等影响,除黄浦江与苏州河外,市区河道以浦西苏州河以南为中心向四周迅速消散。河网密度与长度持续下降,河道对积水的自然排泄功能基本消失,与上海城市化发展的趋势基本一致,说明城市化对上海市区河网结构演化起着直接作用。土地覆盖及利用变化导致路面硬化程度不断加大,雨水渗透率急剧降低,市区地表径流系数随城市化率不断提高,已超过0.7ψ,大大增加了城区暴雨积水的发生机率。快速城市化过程中,虹口、闸北、黄浦、徐汇等中心城区落后的排水管网体系仍无法满足日益增长的排水需求,积水点较往年虽有所减少,但如遇“百年一遇”或“千年一遇”暴雨时积水问题仍较为严重,也成为诱发暴雨积水的重要因素。
     (3)以中心城区积水多发路段为例,构建适用的暴雨积水模型。运用SWMM1D水动力模型与FloodMap2D数值模型,通过松散耦合方式构建完成上海中心城区暴雨积水模型。并以安福路常熟路路口积水监测点积水深度为例,对耦合模型进行校正,对比分析4种不同的曼宁系数值及其误差率,得到适合该区域的模型参数,即管网糙率为0.013,且与实际监测点水深深度拟合度最高。以上海2008年8月25日暴雨积水事件为基础开展模型的校正与验证。模拟结果虽在水淹范围与时间上存在一定误差及滞后性,但与上海水务局实时监测统系所采集的数据总体情况基本一致,在不考虑中心绿化隔离带的假设下,水深约为0.1~0.3m左右。其中,安福路常熟路路口处积水最为严重,溢水处由于受地势等因素影响最深处水深达0.5m左右。基于60年上海徐家汇站极端降水量数据,利用P-Ⅲ频率分析计算了极端日降水的重现周期,发现不同重现期降水量均有明显增加,“百年一遇”暴雨雨量缩短为50a一遇,“千年一遇”的暴雨重现期缩短至仅为385a一遇。
     (4)以验证后的耦合模型为基础,以上海10a一遇、50a一遇、200a一遇及极端环境条件(“千年一遇”)为情景,分别展开沿海城市暴雨积水灾害过程建模及情景模拟。结果表明:出水口溢出水流量与降水量关系密切,且存在一定的滞后性,在历时3h的暴雨过程中,暴雨雨峰一般出现在1~1.5h,而相应的溢出水流峰值则出现在1.5h左右。10a一遇、50a一遇及200a一遇的模拟结果主要表现为三个特征:1)最大积水深度和积水范围随暴雨重现期不断增大而增加,且以基本满足R2=0.9922的对数趋势逐渐递增;2)受房屋影响,房屋密集处积水漫溢速度较慢,但受淹时间也相对较长;3)路口或拐弯处比其他区域更易形成积水,且延续时间更长。对极端环境下的暴雨积水模拟的特点及主要危害有:1)全过程中建模区内大范围受淹,最大积水面积达23600m2;2)积水深度极大,表现出明显的先增后减趋势,而管网的溢出水峰值相较与其他情景模式而言并未出现太大波动;3)积水范围空间分布不均匀。
     (5)同时,基于不同暴雨重现期,对概化后不同管径大小的排水管网系统进行模拟,以得到各暴雨重现期下的最小管径容量。通过计算得到,在现有排水管网系统埋深不变且仅考虑排水管网系统自身容量的前提下,建模区内“10a-遇”、“50a一遇”、“100a一遇”、“200a一遇”及“1000a一遇”暴雨重现期内的排水管网系统敷设的理想管径分别应为Φ=450mm、Φ=600mm、Φ=700mm、Φ=800mm及Φ=1000mm。同时,通过对未来不同暴雨重现期理想管网改造的投入费用计算得到,在现有排水管网设计基础上,建模区内“10a一遇”、“50a-遇”、“100a一遇”、“200a一遇”及“1000a一遇”暴雨的排水设计改造费用分别为908.6万元、1517.4万元、1725.0万元、1859.8万元及2018.3万元。
Shanghai, by the estuary of Yangtze River and the geographic center of the Asia-Pacific urban agglomeration, located in East China Sea, the total area is6340km2. There is a flat low-lying terrain and a criss-cross river network, with four distinct seasons and abundant precipitation, in the Yangtze River Delta region. As the largest city in the Yangtze River Delta with the total resident population of23.02million, and GDP output value of1.92trillion RMB that accounting for4.07%of the country, Shanghai becomes the most prosperous economic development, highest population density, and fastest urbanization level of China. Urban construction is the foundation of economic development, it plays a pivotal role that achieving Shanghai's comprehensive, healthy, harmonious and sustainable construction, while avoiding urban hydrology disaster that maybe caused by rapid urbanization, in the development of the Yangtze River Delta region as well as the national economy.
     Rainstorm waterlogging is one of the urban hydrology disasters to restrict the development of major coastal urban of the world,"to see the sea", has become a unique landscape of it. Recent years, in the context of global warming and regional relative sea level rise, coastal cities waterlogging disasters have been the hotspots in international academia as well as the frontiers of science in research field. On the basis of the achievements of previous development in waterlogging disasters research, this research presents the reasons of coastal urban waterlogging and analyzes the temporal evolution characteristics of main driving factors. Moreover, the theoretical model of coastal urban rainstorm waterlogging will be built to simulate and analyze the scenario of waterlogging process in the City of Shanghai based on the over years waterlogging events. The main research work and conclusions can be summed up as follows:
     1) Summarizes the main driving factor of the coastal urban rainstorm waterlogging disasters, and their mutual relationships and constraints. Driven by the relative sea-level rise, the high and low tide of tidal rivers were raised correspondingly, and the trend was enhanced on the backwater effect of the rivers into the sea, then that will cause the capacity of drainage system reduced in directly. At the same time, under the influence of global change, the sudden precipitation events of the middle and lower reaches of the Yangtze River region was increasing year by year as well as concentrating frequency. Combined with rapid urbanization development to a certain extent, it is not conducive to infiltrate runoff through the underlying surface when a rainstorm occurs, that resulting in a sharp decline of outside drainage capacity in the low-lying areas. In addition, the existing drainage network system were outdated, resulting in difficulties on urban gravity drainage, poor drainage on low-lying, low efficiency on pumping stations, long time and deepening on waterlogging, and increased frequency and severity on waterlogging disasters.
     2) Choose the City of Shanghai as a typical study area, in-depth analysis of the spatial evolution of rainfall, land use and river network. The results showed that, precipitation as the primary constraint of waterlogging disasters, it was "three up and downs" in inter-annual variability and the total amount decreases slightly but no obvious mutations. Flood season precipitation as an important part of the year has a significant increased at the late of1980s, and summer precipitation since the end of1990s has also increase obviously which particularly has been remarkable in August, while spring rainfall has a clearly reduced since2006. Major year precipitation days have also decreased but flood season rainfall days were rally slightly. At the same time, it was an ease up on days of daily rainfall which exceeding25mm and50mm. It indicated the concentrating distribution and large intensity on precipitation, higher frequency on storm rainfall, and substantial extension on consecutive days. In addition to the Huangpu River and Suzhou Creek, affected by roads, housing, etc., the urban rivers both between west of Huangpu River and south of Suzhou Creek as the center around to dissipate quickly. Density and length of river network continue to decline, and then the function of natural waterlogging discharge was disappeared basically. With the same trend of Shanghai's urbanization, it means urbanization plays a direct role in river network structure evolution. LUCC leads to increase the degree of road sclerosis, permeability of rainfall sharply reduced, the surface runoff coefficient was continuously consistent with improved urbanization rate that was exceeding0.7ψ already, and the risk of urban rainstorm waterlogging was tremendously rose. In the process of rapid urbanization, backward sewer network system in the City, such as Hongkou, Zhabei, Huangpu and Xuhui, is able to uncomfortable the increasing demand of drainage. In case of rainfall storm with100a or1000a return period, there is still had a serious waterlogging problem despite the points have a gently diminished than before, and it has also became a key factor in storm waterlogging induced.
     3) As an example on part of the roads which prone to waterlogging in the centre of City, construction the rainfall storm waterlogging model. Used SWMM ID hydrodynamic model and FloodMap2D numerical model, constructing the rainfall storm waterlogging model in the City of Shanghai through the loose coupling. And, calibrating the coupled model with the depth of waterlogging form the monitoring point nearby the cross of Anfu and Changshu road, analyzing four kinds of Manning's roughness coefficient and its error rate, get the parameters in the model is0.013which is goodness of fit the actual monitoring. Utilize the25th August,2008waterlogging event as the foundation of model verification. The simulation results showed that the result is basically consistent the data collected from real-time monitoring systems by Shanghai Water Bureau in the overall situation although there is existed some errors and lag in inundation scope and waterlogging time, and the depth of water is above0.1~0.3m according with the hypothesis of without considering greening belt. And, most serious of waterlogging appeared at the junction of Anfu and Changshu road, and the most depth of overflow is among0.5~0.6m that due to terrain and other factors. Based on the extreme precipitation data of recent60a form Xujiahui Meteorology Station and analysis method of P-Ⅲ frequency, calculate the return period of the extreme precipitation. It found that the precipitation at different return period had a significant increased,100a return period shortened into50a and1000a return period is only to385a.
     4) Based on the after testing coupled model, and with the10a,50a,200a and1000a return period as the background, started the process modeling and scenario simulation of coastal urban rainfall storm waterlogging disaster. The conclusion shows that:there is a closed relationship between precipitation and overflow, and the hysteretic has existed. Based on the after testing coupled model, and with the10a,50a,200a and1000a return period as the background, started the process modeling and scenario simulation of coastal urban rainfall storm waterlogging disaster. The conclusion shows that:there is a closed relationship between precipitation and overflow, and the hysteretic has existed. In a process of last3h rainfall storm, the peak of rainfall always appears in1~1,5h, and the corresponding overflow's peak is appeared around1.5h. The performance of simulation results with10a,50a, and200a return periods as the following three aspects:i)the largest depth and scope of waterlogging are continuously increased with increasing rainfall storm return period; ii)influenced by house, the speed of overflow is slow in the dense area of house but also a relatively long time; iii)crossing or turning of the roads are more easily to become waterlogging than other place, and also last longer. The characteristics and hazards of simulation under the extreme environment (1000a return period) also as the following three aspects:i)there is a wide range of waterlogging in the modeling area in the whole process with a biggest area of23600m2; ii)the depth of water shows an obviously decreased trend after increased, but there is an unobvious fluctuation by the peak of overflow compared with other scenarios; iii)the space distribution of waterlogging range is uneven.
     5) At the same time, based on different rainstorm return period, generalized to after the different size diameters drainage network simulation system, in order to get the return period of rainstorm under minimum diameter capacity. Through the calculated, the existing drainage sewer system unchanged and only consider buried deep drainage sewer system itself capacity, under the premise of modeling zone10a return period,50a return period,100a return period,200a return period and1000a return period rainstorm return period the drainage system of ideal diameter are Φ=450mm,Φ=600mm,Φ=700mm,Φ=800mm and Φ=1000mm, and while the modification cost are9.086million yuan,15.174million yuan,17.25million yuan,18.598million yuan and20.183million yuan respectively.
引文
Apirumanekul, C., and Mark, O.,2001. Modelling of Urban Flooding in Dhaka City, 4th DHI Software Conference,101-108.
    Cai, S. M., Zhao, Y., and Du, Y.,1999. Evolution of Jianghan Lakes and regional sustainable development, Journal of Environmental Sciences (English),11, 294-297.
    Christopher, Z.,2001. Review of urban storm water models, Environmental Modelling & Software,16,195-231.
    Danish Hydraulic Institute (DHI).2002. Urban Drainage Modeling, A collection of experiences from the past decades, URL http://www.dhisoftware.com/bo ok/chapter5.htm
    Gao, B., et al,2009. Study on Risk Assessment of Urban Waterlogging,2009 Third International Symposium on Intelligent Information Technology Application, DOI 10.1109/ⅡTA.2009.455.
    Henry, F. H. K., Nathan, W. H., and Herbert, T. B.,1992. Effects of Urban Storm-Runoff Control on ground-water recharge in Nassau County, New York, Ground Water,30,507-514.
    Hsu, M. H., Chen, S. H., and Chang, T. J.,2002. Dynamic inundation simulation of storm water interaction between sewer system and overland flows, Journal of the Chinese Institute of Engineers,25,171-177.
    Khan, N.,1999. The effects of urbanization on urban storm water runoff:A case study on greater Dhaka metropolitan city, Operational Remote sensing for Sustainable Development,285-294.
    Liong, S. Y, et al.,2000. Advance food forecasting for flood stricken Bangladesh with a fuzzy reasoning method, Hydrological Processes,14,431-448.
    Liu, M., Yang, H. Q., and Xiang, Y. C.,2002. Risk assessment and regionalization of waterlogging disasters in Hubei Province, Resources and Environment in the Yangtze Basin,11,476-481.
    Quan, R. S., et al,2010. Waterlogging risk assessment based on land use/cover change:a case study in Pudong New Area, Shanghai, Environmental Earth Sciences,61,1113-1121.
    Rashid, H., Hunt, L. M., and Haider, W.,2007. Urban Flood Problems in Dhaka, Bangladesh:Slum Residents'Choices for Relocation to Flood-Free Areas, Environ Manage,40,95-104.
    Seraj, S. M., and Badruzzaman, A. B. M.,1997. Potential hazards and vulnerability in urban development of Dhaka city, Bangladesh, Engineering Geology and the Environment,1-3,1487-1492.
    Tayefi, V., Lane, S. N., Hardy, R. J., and Yu, D.,2007. A comparison of one-and two-dimensional approaches to modelling flood inundation over complex upland floodplains, Hydrological Processes,21,3190-3202.
    Wu, Q., et al,2003. Relative sea-level rising and its control strategy in coastal regions of China in the 21st century, Science in China,46,74-83.
    Xie, B. T., et al,2008. Statistical prediction of long term characteristics for typhoon induced rainstorm and inundation in china, Proceedings of the 27th International Conference on Offshore Mechanics and Arctic Engineering,2,19-26.
    Xu, P. Z.,1996. Impact of future sea level rise on flood and water logging disasters in Lixiahe region, Chinese Geographical Science,6,35-48.
    Yin, J. M., Gu, X. Q., Cai, Z., and Zeng, H. Q.,2006. Study and Application of Rainstorm Waterlogging Mathematical Simulation in Nanchang City, Disaster Forewarning Diagnostic Methods and Management,6412,1D1-1D9.
    Yu, G. M.,1994. Study on the damage of the "91.7" rainstorm in Sihu drainage area with remote sensing application technique, Journal of Environmental Sciences,6, 155-164.
    张继全,张会,韩俊山,2006.东北地区建国以来洪涝灾害时空分布规律研究[J].东北大学学报(自然科学版),38(1):126-130.
    周乃晟,袁雯,1993.上海市暴雨地面积水的研究[J].地理学报,48(3):262-271.
    Abbot, M. B., et al.,1986. An introduction to the European Hydrological System-Syste'me Hydrologique Europe'en, SHE,2. Structure of a physically based, distributed modelling system, Journal of Hydrology,87,61-77.
    Akan, A. O., Pekcagllyan, M. D., and Sevuk, A. S.,1982. METU design model for urban storm drainage, Proceedings of the Second International Conference on Urban Storm Drainage, Urbana, Illinois, USA,221-228.
    Alexander, L. V., et al.,2006. Global observed changes in daily climate extremes of temperature and precipitation, Journal of Geophysical Research,111, D05109, doi:10.1029/2005 JD006290.
    Annemarie, E., Ellen, B., and James M. P.,2009. The influence of urban expansion on the flood hazard in Santiago de Chile,2009 Urban Remote Sensing Joint Event, doi:10.1109/URS.2009.5137601.
    Arisz, H., and Burrell, B. C.,2006. Urban drainage infrastructure planning and design considering climate change,2006 IEEE EIC Climate Change Conference, 695-703.
    Arnell, V., et al.,1984. Review of rainfall data application for design and analysis. Water Science and Technolgy,16(8-9),1-45.
    Bari, M. F., and Hasan, M.,2001. Effect of urbanization on storm runoff chara cteristics of Dhaka city,http://www.iahr.org/e-library/beijing_proceedings/The me C/EFFECT%20OF20URBANIZATION.html.
    Barriendos, M., et al.,2003. Stationarity analysis of historical flood series in France and Spain (14th-20th centuries), Natural Hazards Earth System Sciences,3, 583-592.
    Bates, P. D., et al.,1992. Modelling floodplain flows using a two-dimensional finite element model, Earth Surface Processes and Landforms,17,575-588.
    Bates, P. D., Anderson, M. G., and Hervouet, J. M.,1995. Initial comparison of two 2-dimensional finite element codes for river flood simulation, Proceedings of the Institution of Civil Engineers, Water, Maritime and Energy,112,238-248.
    Bates, P. D., et al.,1992. Modelling floodplain flows using a two-dimensional finite element model, Earth Surface Processes and Landforms,17,575-588.
    Bates, P. D., et al.,1996. Analysis and development of hydraulic models for floodplain flows, In:Anderson, M.G., Walling, D.E., Bates P.D. (Eds.), Floodplain Processes, Wiley, Chichester,215-254.
    Bates, P. D., and De Roo, A. P. J.,2000. A simple raster-based model for flood inundation simulation, Journal of Hydrology,236,54-57.
    Begnudelli, L., Sanders, B. F., and Bradford, S. F.,2008. Adaptive Godunov-based model for flood simulation, Journal of Hydraulic Engineering,134(6),714-725.
    Behera, P. K., Papa, F., and Adams, B. J.,1999. Optimization of regional storm-water management systems. Journal of Water Resources Planning and Management. 125(2),107-114.
    Bergmann, H., and Richtig, G.,1990. Decision support model for improving storm drainage management in suburban catchments, Proceedings of the Fifth International Conference on Urban Storm Drainage, Osaka, Japan,1429-1434.
    Bocking, S.,2006. Constructing urban expertise professional and political authority in Toronto,1940-1970, Journal of Urban History,33(1),51-76.
    Boonya-Aroonnet, S., Weesakul, S., and Mark, O.,2002. Modelling of urban flooding in Bangkok, Ninth International Conference on Urban Drainage, Portland, Oregon, USA.
    Boyle, S. J., Tsanis, I. K., Member, ASCE, and Kanaroglou, P. S.,1998. Developing geographic information systems for land use impact assessment in flooding conditions. Journal of Water Resources Planning and Management, (2),89-98.
    Bradbrook, K. F., Lane, S. N., Waller, S. G., and Bates, P. D.,2004. Two dimensional diffusion wave modelling of flood inundation using a simplified channel representation, International Journal of River Basin Management,3,1-13.
    Brody, S. D., et al.,2008. Identifying the impact of the built environment on flood damage in Texas, Distasters,32(1):1-18.
    Cabanes, C., Cazenave, A., and Provost, C. L.,2001. Sea level rise during past 40 years determined from satellite and in situ observations, Science,294,840-842.
    Carty, W. P.,1988. Sustainable development:the challenge of our times, Environment folio,9,1-8.
    Cembranoa, G.,2004. Optimal control of urban drainage systems. A case study, Control Engineering Practice,12,1-9.
    Chan, N. W., and Parker, D.,1996. Response to dynamic flood hazard factors in peninsular Malaysia, The Geographical Journal,162(3),313-325.
    Chen, A. S., Hsu, M. H., Chen. T. S., and Chang, T. J.,2005. An integrated inundation model for highly developed urban areas, Water Science and Technology,51, 221-229.
    Chen, J. L., Wilson, C. R., Tapley, B. D., and Famiglietti, J. S.,2005. Seasonal global mean sea level change from satellite altimeter, GRACE, and geophysical models, Journal of Geodesy,79(9),532-539.
    Chorley, R. J.,1978. The hillslope hydrological cycle, Hillslope Hydrology, Chichester:John Wley & Sons Ltd.,1-42.
    Chow, V. T., and Zvi, A. B.,1973. Hydrodynamic modeling of two-dimensional watershed flow, Journal of Hydrology Division,99(11),2023-2040.
    Church, J. A., White, N. J., Coleman, R., Lambeck, K., and Mitrovica, J. X.,2004. Estimates of the Regional Distribution of Sea Level Rise over the 1950-2000 Period, Journal of Climate,17,2609-2624.
    Clack, M. J.,1998. Putting water in its place:a perspective on GIS in hydrology and water management, Hydrological Processes,12,823-834.
    Cunge, J. A., Holly, F. M., and Verwey, A.,1976. Practical Aspects of Computational River Hydraulics, Pitman:London.
    Crawford, N. H., and Linsley, R. K.,1966. Digital simulation in hydmlogy:Stanford watershed model IV. Stanford:Department of Civil Engineering, Stanford University, California, Technical Report,39.
    Dajani, J. S., and Hasit, Y.,1974. Capital cost minimization of drainage networks, Journal of Environment Engineering Division,100(2),325-337.
    Davies, A. S., Hernebring, C., Svensson, G., and Gustafsson, L. G,2008. The impacts of climate change and urbanization on drainage in Helsingborg, Sweden: Combined sewer system, Journal of Hydrology,350,110-113.
    Davies, A. S., Hernebring, C., Svensson, G, and Gustafsson, L. G,2008. The impacts of climate change and urbanization on drainage in Helsingborg, Sweden: Suburban stormwater, Journal of Hydrology,350,114-125.
    Denault, C., Millar, R. G, and Lence, B. J.,2002. Climate change and drainage infrastructure capacity in an urban catchment, Annual Conference of the Canadian Society for Civil Engineering.
    Denault, C., Millar, R. G, and Lence, B. J.,2006. Assessment of possible impacts of climate change in an urban catchment, Journal of the American Water Resources Association,42(3),685-697.
    Desher, D. P., and Davis, P. K.,1986. Designing sanitary sewers with microcomputers, Journal of Environmental Engineering,112,993-1007.
    Disse, M., and Engel, H.,2001. Flood events in the Rhine Basin:genesis, influences and mitigation, Natural Hazards,23,271-290.
    Djordjevic, S., Ivetic, M., Maksimovic, C., and Rajcevic, A.,1991. An approach to the simulation of street flooding in the modeling of surcharged flow in storm sewers, In:Maksimovic, Cedo (Ed.), Proceedings:New Technologies in Urban Drainage UDT'91, Elsevier Publishers,101-108.
    Douglas B. C.,1991. Global sea-level rise, Journal of Geophysical Research,96, 6981-6992.
    Elimam, A. A., Charalambous, C., and Ghobrial, F. H.,1989. Optimum design of large sewer networks, Journal of Environmental Engineering,115(6),1171-1190.
    Estrela, T., and Quintas, L.,1994. Use of GIS in the modelling of flows on floodplains, In Proceedings of the 2nd International Conference on River Flood Hydraulics, White, W. R., (ed.). Wiley:Chichester; 177-189.
    Faisal, I. M., Kabir, M. R., and Nishat, A.,2003. The Disastrous Flood of 1998 and Long Term Mitigation Strategies for Dhaka City, Natural Hazards,28,85-99.
    Flood, M., and Gutelius, B.,1997. Commercial implications of topographic terrain mapping using scanning airborne laser radar, Photogrammetric Engineering and Remote Sensing,63,327-366.
    Frich, P., et al.,2002. Observed coherent changes in climatic extremes during the second half of the twentieth century, Climate Research,19,193-212.
    Galland, J. C., Goutal, N., and Hervouet, J. M.,1991. TELEMAC-a new numerical model for solving shall-water equations, Advances in Water Resources,14(3), 138-148.
    Gee, D. M., Anderson, M. G., and Baird, L.,1990. Large scale floodplain modeling, Earth Surface Processes and Landforms,15,512-523.
    Gerritsen, H.,2005. What happened in 1953? The Big Flood in the Netherlands in retrospect, Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences,363,1271-1291.
    Gong, D. Y., and Wang, S. W.,2000. Severe summer rainfall in China associated with enhanced global warming. Climate Research,16,51-59.
    Goodchild, M. F., et al.,1992. Integrating GIS and spatial data analysis:problems and possibilities, International Journal of Geographical Information Systems,6, 407-423.
    Green, I. R. A.,1984a. A micro-computer stormwater drainage model, The Civil Engineer in South Africa,595-600.
    Green, I. R. A.,1984b. WITWAT stormwater drainage program-theory, applications, and user's manual water research commission contract, Department of Civil Engineering, Water Systems Research Programme, Report NO.1/9184, University of the Witwatersrand.
    Green, W. H., and Ampt, G.,1911. Studies of soil physics, part I-the flow of air and water through soils, Journal Agriculture Science,4,1-24.
    Groisman, P. Y., and Legates, D. R.,1995. Documenting and detecting long-term precipitation trends:where we are and what should be done, Climatic Change,31, 601-622.
    Groisman, P. Y., et al.,1997. Changes in the probability of extreme precipitation:why they can be so prominent in ongoing climatic changes, GCOS Workshop on Indices and Indicators for Monitoring Trends in Climate Extremes.
    Grosiman, P. Y, et al,1999. Changes in the probability of heavy precipitation: Important indicators of climatic change, Climatic Change,42,243-283.
    Grosiman, P. Y., et al.,2005. Trends in Intense Precipitation in the Climate Record, Journal of Climate,18,1326-1350.
    Haberlandt, U.,1998. Stochastic rainfall synthesis using regionalized model parameters, Journal of Hydrologic Engineering,3(3),161-168.
    Hazen, A.,1930. Water supply. American Civil Engineers Handbook, John Wiley & Sons, New York, NY,1444-1518.
    Hewlitt, J. D., and Hillbert, A. R.,1963. Moisture and energy conditions within a sloping soil mass during drainage. Journal of Geophysical Research,68(4), 1081-1087.
    Higuchi, K., Maeda, M., and Shintani, Y,1994. Sewer system for improving flood-control in Tokyo-a step towards a return period of 70 years, Water Science and Technology,29,303-310.
    Holden, J., et al.,2008. A critical review of hydrological data collection for assessing preservation risk for urban waterlogged archaeology:A case study from the City of York, UK, Journal of Environmental Management,90,3197-3204.
    Holder, H. W., Stewart, E. J., and Bedient, P. B.,2002. Modelling an urban drainage system with large tailwater effects under extreme rainfall conditions, Ninth International Conference on Urban Drainage, Portland, Oregon, USA.
    Holgate, S. J., and Woodworth, P. L.,2004. Evidence for enhanced coastal sea level rise during the 1990s, Geophysical Research Letters,31, L07305, doi:10.1029/2004GL019626.
    Horritt, M. S.,2004. Development and testing of a simple 2-D finite volume model for sub-critical shallow flow, International Journal for Numerical Methods in Fluids,44,1231-1255.
    Horritt, M. S., and Bates, P. D.,2001a. Effects of spatial resolution on a raster based model of flood flow, Journal of Hydrology,253,239-249.
    Horritt, M. S., and Bates, P. D.,2001b. Predicting floodplain inundation:raster-based modelling versus the finite-element approach, Hydrological processes,15, 825-842.
    Horritt, M. S., and Bates, P. D.,2002. Evaluation of a ID and 2D numerical models for predicting river flood inundation, Journal of Hydrology,268,87-99.
    Horton, R. E.,1933. The role of infiltration in the hydrologic cycle. Transactions of the American Geophysical Union,14,446-460.
    Horton, R. E.,1935. Surface runoff phenomena, part Ⅰ:analysis of the hydrograph. Vorheesville:Publication 101 Horton Hydrological Laboratory.
    Hsu, M. H., Chen, S. H., and Chang, T. J.,2002. Dynamic inundation simulation of storm water interaction between sewer system and overland flows, Journal of the Chinese Institute of Engineers,25,171-177.
    Hromadka Ⅱ., T. V., McCuen, R. H., and Yen, C. C.,1987. Comparison of overland flow hydrograph models, Journal of Hydraulic Engineeing,113,1422-1440.
    Huber, W. C.,1975. Model for Storm Water Strategies, APWA Reporter.
    Ichikawa, A., and Sakakibara, T.,1984. A proposal of a new simulation model'grid method'for urban storm runoff analysis and design of stormwater systems, Proceedings of the 3rd International Conference on Urban Storm Drainage, Goteborg, Sweden,245-253.
    IPCC,1996. Climate change 1995:The science of climate change. The second IPCC scientific assessment, Cambridge University Press, N. Y.,572.
    IPCC,1998. Climate change 1998:The regional impacts of climate change. The second IPCC scientific assessment, Cambridge University Press, N. Y.,517.
    IPCC,2007. Climate change 2007:The summary for policymakers. The AR4 Synthesis Report, Cambridge University Press, Cambridge,13.
    Ishikawa, Y., Morikawa, H., and Ilda, M.,2002. Flood forecasting and management of under ground spaces, Ninth International Conference on Urban Drainage, Portland, Oregon, USA.
    Jang, S., et al.,2007. Using SWMM as a tool for hydrologic impact assessment, Desalination,212,344-356.
    Jeffrey, C. N., et al,2009. Distributed whole city water level measurements from the Carlisle 2005 urban flood event and comparison with hydraulic model simulations, Journal of Hydrology,368,42-55.
    Johnstone, D., and Cross, W. P.,1958. Elements of applied hydrology, New York, Ronald Press Co.
    Karl, T. R., Diaz, H. F., and Kukla, G,1988. Urbanization:its detection and effects in the United States climate record. Journal of Climate,1,1099-1123.
    Katapodes, D. N., and Strelkoff, T.,1979. Two-dimensional shallow waterwave model, Journal of the Engineering Mechanics Division,105(2),317-334.
    Kawahara, M., and Khan, N.,1999. The effects of urbanization on urban storm water runoff:A case study on greater Dhaka metropolitan city, Operational Remote sensing for Sustainable Development,285-294.
    Kibler, D. F.,1982. Urban Stormwater hydrology, American Geophysical Union's Resources Monograph 7, Urban Hydrology Committee.
    Kioutsioukis,I., Melas, D., and Zerefos, C.,2010. Statistical assessment of changes in climate extremes over Greece (1955-2002), International Journal of Climatology,30,1723-1737.
    Kolsky, P., et al.,1999. Modelling drainage performance in slums of developing countries:how good is good enough?, Water Science and Technology,39,9.
    Kostopoulou, E., and Jones, P. D.,2005. Assessment of climate extremes in the Eastern Mediterranean, Meteorology Atmospherics Physics,89,69-85.
    Krabill, W. B., et al.,1984. Airborne laser topographic mapping results, Photogrammetric Engineering and Remote Sensing,50,685-694.
    Kulkarni, V. S., and Khanna, P.,1985. Pumped wastewater collection systems optimization, Journal of Environmental Engineering,111(5),589-601.
    Kundzewicz, Z. W.,2003. Flood risk growth under global change-Yangtze floods in perspective, Journal of Lake Science,15,155-165。
    Kundzewicz, Z. W., Radziejewski, M., and Pinskwar, I.,2006. Precipitation extremes in the changing climate of Europe. Climate Research,31,51-58.
    Lager, J. A., and Smith, W. G.,1974. Urban stormwater management and technology-an assessment, US EPA Report, EPA-67012-74-040.
    Lane, S. N.,1998. Hydraulic modelling in hydrology and geomorphology:A review of high resolution approaches, Hydrological Processes,12,1131-1150.
    Lane, S. N., James, T. D., and Crowell, M. D.,2000. The application of digital photogrammetry to complex topography for geomorphological research, Photogrammetric Record,32,793-821.
    Lane, S. N., and Richards, K. S.,1998. Two-dimensional modelling of flow processes in a multi-thread channel, Hydrological Processe,12,1279-1298.
    Lane, S. N., et al,2007. Interactions between sediment delivery, channel change, climate change and flood risk in a temperate upland environment, Earth Surface Processes and Landforms,32(3),429-446.
    Lane, S. N., et al.,2008. Reconceptualising coarse sediment delivery problems in rivers as catchment-scale and diffuse, Geomorphology,98(3,4),227-249.
    Leopold, L.B.,1968. Hydrology for urban land planning, USGS Circular No.554, Washington, D.C., U.S. Government Printing Office.
    Liang, L.Y., Thompson, R. G., and Young, D. M.,2004. Optimizing the design of sewer networks using genetic algorighms and tabu search, Engineering. Construction and Architectural Management,11 (2),101-112.
    Linsley, R. K., Kohler, M. A., and Paulus, J. H.,1949. Applied Hydrology, McGraw-hill. New York.
    Linsley, R. K., and Crawford, N. H.,1960. Computation of a synthetic stream-flow record on a digital computer. International Association of Scientific Hydrology Publication,51,526-538.
    Marks, K. J., and Bates, P. D.,2000. Integration of high-resolution topographic data with floodplain flow models, Hydrological Processes,14,2109-2122.
    Mark, O., Apirumanekul, C., Kamal, M., and Praydal, P.,2001. Modelling of urban flooding in Dhaka City, UDM'01, Orlando, Florida, USA.
    Marsalek, J., Dick, T. M., Wisner, P. E., and Clarke, W. G.,1975. Comparative evaluation of three urban runoff models, Water Resources Bulletin AWRA 11(2).
    McBean, E. A., Ellis, H., and Mulamoottil, G,1985. Impact of alternative housing standards on stormwater management, Canadian Journal of Civil Engineering, 12,192-199.
    McCarthy, G. T.,1938. The unit hydrograph and flood routing. Presented at conference of U.S. Corps of Engineers, North Atlantic Division
    Mitchell, J. K.,1998. Hazards in changing cities, Applied Geography,18(1),1-6.
    Milly, P. C. D., et al.,2002. Increasing risk of great foods in a changing climate, Nature,415,514-517.
    Mrowiec, M., Kisiel, A., and Malmur, R.,2008. Channel storage as the effective component of the real timecontrol management of the drainage systems, The 7th International Conference Environment Engineering,656-661.
    Mulvaney, T. J.,1851. On the use of self-registering flood and rain gauges on making observations of the relations of rainfall and of flood discharges in a given catchment, Transactions of the Institute of Civil Engineers,4(2).
    Neal, J. C., Fewtrell, T. J., Bates, P. D., and Wright, N. G.,2010. A comparison of three parallelisation methods for 2D flood inundation models, Environmental Modelling & Software,25,398-411.
    Nie, L., Lindholm, O., Lindholm, G., and Syversen, E.,2009. Impacts of climate change on urban drainage systems-a case study in Fredrikstad, Norway, Urban Water Journal,6(4),323-332.
    Onof, C., and Nielsen, K. A.,2009. Quantification of anticipated future changes in high resolution design rainfall for urban areas, Atmospheric Research,92, 350-363.
    Pankrantz, R. H., Leblanc, M. R., and Newcombe, A.,1995. A comparison of dual drainage modeling techniques, In:James, William (Ed.), Chapter 23 in Modern Methods for Modeling the Management of Stormwater Impacts,521.
    Peltier, W. R.,2001. Global glacial isostatic adjustment and modern instrumental records of relative sea level history, in:Douglas, B. C., Kearney, M. S., and Leatherman, S. P. (Eds.), Sea-Level Rise:History and Consequences, Int. Geophys. Ser.,75, Academic Press, San Diego,65-95.
    Petrucci, O., and Polemio, M.,2007. Flood risk mitigation and anthropogenic modifications of a coastal plain in southern Italy:combined effects over the past 150 years, Natural Hazards and Earth System Sciences,7,361-373.
    Price, R. K.,1978. Design of storm water sewers for minimum construction cost, In Proc.1st Int. Conf. on Urban Strom Drainage, Southampton, UK,636-647.
    Price, R. K.,1982. A simulation model for storm sewers, Proceedings of the Second International Conference on Urban Storm Drainage, held in Urbana, Illinois, USA,184-192.
    Price, A. J., and Howard, R. A.,1978. An engineering evaluation of storm profiles for the design of urban drainage systems in the UK, Proceedings of the International Conference on Urban Storm Drainage held at the University of Southhampton, 306-316.
    Raisanen, J., et al,2004. European climate in the late twenty-first century:regional simulations with two driving global models and two forcing scenarios. Climate Dynamics,22,13-31.
    Richards, L. A.,1931. Capillary conduction of liquids through porous mediums, Physics,1(5),318-333.
    Roesner, L. A., and Shubinski, R. P.,1982. Improved dynamic flow routing model for storm drainage systems, Proceedings of the Second International Conference on Urban Storm Drainage, held in Urbana, Illinois, USA,164-173.
    Saeijs, H. L., and Van Berkel, M J.,1995. Global water crisis:the major issue of the 21st century, a growing and explosive problem, European Water Pollution Control,26-40.
    Soharffenborg, W. A., and Fleming, M. J.,2005. Hydrologic Modeling System HEC-HMS User's Manual Version 3.0.0.
    Seraj, S. M., and Badruzzman, A. B. M.,1997. Potential hazards and vulnerability in urban development of Dhaka city, Bangladesh, Engineering Geology and the Environment, Marinos, Koukis, Tsiambaos & Stoumaras, ISBN 9052108770.
    Sherman, L. K.,1932. Stream flow from rainfall by the unit graph method, Engineering News-Record,108,501-505.
    Singh, V. P.,1997. Kinematic wave modeling in water resources-Environmental hydrology, New York:John Wiley & Sons, Inc,1-10.
    Singh, V. P., & Fiorentino, M.,1996. Geographical information systems in hydrology, Dordrecht, Netherlands:Kluwer Academic Publishers, erlands:Kluwer Academic Publishers.
    Smith, M. B.,1993. A GIS-based distributed parameter hydrologic model for urban areas, Hydrological Processes,7,45-61.
    Smith, M. B., and Vidmar, A.,1994. Data set derivation for GIS-based urban hydrological modeling, Photogrammetric Engineering and Remote Sensing, 60(1),61-16.
    Snyder, F. F.,1938. Synthetic unit-graphs, Transactions, American Geophysical Union, 19,447-454.
    Sui a, D. Z., and Maggio, R. C.,1999. Integrating GIS with hydrological modeling: practices, problems, and prospects, Computers, Environment and Urban Systems, 23,33-51.
    Swan, A.,2010. How increased urbanization has induced flooding problems in the UK:A lesson for African cities, Physics and Chemistry of the Earth,35, 643-647.
    Takanishi, S., Noguchi, M, and Nakamura, T.,1991. Simulation of urban stormwater by 'Numerous', Proceedings of the ⅩⅩⅣ IAHR Congress held in Madrid Spain, A99-A108.
    Teng, W. H., et al.,2006. Impact of flood disasters on Taiwan in the last quarter century. Natural Hazards,57,191-207.
    Tomicic, B., Mark, O., and Kronborg, P.,1999. Urban flooding modelling study at Playa de Gandia, Third DHI User Conference, Horsholm, Denmark.
    Trupin, A., and Wahr, J.,1990. Spectroscopic analysis of global tide gauge sea level data, GeophysicalJournal International,100,441-453.
    US Army Corps of Engineers Hydrologic Engineering Center,1998. Flood Hydrograph Package User's Manual.
    Verworn, H. R.,2002. Advances in urban-drainage management and flood protection, Philosophical Transactions of The Royal Society of London Series A-Mathematical Physical and Engineering Sciences,360,1451-1460.
    Wang, L. J., et al,2008. Features of the large-scale circulation of the extremely heavy rain with severe floods over South China in June 2005 and its possible cause, Remote Sensing and Modeling of Ecosystems for Sustainability V,7083, S830.
    Mays, L. W. and Wenzel, H. G.,1976. Optimal design of multi-level branching sewer systems, Water Resources Research,12(5),913-917.
    Westaway, R. M., Lane, S. N., and Hicks, D. M.,2003. Remote survey of large-scale braided rivers using digital photogrammetry and image analysis, International Journal of Remote Sensing,24,795-816.
    Wheater, H. S.,2002. Progress in and prospects for fluvial flood modeling, Philosophical Transactions of the Royal Society of London:Mathematical, Physical and Engineering Sciences,360(1796),1409-1431.
    Whipkey, R. Z.,1965. Subsurface stormflow from forested slopes, Bulletin of the International Association of Science Hydrology,10(2),74-85.
    William H. E., Carl W. M., and Frank D. M.,1966. A study of some effects of urbanization on storm runoff from a small watershed, Texas Water Development Board, The Center for Research in Water Resources, University of Texas.
    Xu, Z. X., Zhang, H. Q., Li, H. Z., and Yin, H. L.,2009. Analysis of the rai nwater inflowing into the separated sewage system,2009 3rd International Conference on Bioinformatics and Biomedical Engineering, doi:10.1109/1 CBBE.2009.5162360.
    Yen, B. C., and Akan, A. O.,1999. Hydraulic design of urban drainage systems, In: Mays, L.W. (Ed.), Hydraulic Design Handbook, McGraw-Hill, New York.
    Yu, D.,2005. Diffusion-based flood modelling over topographically complex floodplains. PhD thesis, Department of Geography, University of Leeds.
    Yu, B., Miao, Q. L., Pan, W. Z., and Zhang, W.W.,2010. Risk Assessment of Hangzhou Typhoon Rainstorm Flooding Disaster Based on Fuzzy Comprehensive Assessment, Proceedings of the 2010 International Conference on Application of Mathematics and Physics,1,79-83.
    Zhai, P. M., et al.1999. Change of climate extreme in china. Climate Change,42, 203-218.
    Zolina, O., Kapala, A., Simmer, C., and Gulev, S. K.,2004. Analysis of extreme precipitation over Europe from different reanalyzes:a comparative assessment. Global Planet Change,44,129-161.
    白爱娟,刘晓东,2010.华东地区近50年降水量的变化特征及其与旱涝灾害的关系分析[J].热带气象学报,26(2):194-200.
    鲍庆,刘剑锋,2011.城市内涝问题分析及建议[J].水工业市场,(7):21-23.
    陈德超,李香萍,杨吉山,陈中原,吴朝军,2002.上海城市化进程中的河网水系演化[J].城市问题,109(5):31-35.
    陈仁升,康尔泗,杨建平,张济世,2003.水文模型研究综述[J].中国沙漠,23(3):221-229.
    陈振楼,王军,刘敏,俞立中,许世远,2008.上海市主要自然灾害特点与应对策略[J].华东师范大学学报(自然科学版),(5):116-125.
    程江,吕永鹏,黄小芳,郭晟,2009.上海中心城区合流制排水系统调蓄池环境效应研究[J].环境科学,30(8):2234-2240.
    丛翔宇等,2006.基于SWMM的北京市典型城区暴雨洪水模拟分析[J].水利水电技术,37(4):64-67.
    丁一汇,1997IPCC第二次气候变化科学评估报告的主要科学成果和问题[J].地球科学进展,12(2):158-163.
    董欣,陈吉宁,赵冬泉,2006.SWMM模型在城市排水系统规划中的应用[J].给水排水,32(5):106-109.
    范雨生,2000.上海市区暴雨和积水问题[J].城市道桥与防洪,(3):35-36.
    方龙龙,俞连根,吴林祖,陈海荣,1997.杭州城市内涝积水成因分析及减灾对策[J].科技通报,13(3):137-142.
    房国良,解以扬,李培彦,李大鸣,2009.上海城市暴雨积涝预警系统研究[J].大气科学应用与研究,(2):32-41.
    龚士良,1998.上海城市建设对地面沉降的影响[J].中国地质灾害与防治学报,9(2):108-111.
    龚士良,李采,杨士伦,2008.上海地面沉降与城市防汛安全[J].水文地质工程地质,(4):96-101.
    郭瑞,2005.基于可靠性的城市雨水管网水力计算研究[D].成都:西南交通大学.
    郭生练,熊立华,杨井,彭辉,王金星,2000.基于DEM的分布式流域水文物理模型[J].武汉水利电力大学学报,33(6):1-5.
    国家海洋局,1995,2007,2009.中国海平面公报[R].北京.
    黄国如,黄晶,喻海军,杨绍沂,2011.基于GIS的城市雨洪模型SWMM二次开发研究[J].水电能源科学,29(4):43-45.
    黄巧华,朱大奎,1997.海平面上升对沿海城市的影响[J].海洋通报,16(6):7-12.
    黄锡荃,李惠明,金伯欣.1993.水文学[M].北京:高等教育出版社,1-2.
    贾仰文,王浩,罗翔宇,周祖吴,严登华,秦大庸,2005.黄河流域分布式水文模型开发和验证[J].自然资源学报,20(2):300-308.
    江大伟,2011.我国城市内涝形成的主要原因及对策[J].商业文化,(10):351.
    姜爱军,杜银,谢志清,丁裕国,2005.中国强降水过程时空集中度气候趋势[J].地理学报,60(6):1007-1014.
    姜彤,苏布达,Gemmer, M.,2009.长江流域降水极值的变化趋势[J].水科学进展,19(5):650-655.
    蒋丽君,2011.上海中环(浦西段)地道排水问题及改造[J].排水给水,37:430-433.
    金磊,1997.中国城市水灾透视[J].城市问题,74(2):23-29.
    金云,2003.城市化与上海城市水文[J].水文水资源,19(2):39-41.
    李娜,袁雯,2011.上海洪涝灾害发生特征、致灾因子及影响机制研究[J].自然灾害学报,20(1):37-45.
    李洋,2011.城市内涝原因及对策浅析[J].安徽建筑,176(1):127-158.
    李云虹,2011.暴雨后的城市危机[J].法律与生活,(8):10-11.
    刘昌明,李道峰,田英,郝芳华,杨桂莲,2003.基于DEM的分布式水文模型在大尺度流域应用研究,地理科学进展,22(5):437-445.
    刘俊,郭亮辉,张建涛,吕彤,2006.基于SWMM模拟上海市区排水及地面淹水过程[J].中国排水给水,22(21):64-70.
    刘小宁,1999.我国暴雨极端事件的气候变化特征[J].灾害学,14(1):54-59.
    陆一奇,2008.关于城市防涝减灾的若干思考[J].浙江水利水电专科学校学报,20(1):34-38.
    马金,周永宏,廖德春,廖新浩,2007.1992-2007全球海平面变化[J].中国科学院上海天文台年刊,(28):37-41.
    闵骞,2002.近年来我国城市洪灾加重的原因[J].中国减灾,(3):42.
    司国良,黄翔,2009.长江下游沿江城市内涝灾害的反思与对策[J].江淮水利科技,(6):38-42.
    苏布达,姜彤,任国玉,陈正洪,2006.长江流域1996-2004年极端强降水时空变化趋势[J].气候变化研究进展,2(1):9-14.
    谭琼,李田,张彦晶,2008.上海市合流一期工程雨天流入水量的模型评估[J].同济大学学报(自然科学版),36(7):951-966.
    陶涛,信昆仑,刘遂庆,2005.气候变化下21世纪上海长江口地区降水变化趋势分析[J].长江流域资源与环境,17(2):223-226.
    王华杰,2001.城市圩区排水模式的应用--一种新的城市排水理念[J].上海水务,4(2):37-39.
    王华杰,2002.城市圩区雨水的排放模式探讨[J].中国排水给水,18(11):33-35.
    王绍武,龚道溢,叶瑾琳,陈振华,2000.1880年以来中国东部四季降水量序列及其变率[J].地理学报.55(3):281-293.
    王祥,张行南,张文婷,张涛,2011.基于SWMM的城市雨水管网排水能力分析[J].三峡大学学报(自然科学版),33(1):5-8.
    王小玲,翟盘茂,2008.1957-2004年中国不同强度级别降水的变化趋势特征[J].热带气象学报,24(5):459-466.
    吴传健,1999.城市暴雨积水探因[J].城市,(2):51.
    吴庆洲,1998.我国21世纪城市水灾风险及减灾对策[J].灾害学,13(2):89-94.
    徐秀洁,2006.城区道路积水问题的探讨[J].防洪排水,(4):111-116.
    杨戈,张茂成,2011.城市内涝特征分析与完善排水系统措施探讨[J].工程科技,(16):238.
    杨桂山,施雅风,1995.海平面上升对中国沿海重要工程设施与城市发展的可能影响[J].地理学报,50(4):302-309.
    杨凯,袁雯,1997.上海城市暴雨积水成因及控制对策探讨[J].上海建设科技,(2):12-13.
    杨凯,袁雯,赵军,许世远,2004.感潮河网地区水系结构特征及城市化响应[J].地理学报,59(4):557-564.
    叶蕾,2011.解决城市内涝需政策支持[J].中国科技奖励,147(9):47-48.
    殷冬明,2011.被淹没的城市[J].北京城市建设,(4):164-165.
    虞中锐,1994.上海相对海平面上升对市区现有防汛设施的影响[C].中国科学院地理学部,海平面上升对中国三角洲地区的影响及对策.北京科学出版社,220-223.
    袁雯,杨凯,唐敏,徐启新,2005.平原河网地区河流结构特征及其对调蓄能力的影响[J].地理研究,24(5):717-724.
    袁雯,杨凯,徐启新,2005.城市化对上海河网结构和功能的发育影响[J].长江流域资源与环境,14(2):133-138.
    袁业飞,2011.城市内涝治而不愈的僵局如何打破?聚焦我国城市“逢雨必涝”顽疾[J].中华建设,(8):8.
    翟盘茂,王萃萃,李威,2007.极端降水事件变化的观测研究[J].气候变化研究进展,3(3):144-148.
