用户名: 密码: 验证码:
硅肥用量及硅氮配施对夏玉米生长及抗逆性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用田间试验,于2008和2009年分别研究了硅肥用量以及硅氮配施对玉米生长及抗逆性的影响。主要结果如下:
     1.适量施硅有利于增加干物质积累和叶面积指数。硅肥用量在0~90kg/hm2之间,随着硅肥用量的增加干物质积累和叶面积指数均呈增加的趋势,其中以硅肥用量为90kg/hm2最优,当硅肥达到225kg/hm2时,干物质积累量反而低于不施硅的对照。
     2.适量施硅有利于提高叶绿素荧光参数中的Fv/Fm、ΦPSⅡ、qP三项指标,而降低NPQ值。施硅量在0~90kg/hm2之间,随着硅肥用量的增加叶片Fv/Fm、ΦPSⅡ、qP均呈增加趋势,而NPQ呈下降趋势,其中施硅量90kg/hm2的处理与不施硅处理之间Fv/Fm、ΦPSⅡ、qP、NPQ差异均达显著水平。在此基础上继续增加硅肥的施用,Fv/Fm、ΦPSⅡ、qP则呈下降趋势,而NPQ则呈上升趋势。
     3.适量施硅有利于增加近地面环状气生根数、第三茎节外皮厚、室内弯折强度、抗拉弯强度,但对株高、穗位高、重心高度等影响不大。硅肥用量在0~90kg/hm2之间,随着硅肥用量的增加茎皮厚度、室内弯折强度、抗拉强度呈增加趋势,其中以施硅90kg/hm2时上述各项指标与不施硅处理相比差异最大。过量施硅不利于提高植株的抗倒性能。
     4.适量施用硅肥可增加穗长,降低秃尖长,增加穗粒数和提高百粒重,从而提高产量。不同硅肥用量处理,以施硅90 kg/hm2处理以穗长、穗数粒和百粒重的影响最佳,继续提高硅肥用量上述指标均下降,过量施硅对上述各项指标甚至有负的效应。
     5.施硅肥量于0~90kg/hm2,增加硅肥施用有增加玉米籽粒淀粉含量和脂肪的含量的趋势,但也有降低籽粒蛋白质含量的趋势,但不同处理之间差异未达显著水平。
     6.适量施用硅肥有助于降低因禾谷镰刀菌引起的夏玉米茎腐病的发病率,其中以施硅90kg/hm2处理效果最好,但当硅肥用量达225kg/hm2,施硅对该病的发病率则无明显的抑制作用。
     7.干物重和叶面积系数不同氮水平之间和不同硅水平之间差异均达显著水平,但氮硅之间的效互效应未达显著水平。
     8.植株株高、穗位高、重心高不同氮水平之间差异达显著水平,但不同硅水平之间差异未达显著水平。茎部第三茎节长不同氮水平和不同硅水平之间显异均未达显著水平;茎部第三茎节粗不同氮水平之间差异未达显著水平,但不同硅水平之间差异达显著水平;茎基部第三节茎皮厚、室内横折强度、室外抗拉强度不同氮水平之间和不同硅水平之间差异均达显著水平。但上述指标氮硅交互效应均不显著。
     9.不同施氮处理之间穗长、穗秃尖长、穗粒数、百粒重、产量差异均达显著水平;不同硅水平之间穗秃尖长、百粒重、产量差异达显著水平,穗粒数、穗长差异均不显著;上述指标氮硅配合的交互效应亦不显著。
In this paper, field experiments were conducted to investigate the effects of silicon fertilizer and combination of silicon and nitrogen fertilizer on maize growth and stress resistance in 2007-2009. The main research results as follows:
     1.The moderate amount silicon fertilizer is helps to increase the dry material accumulation and the leaf area index. Under 0~90kg/hm2 dosage, the dry material accumulation and the leaf area index has the trend to increase with the amount of silicon fertilizer, especially at 90kg/hm2 it reached the best effect, at 225kg/hm2, the dry material accumulation is lower than control.
     2.The index Fv / Fm,ΦPSⅡ, qP of chlorophyll fluorescence has the trend to increased, but NPQ reversed under 0~90kg/hm2. significant difference were showed in Fv/Fm,φpsⅡ, qP, the NPQ at 90kg/hm2 treatment. Based on this situation, more silicon fertilizer, the index Fv/Fm,φpsⅡ, qP decrease instead, but NPQ increase sustained.
     3.The moderate amount silicon fertilizer is beneficial to increases near-surface annular air root number, the third column thick-skinned, the indoor bend intensity, the anti-stretch forming intensity, but the height of the plant, the spike location and the center of gravity height received little influence. under 0~90kg/hm2, the stem thickness of skin, the indoor bend intensity, and the tensile strength appeared increase trend with the silicon. Particularly under 90kg/hm2, the above indexs will exist tremendous difference between control. Excessive fertilize even bring in negative impact on the above indicators.
     4.Bald top length is decreased, ear length, kernel Number and 100-seed weight are increased in appropriate dosage of silicon fertilizer. Ear length, kernel Number and 100-seed weight reach best amount at 90 kg/hm2 treatment, more silicon fertilizer, all the index reversed.
     5.Within the extent of 0~90kg/hm2, starch and fat of maize grain are increased with the silicon fertilizer application, and the grain protein reversed, but no significant differences are founded among different treatments.
     6.Appropriate dosage of silicon fertilizer helps to reduce attack of stalk rot caused by Fursarium graminearum, the dosage 90kg/hm2 of silicon fertilizer is best treatment effect, especially, but when it reach 225kg/hm2, no obvious inhibition effect on attack of stalk rot was founded.
     7. Dry weight and leaf area index showed significant difference between between the different nitrogen levels and different levels of silicon, but the effect of interaction between the nitrogen and silicon showed significant difference.
     8. The difference of plant height, ear height, a height of gravity center showed significant between nitrogen levels were significant, but not between levels of silicon. The difference of the length of the third basical stem node were significant between nitrogen levels and significant differences between the different silicon levels .the difference of thickness of the the third basical was not significant between nitrogen levels but was significant between silicon levels. The difference of the thickness of the third basical stem bark , the cross-fold strength, tensile strength were significant among the levels of both nitrogen or silicon. The Interactive effect between the nitrogen and silicon of all the index above were not significant.
     9. Difference of ear length, ear bald length, 100 grains weight, grain numbers per ear, yield were significant among the nitrogen treatments. Difference of the ear bald length, 100 grains weight, grain numbers per ear, yield were significant between the silicon levels. The Interactive effect between the nitrogen and silicon of all the index above were not significant.
引文
[1]夏石头,萧浪涛,彭可勤.高等植株硅素生理效应及其在农业上的应用.植物生理学通讯,2001,37(4):356-360.
    [2] D. W. Parry, M. J. Hodson, A. G. Sangster, W. C. Jones and C. H. O,Neill.Some Recent Advances in silicon Studies .Soil Biol Biochem, 2005,23(2):117-124.
    [3] Ma JF, Higashitani A, Sato H, Takeda K. Genotypicvariation in silicon concentration of barley grain. Plant and Soil. 2003, 24(9):383-387.
    [5]Deren, C.W., Datnoff, L. E. and Snyder, G. N. Variablesilicon content of rice cultivars grown on Everglades Histosols.J. Plant Nutr, 1992, 15, 2363-2368.
    [6]王荔军,郭中满,李铁津,李敏.生物矿化纳米结构材料与植物硅营养化学进展[J].化学进展,1999,19(2)119-128.
    [7] Marschner H.高等植物的矿质营养[M].李春俭,王震宇,张福锁,等译.北京:中国农业大学出版社,2001,289-306.
    [8]Takahashi, E. and Hino, K. Silicon uptake by plant with special reference to the forms of dissolved silicon. Jpn. J. Soil Sci. Manure ,1978,49:357–360.
    [9]Takahashi E, Ma JF, Miyake Y. The possibility ofsilicon as an essential element for higher plants. Comments on Agricultural and Food Chemistry, 1990,2:99-122.
    [10] Mitani, N. and Ma J. F. