用户名: 密码: 验证码:
电磁阀检测系统的研发及相关流体控制技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电磁阀是工业控制系统中重要的执行元件,其性能的好坏直接关系到整个系统的安全性及可靠性。鉴于我国目前尚没有功能完备且技术先进的电磁阀自动检测设备,本论文以某电磁阀生产企业的项目为背景研发了一套多功能和智能化的电磁阀检测系统。该检测系统的研发对推动电磁阀企业的生产及电磁阀行业的发展起着重要的作用。本文通过理论分析、计算机仿真技术及试验研究相结合的方法,对电磁阀检测系统的开发和相关流体控制技术进行了深入的研究和探讨,主要研究工作如下:
     1.首先进行了电磁阀检测系统的总体方案设计,该方案可分为计算机测控系统和流体控制系统两大部分,其中对于计算机测控系统的开发涉及到硬件和软件两个方面:硬件方面着重研究上位工控机与下位机PLC组成的集成控制方案,并讨论了硬件结构和配置及硬件抗干扰技术;软件方面以虚拟仪器技术的设计思想为指导,设计了电磁阀各项性能试验的测试平台,采用Labview开发了测控软件,该软件可自动完成对电磁阀的性能测试,具有数据采集、控制、数据分析、结果数据库管理和打印输出以及用户界面等功能。
     2.电磁阀试验台具有频繁使用且间歇动作的特性,管路内流体经常以非恒定流状态频繁振荡,导致管路振动继而损坏高精度传感器和流体元件。因此,本论文对电磁阀试验台主测试管路的动态特性进行研究,运用阻抗分析法分析主测试管路发生谐振的条件以及该管路在频率域内的压力传递特性。采用流体管路频域模型的近似方法对主测试管路的压力比频率特性进行了仿真研究,通过仿真研究对流体管路的几何尺寸和管路的长度等因素作出了合理的结构设计。
     3.分析了诱发液压冲击和脉动产生的机理,计算了最大冲击压力和泵源脉动频率。因在实际的流体系统中根本消除压力冲击和振动源的脉动是极其困难的,采用调整系统的阻抗特性(如改变管长和元件结构等)又要受到系统合理设计的限制(如系统正常运行工况、元件安装空间方位等),因此,采用蓄能器以衰减或吸收液压冲击和脉动。通过对蓄能器的消减作用及其动态特性的分析,进而合理选择蓄能器的相关参数,使蓄能器达到最佳的减振效果。
     4.设计了电磁阀试验台流体系统的压力控制方案。针对该流体系统中压力难于精确控制的问题,分析了变频泵控调压的压力控制原理,并对压力控制的关键元器件进行了合理选择。建立了流体系统压力的数学模型并根据模糊控制和PID控制各自的优点,选择模糊自适应PID控制算法为系统压力控制策略,进行了仿真研究,并将其应用于系统泄漏试验和密封试验中。
     5.基于以上流体控制技术关键问题的研究,设计了流体试验台和阐述了其结构和工作原理,并在现场搭建完成所设计的试验台。遵循国家规范和行业标准研究了不同类型电磁阀产品的出厂试验和型式试验的试验方法和流程。最后对所设计和开发电磁阀检测系统进行了实际运行及进行了电磁阀的各项性能检测现场试验。现场试验不仅验证了本文对于电磁阀检测系统的研发和相关流体控制技术的研究思路和研究方法是可行的,同时也表明该电磁阀检测系统不但完全满足电磁阀产品生产的需要,而且功能完善、自动化程度高且具有极高的应用和推广价值。
     本文的相关研究不仅为成功开发一个高性能的电磁阀检测系统提供了有力的理论依据和技术保障,同时对自动化测控领域和相关流体控制技术的理论研究及实际应用也具有重要的学术参考价值。
Solenoid valve is an important actuator of industry control system, which is directly related to the security and reliability of the whole system. Whereas lacking of test equipment for solenoid valve with comprehensive function and advanced technology in our country, a multifunctional and intelligent testing system of solenoid valve is developed in this paper by cooperating with a leading enterprise. The developing of this test system can promote producing of the enterprise and the development of solenoid industry. Researches on the key technologies about system developing and fluid control are conducted with the combination of theoretic analysis, computer simulation and experimental study. The main research contents are as follows:
     1. The overall scheme was designed which was consisted of the computer test and control system and the fluid control system. For the developing the computer test and control system this thesis utilized the software and hardware sources. In hardware part the integrated controlling scheme about IPC and PLC was researched with great emphasis on, and the anti-interference technique was discussed. In software part with the idea based on virtual instrument technology the test platform for all performance tests of solenoid valves was designed and the test software was developed with Labview. The software could fulfill automatically the performance tests for solenoid valves, and possesses the function of data collection, controlling, analyzing, result management and printing, as well as intuitionist user interface.
     2. For the solenoid valve test-bed has the characteristic of being used frequently and acting intermittently, liquid in pipeline is always in the state of unsteady flow and it makes the pipeline vibrating which would damaged the delicate sensors and fluid components. So the dynamic characteristic of main test pipeline in solenoid valve test-bed was studied, and the impedance was applied to research the conduction of resonance and the characteristic of pressure dissemination in frequency domain. Furthermore, the simulation research was carried on with approximation method about frequency domain characteristic for pipeline. From the results of simulation we made the reasonable structure design about the diameter and length of the pipeline.
     3. In this thesis mechanism of inducing hydraulic impact and pressure fluctuation were analyzed, and the maximum value of impact pressure and the fluctuation frequency of pump were calculated. At the same time it is difficult to remove the impact and fluctuation essentially, but to adjust the impedance, for example changing the length of pipeline or the structure of components, etc, is constricted by the reasonable system design including the normal running state of system and special location of components. Consequently, accumulators were installed to attenuate or absorb impact and fluctuation. Furthermore, its related parameters were chosen rationally to achieve the best effect of eliminating vibration based on the research on the working principle and dynamic characteristic of accumulators.
     4. Pressure control scheme for solenoid test-bed was designed. In view of the problem about pressure precisely control the pressure control principle was analyzed, and relative components are introduced. A mathematical model of system pressure is created, and the intelligent algorithms which are fuzzy adaptive PID control were proposed by combining advantages of fuzzy control and PID control as the best control strategy for system pressure control. The pressure simulation experiments were carried out in leakage and sealing experiments.
     5. Based on the analysis of the key problems of fluid control, the test-bed for solenoid valve was designed of which structure and principle were explained, and built it in the workshop. Furthermore, according the principle of the performance tests analyzed above, test methods were conducted on different types of solenoid valve products about delivery inspection and type tests followed the national standards and industry standards. At last the test system for solenoid valve which was designed and developed was operated actually, and solenoid valves were tested in all performance tests. The tests prove that the feasibility of the method about the design for solenoid valve test-bed and researches on fluid control technique in this thesis, and also prove that not only fully meet the needs of actual batch production, but also have a perfect function and high automation in wide applications.
     The related research results not only provide theoretical foundation and technical support for successful development of a high performance solenoid valve test system, but also have some value in academic reference for theoretical research and practical applications in the automated measurement and control fields.
引文
1.黄茂杨,张靖,翟羽健.高速电磁阀特性测试系统及其应用[J],测控技术,2004,11:61-63.
    2.刘汉桥, 张多,罗征国.电液比例阀测控一体化试验系统研制[J],机床与液压,2004,7:93-94.
    3.陈新元,戴智华,易建钢.基于虚拟控制平台的液压CAT系统研究[J],机床与液压,2002,2:163-165.
    4.王益群,王燕山,姜万录.基于虚拟仪器的电液伺服阀静动态特性检测[J],液压气动与密封,2001,l:13-15.
    5.赵国普.液压元件试验台计算机辅助检测系统的研究[J],机床与液压,1999,5:77-80.
    6. Muto T, Yamada H, Suematsu Y. Digital control of hydraulic actuator system operated by differential pulse width modulation [J], JSME Int,1990,33(4):641-648.
    7.朱坚民,周福章.溢流阀计算机辅助检测及数据处理[J],机床与液压,1998,3:56-58.
    8. 陈奎生,曾良才,湛从昌.电液伺服阀动、静态特性的计算机辅助检测[J],国际液压气动伺服比例技术交流会.1995,8.
    9.吴炳胜,刘体龙,智传锁.液压综合试验台测控系统的研制与开发[J],河北建筑科技学院学报,2005,22(1):91-94.
    10.孙华平,卢达.电磁阀电磁性能检测系统的研制[J],上海纺织机械,2003,31(4):63-64.
    11.王燕山,王益群.姜万录.虚拟仪器技术在液压CAT中的应用[C],第一届全国流体动力及控制工程学术会议,中国秦皇岛,2000,8.
    12.张毅.虚拟仪器技术分析与[M],北京:机械工业出版社,2004.
    13.秦树人.智能控件化虚拟仪器系统一原理与实现[M],北京:科学出版社,2004.
    14.阮晓芳.带长管道阀控系统的动态特性研究[D],杭州浙江大学,2003.
    15.权凌宵.基于管路效应的皮囊式蓄能器数学模型与试验研究[D],秦皇岛燕山大学,2005.
    16.史志永.基于交流变频技术的变量泵[J],液压与气动,2003,1(1):38-41.
    17. MANASEK R. Simulation of an Electrohydraulic Load-sensing system with AC motor and frequency changer[C], Pro.c of the 1st FPNI-PhD Symposium, Slovakia:Slovak University of Technology,2000,2:311-324.
    18. Morton Y S, Shimizu M, Kagawa T. An analysis on pneumatic PWM and its application to a manipulator [C], Proceedings of the international symposium on fluid power control and measurement, Tokyo,1987:3-8.
    19.周超群.电磁阀的原理及其在工程设计中的应用探讨[J],石油化工自动化,2006,5:92-96.
    20. Melda Ozdinc Carpinlioglu, Mehmet Yacar Gundogdu. A critical review on pulsatile pipe flow studies directing towards future research topics [J], Flow Measurement and Instrumentation,2001,12:163-174.
    21.关浩.基于虚拟仪器技术的液压传动CAT系统[J],组合机床与自动化加工技术,2001,12:40-41.
    22.庞君.虚拟仪器技术在液压检测系统中的应用[J],机床与液压,2002,3:171-172.
    23.杨征瑞,徐铁,杨庆瑞,梁云.基于虚拟仪器技术的智能型液压元件试验台[J],液压与气动,2003,8:34-36.
    24.邓焱.LabVIEW 7.1测试技术与仪器应用[M].北京:机械工业出版社,2004.
    25. Kevin M. Passino, Stephen Yurkovich, Fuzzy control [M], Tsinghua University Press, 2001.11.
    26. Salvatore Nuccio, Ciro Spataro. Assessment of virtual instruments measurement uncertainty [J], Computer Standards & Interfaces,2001,23:39-46.
    27. Frederick B Reitz, Gerald H Pollack. LabVIEW virtual instruments for calcium buffer calculations [J], Computer Methods and Programs in Biomedicine,2003,70:61-69.
    28.蒋海峰,张熠,范玉璋.基于RBF的神经网络的模糊控制在交流调速中的应用研究[J],自动化技术与应用2004,23(5):65-68.
    29. Jimeneza F J, De Frutos J. Virtual instrument for measurement, processing data, and visualization of vibration patterns of piezoelectric devices [J], Computer Standards & Interfaces,2005,27:653-663.
    30. George C-Y Chan, Gary M Hieftje. A LabVIEW program for determining confidence intervals of Abel-inverted radial emission profiles [J], Spectrochemical Acta Electronic Part B,2005,60:1486-1501.
    31. Christophe L, Bryanta, Neeraj J. Real-time data acquisition and control system for the measurement of motor and neural data [J], Journal of Neuroscience Methods,2005, 142:193-200.
    32. Dragan D. Kukolj, Slobodan B.Kuzmanovic, Emil Levi. Design of a PID-like compound fuzzy logic controller [J], Engineering Applications of Artificial Intelligence.2001,14: 785-803.
    33.赵磊生.容积节流联合调速液压系统静动态特性数字仿真研究[D],广西大学硕士学位论文,2005.
    34. Hunter R, Rios J, Perez J M.Vizan A functional approach for the formalization of the fixture design process [J], International Journal of Machine Tools and Manufacture, 2006,46(6):683-697.
    35.江灏.液压综合试验平台PLC实时测控系统[D].浙江大学硕士学位论文,2006,3.
    36. H.Ying. Analytical Relationship between the Fuzzy PID controllers and the linear PID controller [J], Technical Reprot, Department of Biomedical Engineering, The University of Albama at Birmingham, December 8,1987.
    37.胡包钢.模糊PID控制技术研究发展回顾及其面临的若干重要问题[J],沈阳自动化学报,2001.27(4):567-584.
    38. Jack Smith.PLCs vs. PCs for industrial control [J], Plant Engineering,2003,57(6):44-46.
    39. Peter Kis, Miklos Kuczmann, Janos Fuzi, Amalia Ivanyi. Hysteresis measurement in Lab VIEW [J], Physical B,2004,343:357-363.
    40.薛朝改,曹海旺,谷文韬.基于虚拟仪器的动态参数检测系统的研制[J],微计算机信息,2006,22(19):96-98.
    41. Flandorfer H, Gehringer F, Hayer E. Individual solutions for control and data acquisition with the PC [J], Thermochimica Acta,2002,382:77-87.
    42.郭宗仁可.可编程控制器应用系统设计及通信网络技术[M],人民邮电出版社,2000.
    43.邓焱,王磊.LabVIEW7.1检测技术与仪器应用[M],北京:机械工业出版社,2004.
    44.杨乐平,李海涛.Lab VIEW高级程序设计[M],北京:清华大学出版社,2003.
    45. National Instruments Corporation. Using External Code in LabVIEW [Z],2000.
    46.苏金明,黄国明,刘波.MATLAB与外部程序接口[M],北京:电子工业出版社,2004.
    47.彭宇宁,朱后.利用DLL技术实现LabVIEW和MATLAB混合编程用[J],计算机与现代化,2007,8:93-95.
    48.王禹林,熊振华,丁汉LabVIEW与Matlab的无缝集成[J],计算机应用,2006,26(3):695-698.
    49. Lipovszki G, Aradi P.Simulatiing complex systems and processes in LabVIEW [J], Journal of Mathematical Sciences,2006,132(5):629-636.
    50. Cole R T, Lucas C L, Cascio W E, et al.A LabVIEW TM model incorporating an open-Loop arterial Impedance and a closed-Loop circulatory System [J], Annals of Biomedical Engineering,2005,33(11):1555-1573.
    51.袁伟俞,孟蕻,树伟.基于多线程的PC与PLC的通讯在推进系统中的应用[J],微计算机信息,2006,22(19):96-98.
    52.苏海龙,骆宗安,张殿华.基于LabVIEW RT的多实时任务控制系统[J],测控技术,2004,23(6):34-36.
    53.裴锋,汪翠英.虚拟仪器的数据采集方法探讨[J],现代电子技术,2005,11:1-4.
    54. National Instruments Corporation. DAQmx NI-DAQ-User Manual [Z],2005.
    55.毕虎,律方成,李燕青,李和明.LabVIEW中访问数据库的几种不同方法[J],微计算机信息,2006,22(1):131-134.
    56.刘金宁,孟晨,杨锁昌,陈德祥.基于LabVIEW实现对OPC服务器的访问[J],计算机工程与设计,2004,10:1756-1759.
    57.李红梁.基于OPC的PC与PLC实时通讯的LabVIEW实现[J],计算机应用研究,2003,12:115-118.
    58.宋万清,杨建国.LabVIEW实现PC与PLC实时监控[J],制造业自动化,2005,4:60-62
    59. OMRON Corporation. FinsGateway Manual [Z],2003.
    60. OMRON Corporation. SYSMAC OPC Server Operation Manual [Z],2003.
    61.张辉,郁凯元,龙涛,王建强.基于LabVIEW软件的动态连接库和数据采集[J],仪表技术,2002,6:36-37.
    62.蔡亦钢.流体传输管道动力学[M].第1版.杭州:浙江大学出版社,1989.
    63.罗志昌.流体网络理论[M].第1版.北京:机械工业出版社,1988.
    64.郑洽徐,鲁钟琪.流体力学[M].第1版.北京:机械工业出版社,1979.
    65.景思睿,张鸣远.流体力学[M].第1版.西安:西安交通大学出版社,2001.
    66.陈杰,朱蕴璞,王昌明.水下压力测量传压管道动态特性分析[J].传感器技术,2004,11:24-27.
    67.包家立.带引压管和容腔的压力传感器现场动态标定的探讨[J].仪器仪表学报,1990,1:65-71
    68.孔晓武.带长管道的负载敏感系统研究[D].浙江大学.2003.
    69.赵彤,彭光正,许耀铭.液压管道分布参数模型的精确近似[J].机床与液压.1998,1:43-50.
    70.张祥林,黄树槐,王运赣,李从心.管道流体瞬变的有限元研究[J].中国机械工程.1995,4:23-25.
    71.赵喜容,任德志.管道对液压系统静动特性的影响.机床与液压[J].1997.5:41-42.
    72. B.L.margolis, W.C.Yang. Bond Graph Models for Fluid Networks Using Mod,il Approximation. J.of Dynamic Systems. Measurement and Control. Sept.1985. Vol. 107:269-272.
    73.张慧.武器压力测试中传压管道的动态特性研究[D].南京理工大学硕士论文.2006.
    74.张洪,基于MATLAB的液压管路动态特性的仿真[J],液压与气动,2003,9:28-30.
    75.蒋劲,赵红芳,李继珊.泵系统管线局部凸起水锤防护措施的研究.华中科技大学学报(自然科学版)[J],2003,5:65-67.
    76.刘志勇.长输水管道系统水锤防护的比较及研究[D].武汉大学硕士学位论文,2001,4.
    77.刘梅清,孙兰凤,周龙才,徐元利.长管道泵系统中空气阀的水锤防护特性模拟[J].武汉大学学报(工学版),2004,5:37-41,
    78.谭平,徐蕾,凌晓聪,动力管道水锤激振分析[J],南京理工大学学报,2006,2:182-185.
    79.李松晶,鲍文,采用MATLAB Simulink的液压管路瞬态压力脉动分析[J],工程力学,2006,9:184-188.
    80.岑豫皖.液压管道对电液伺服系统稳定性影响的研究[J].机床与液压.1998,4:58-60.
    81.李明智,蔡耀志.频率相关摩擦损失项的近似求解[J].浙江大学学报.1990,1.
    82.宫敬,严大凡.长输管道动态模型及在控制系统中的应用[J].油气田地面工程.1999.3(18):27-29.
    83.苏尔皂.管道动态分析及液流数值计算方法[M].哈尔滨工业大学出版社.1985
    84.赵永凯.液压管道流体动力学模型的近似[J].东北重型机械学院学报.1991.3
    85.贺尚红,钟掘.管道流体的瞬态仿真模型[J].中南工业大学学报.2000.2(31):173-176.
    86.蔡亦钢,盛敬超,路甫祥.液压油中压力传递速度特性的研究[J].浙江大学学报.1988.48.
    87.万五一,练继建,李玉柱.阀门系统的过流特性及其对瞬变过程的影响.清华大学学报(自然科学版)[J].2005,9(45):1198-1201.
    88. Ming Zhaol and Mohamed S.Ghidaoui. godunov-type solutions for water hammer flows. Jounnal of hydraulic Engineering [J].ASCE,2004,4:341-348.
    89. Mohamed S.Ghidaoui, Ming Zhao, Duncan A. McInnis. a review of water hammer theory and practice [J].ASME,2005,58:49-76.
    90. Don J. Wood.water hammer analysis--essential and easy and efficient [J]. Journal of environmental engineering [J]. ASCE,2005,8:1123-131.
    91. Q. S. Li, M.ASCE; Ke Yang; Lixiang Zhang. analytical solution for fluid-structure interaction in liquid-filled pipes subjected to impact-inducedwater hammer. Journal of engineering [J].ASCE,2003,12:1408-1417.
    92. Jin Zhui. The study on water column separations and the water hammer Due to cavities col-lapsing at two points. Proceedings of the 3rd Japan-China Joint conference on Fluid Machinery.1990,4.
    93. Tsukamoto Osaka Hiroshi, Tanaka Teiichi. Transient behavior of a cavitating centrifugal pump at rapid change in operating condition. ASME, Fluids Engineering Division (Publication) 1997,6:22-26.
    94.罗群贤.液压脉动分析与控制[J].机床与液压.1983.2:9-27.
    95.金刚.变频调速液压控制系统的压力脉动分析[D].浙江大学硕士论文.2004.
    96.朱金鑫.消除柱塞泵流量脉动的方法[J].机床与液压.2006.8:166-168.
    97.李宝顺.液压系统液体振动固有频率的计算[J].液压与气动.2004.6:16-19.
    98.俞继印,金松,阮健等.轴向柱塞泵流量脉动的分析[J].机床与液压.2005,19.
    99.邓晓刚.空气室对管道系统中的流体压力脉动的影响[D].重庆大学硕士学位论文.2002.
    100.封海波.海水管路中阀门动态特性和噪声控制的研究[D].哈尔滨工程大学硕士学位论文.2003.
    101.孔祥东,权凌霄.蓄能器的研究历史、现状和展望[J].机床与液压,2004,1:4-7.
    102.王琳,曹瑞涛,冯长印.蓄能器基本参数确定及其特性对液压系统的影响[J].陶瓷.2005,5:40-42.
    103.曹东辉.高频响液压蓄能及消振装置的设计理论和基础技术研究[D].浙江大学博士论文.1987.
    104.谢坡岸.蓄能器对管道流体脉动消减作用的研究[J].噪声与振动控制.2000.4,2-5.
    105.姚荣康,朱昌明,詹永麒.带皮囊式蓄能器的油压缓冲器仿真与试验[J].系统仿真学报2005,17(11):2741-2744.
    106.王海兰,陆剑波.采用蓄能器吸收压力脉动的回路配置与分析[J].流体传动与控制,2004,3:20-21.
    107. Sang-JoonLeea, Hyoung Bum Kima, Jeong-Ki. Quantitative analysis flow inside the accumulator of a rotary compressor International Journal of Refrigeration,2003, 26(1):321-327.
    108.刘跃南,丁问司.高低压蓄能器充气压力对氮爆式冲击器性能影响的仿真研究[J],建筑机械,2002,8:33-34.
    109.宋孝臣.入口特性对蓄能器性能影响的研究[D].燕山大学.2006,2.
    110. Patra J C, Bosvanden A. Modeling of intelligent pressure sensor using functional link artificial neural networks [J], ISA Transactions,2000, (39):15-27.
    111. Patra J C, Pal R N. A functional link artificial neural network for adaptive channel equalization [J], Signal Processing,1995,43(2):181-195.
    112. Suykens J A K. Nonlinear modeling and support vector machines [C], Budapest:IEEE Instrumentation and Measurement Technology Conference,2001:287-294.
    113.樊建军,王峰,张朝升,胡晓东.变频调速给水系统水泵选型与运行的优化[J],工业用水与废水,2005,36(1):58-60.
    114. Bachmann U. Variable speed pumping a guide to successful applications [J], Journal of fluid control,1998,10(1):50-62.
    115. Grotenberg K, Koch F, Erlich L. Modeling and dynamic simulation of variable speed pump storage units incorporated into the German electric power system [J], EPE Trondheim,2001,8(1):67-77.
    116. Yutaka Tanaka, Kazuo Nakano. Speed and displacement control of pump system for energy saving [J], Journal of fluid control,1998,17(5):78-81.
    117. Nerman Th. Differential cylinder servo system based on speed variable pump and sum pressure control principle [J], Journal of fluid control,1999,12(8):43-48.
    118. Grotenburg K, Koch F, Erlich I. Modeling and dynamic simulation of variable speed pump storage units incorporated into the German electric power system [J], EPE Trondheim,2001,8(1):67-77.
    119. Kazmeier B and Feldmann D G. Electro-hydraulic low power linear drive-system reformation and controls to minimize power consumption [J], Germany 1994,2000, 9(2):241-255.
    120. Kuwabara T, Harada M. Performance of 400 MW adjustable speed pumped storage units for Ohkwachi power station [J], EPE Trondheim,1998,15(1):1-10.
    121. Dahmann Peter. Closed loop speed and position control of a hydraulic manipulator in brick works with a frequency controlled internal gear pump in motor/pump operation [C], 3rd International fluid power conference. Aachen, Germany,2002:83-93.
    122. Kazmeier B, Feldmann D G. Electro-hydraulic low power linear drive performance and controls to minimize power consumption [J], Journal system of fluid control,2000, 11(1):113-119.
    123.严国英.定量泵变速变量的探讨[J],机床与液压,2000,11(1):32-33.
    124.李湘闽.容积节流回路变频调速设计[J],南方冶金学院学报,2002,23(4):20-23.
    125. James Carvajal, Guanrong Chen, Haluk Ogmen. Fuzzy PID controller:Design, performance evaluation, and stability analysis [J], Information Sciences 2000,123: 249-270.
    126.刘美林.变频驱动液压复合控制系统[D],中南大学硕士学位论文,2004,12.
    127.李永堂.液压系统建模与仿真[M],北京:冶金工业出版社,2003,2.
    128.王吉龙.基于变频技术的液压调速系统控制方案的仿真研究.大连海事大学硕士学位论文.2006.
    129.邵文彬.基于四象限工作的变频闭式液压回路及其应用研究.浙江大学,2006.
    130.彭天好.变频泵控马达调速及补偿特性的研究.浙江大学博士学位论文.2003.
    131. Arthur Kordon.Robust soft sensors on integration of genetic programming, analytical neural networks, and support vector machines Evolutionary Computation [C], Proceedings of the 2002 Congress on,2002,1:896-901.
    132. Bo C M.The application of neural network soft sensor technology to an advanced control system of distillation operation [C], Neural Netwoks, Proceedings of the International Joint Conference,2003,2:1054-1058.
    133. Gupta R C, Agarwal R P. Non-Newtonian flow development in a circular pipe [J], Fluid Dyn.Res,1993,3:203-213.
    134. Gupta R C. On developing laminar non-Newtonian in pipes and channels [J], Nonlinear Analysis:Real World Applications,2001,2:171-193.
    135. Takagi T and Sugeno M. Fuzzy identification of systems and its applications to modeling and control [J], IEEE Transaction on Systems Man & Cybenetics:1985,15:116-132.
    136. Zeng K, Zhang N Y, Xu W L, et al. A comparative study on sufficient conditions for Takagi-Sugeno fuzzy systems as universal approximates [J], IEEE Transactions on Fuzzy Systems,2000,8(6):773-780.
    137. Lu Y W, Sundararajan N, Saratchandran P. Performance evaluation of sequential minimal radial basis function neural network learning algorithm [J], IEEE Transactions on Neural Networks [J],1998,9(6):308-317.
    138. Azeem M F, Hanmandlu M, Ahmad N. Generalization of adaptive neuro-fuzzy inference systems [J], IEEE Transactions on Neural Network,2000,11 (6):1332-1346.
    139. Hunt K J. Extending the Functional Equivalence of Radial Basis Function networks and fuzzy Inference System [J], IEEE Transactions on Neural Network,1996(3):776-781.
    140. Jin Y C, Sendhoff B. Extracting Interpretable Fuzzy Rules from RBF Networks [J], Neural Processing Lett,2003,17(2):149-164.
    141. Taniguchi T, Tanaka K, Ohtake H, et al. Model Construction, Rule Reduction, and robust compensation for generalized form of Takagi-Sugeno fuzzy systems [J], IEEE Transactions on Fuzzy Systems,2001,9(4):525-538.
    142. Gomezo A F Skarmera, Delgado M, Vila M A. About the use of fuzzy clustering techniques for fuzzy model identification [J], Fuzzy Sets and Systems,1999, 106(2):179-188.
    143. Wu B L, Yu X H. Fuzzy modeling and identification with genetic algorithm based learning [J], Fuzzy Sets and Systems,2000,113(3):351-365.
    144. Angelov P P, Filer D P. An approach to on line identification of Takagi-Sugeno fuzzy models [J], IEEE Tram Syst Man and Cybem,2004,34(1):484-498.
    145. Chiu S L. Fuzzy model identification based on cluster estimation [J], Journal of intelligent and fuzzy Systems,1994,2(3):267-278.
    146. Wong C C, Chen C C.A hybrid clustering and gradient descent approach for fuzzy modeling [J], IEEE Trans on Systems, Man and Cybernetics,1999,29:686-693.
    147. Lee S J, Ouyang C S. A neuro-fuzzy system modeling with self constructing rule generation and hybrid SVD based learning [J], IEEE Trans on Fuzzy System,2003, 11(3):341-353.
    148.刘金琨.先进PID控制MATLAB仿真[M],北京:电子工业出版社,2004,9.
    149.冯冬青.模糊智能控制[M],北京:化学工业出版社,1998.9.
    150. Kevin M. Passino, Stephen Yurkovich. Fuzzy Control [M], Beijing, Tsinghua University Press,2001.
    151. C.I. Siettos, G. V. Bafas. Semiglobal stabilization of nonlinear systems using fuzzy control and singular perturbation methods [J], Fuzzy Sets and Systems,2004, 129:275-294.
    152. James Carvajal, Guanrong Chen, Haluk Ogmen. Fuzzy PID controller:Design, performance evaluation, and stability analysis [J], Information Sciences 2000,123: 249-270.
    153.汪志刚,张敬国,杨建国.电磁阀检测装置的开发及其试验研究[J],阀门,2006,(1):13-16.
    154. Keles O, Ercan Y. Theoretical and experimental investigation of a pulse-width modulated digital hydraulic position control system [J], Control Eng Pract,2002,10:645-654.
    155. Gentile N, Giannoccaro N I, Reina G. Experimental tests on position control of a pneumatic actuator using on/off solenoid valves [J], Industrial Technology, IEEE ICIT, 2002, 1(2):555-559.
    156. Daily. W.L., Hankey, W.L., Olive, R.W., and Jordan, J.M.(1956). Resistance coefficients for accelerated and decelerated flows through smooth tubes and orifices. Transactions of ASME,7,1071-1077.
    157.杨华勇.纯水液压控制阀研究进展[J],中国机械工程,2004,15(15):1400-1405.
    158.张相彬,邵军,李杰,瑞.反冲式高压电磁阀小压差蒸汽工况密封研究[J],阀门,2005,6:11-13.
    159.汪志刚,张敬国.基于有限元分析的电磁阀泄漏的研究[J].武汉理工大学学报.2003.3(27):377-400.
    160. Watit Kaewwaewnoi, Asa Prateepasen, Pakorn Kaewtrakulpong. A Study on correlation of AE signals from different AE sensors in valve leakage rate detection [J], Ecti Transactions On Electrical Eng. Electronics, and Communications,2007,5(1):113-117.
    161. Kaewwaewnoi W, Prateepasen A, Kaewtrakul-pong P.Measurement of valve leakage rate using acoustic emission [C], Proceedings of the 2nd International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 2005:412-416.
    162.王会义,高博,宋健.汽车ABC电磁阀动作响应测试与分析[J],汽车工程,2002,24(1):29-33.
    163.温明成.气动电磁阀可靠性试验方法的研究[D].大连海事大学.2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700