    张东,张万昌,朱利,朱求安,2005.SWAT分布式流域水文物理模型的改进及应用研究[J].地理科学,25(4):434-440.
    张力海,张业成,于道永,刘海青,2007.中国沿海海平面变化及其环境影响的初步分析[J].中国地学网,http://www.geonet.cn/Papers/GeoEnvironment/3889. shtml
    张录军,钱永甫,2004.长江流域汛期降水集中程度和洪涝关系研究[J].地球物理学报,47(4):622-630.
    张维,欧阳里程,2011.广州城市内涝成因及防治对策[J].广东气象,33(3):49-53.
    张先立,齐霁萱,2007.城市排水工程建设中亟待解决的几个问题[J].给水排水动态,(2):8-9.
    张悦,2010.关于城市暴雨内涝灾害的若干问题和对策[J].中国给水排水,26(16):41-47.
    赵冬泉,佟庆远,王浩正,王浩昌,王婧,2009SWMM模型在城市雨水排除系统分析中的应用[J].给水排水,35:198-201.
    赵树旗,晋存田,李小亮,周玉文,2009.SWMM模型在北京市某区域的应用[J].给水排水,35:448-451.
    周乃晟,1990.城市洪水及其防治[J].自然杂志,13(9):575-579.
    周乃晟,袁雯,1993.上海市暴雨地面积水的研究[J].地理学报,48(3):262-271.
    周树人,刘巧兰,2000.上海市暴雨积水灾害成因及防治对策研究[J].城市研究,81(2):18-21.
    朱季文,季子修,蒋自巽,杨桂山,1994.海平面上升对长江三角洲及邻近地区的影响[J].地理科学,14(2):109-117.
    朱雁霞,1999.上海市区积水及排水问题初探[J].上海市政工程,(3):39-43.
    Bates, P. D., Horritt, M. S., and Fewtrell, T. J.,2010. A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modeling, Journal of Hydrology,387,33-45.
    Bradbrook, K. F., Lane, S. N., Waller, S. G., and Bates, P. D.,2004. Two dimensional diffusion wave modelling of flood inundation using a simplified channel representation, International Journal of River Basin Management,3,1-13.
    Hunter, N. M., Bates, P. D., Horrit, M. S., and Wilson, M. D.,2007. Simple spatially-distributed models for predicting flood inundation:a review, Geomorphology,90,208-225.
    Lins, H. F., and Slack, J. R.,1999. Streamflow trends in the United States, Geophysical Research Letters,26,227-230.
    Wilby, R. L.,2006. When and where might climate change be detectable in UK river flows, Geophysical Research Letters,33(L19407),1-5.
    Yu, D., and Lane, S. N.,2006. Urban fluvial flood modelling using a two-dimensional diffusion-wave treatment, part 1:mesh resolution effects, Hydrological Processes, 20,1541-1565.
    Yue, S., Pilon, P., and Cavadias, G.,2002. Power of the Mann-Kendall and Spearman's rho tests for detecting monotonic trends in hydrological data, Journal of Hydrology,259,254-271.
    曹洁萍,迟道才,武立强,刘丽,李帅莹,于淼,2008.Mann-Kendall检验方法在降水趋势分析中的应用研究[J].农业科技与装备,179(5):35-38.
    陈德超,李香萍,杨吉山,陈中原,吴朝军,2002.上海城市化进程中的河网水系演化[J].城市问题,109(5):31-35.
    陈利群,2010.SWMM在城镇排水规划设计中适用性研究[J].给水排水,36(5):114-117.
    李阔,李国胜,2010,珠江三角洲地区风暴潮重现期及增水与环境要素的关系[J].地理科学进展,29(4):433-438.
    李香萍,2000.近五十年来城市化过程中上海市区积排水系统研究及对浦东新区的应用[D].上海:华东师范大学.
    李政,苏永秀,2009.1961-2004年广西降水的变化特征分析[J].中国农学通报,25(15):268-272.
    芮孝芳,2004.水文学原理[M].北京:中国水利水电出版社.
    上海市航空遥感综合调查办公室,1997.上海市第二轮航空遥感综合调查与研究科研总报告[R].
    张大伟,赵冬泉,陈吉宁,王浩正,王浩昌,2008.芝加哥降水过程线模型在排水系统模拟中的应用[J].给水排水,34(增刊):354-357.
    张涛,张行南,张文婷,王祥,2010.基于SWMM的管网变化对城市水文特征的影响分析[J].三峡大学学报(自然科学版),33(2):16-19.
    张英,李宪文(国家防汛抗旱总指挥部办公室),1992.防汛手册[M].北京:中国科学技术出版.
    Shi, Y., et al.,2010.Exposure assessment of rainstorm waterlogging on old-style residences in Shanghai based on scenario simulation, Natural Hazards,53, 259-272.
    上海市地方志办公局,2011.上海年鉴[M].上海:《上海年鉴》编辑部.
    范雨生,2000.上海市区暴雨和积水问题[J].城市道桥与防洪,(3):35-36.
    国家海洋局,2010.中国海平面公报[R].北京.
    阮仁良,2000.上海市水环境研究[M].北京:科学出版社.
    上海市农业区划委员会办公室,1984.上海市地表水资源和水利区划[R].上海.
    上海市气象科学研究所,1984.分析和气候图集[C].上海市暴雨天气气候分析和图集(1959-1975),(1):29-31.
    王静江,2011.城市基础设施体系日益完善[N].中国环境报,2011.11.21(7).
    Veldkamp, A., and Verburg, P. H.,2004. Modeling land use change and environmental impact, Journal of Environmental Management,72:1-3.
    Zhai, P. M., Zhang, X. B., Wan, H., and Pan, X. H.,2005. Trends in total precipitation and frequency of daily precipitation extremes over china, Journal of Climate,18, 1096-1108.
    Quan, R. S., et al.,2010. Waterlogging risk assessment based on land use/cover change:a case study in Pudong New Area, Shanghai, Environment Earth Science, 61,1113-1121.
    陈德超,李香萍,杨吉山,陈中原,吴朝军,2002.上海城市化进程中的河网水系演化[J].城市问题,109(5):31-35.
    金彤,2011.城市化与上海城市发展[J].上海企业,(1):75-77.
    李博,2008.上海高度城市化地区土地利用变化对雨水径流影响的研究[D].上海:华东师范大学.
    李香萍,2000.近五十年来城市化过程中上海市区积排水系统研究及对浦东新区的应用[D].上海:华东师范大学.
    苗金堂,1984.上海三十五年来水利建设成就[J].上海水利,(9):2-5.
    史培军,袁艺,陈晋,2001.深圳市土地利用变化对流域径流的影响[J].生态学报,21(7):1041-1049.
    许世远等,2004.上海城市自然地理图集[c].上海:中国地图出版社.
    赵晓慎,王卫东,2007.皮尔逊-Ⅲ型分布曲线最佳配线及自动化绘图[J].人民黄河,29(4):25-26.
    中国建筑工业出版社,1996.室外排水工程规范[M].北京:中国建筑工业出版社.
    周丽英,杨凯,2001.上海降水百年变化趋势及其城郊的差异[J].地理学报,56(4):467-476.
    周巧兰,1996.上海市暴雨特征分析和市区地面暴雨积水模型[D].上海:华东师范大学.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700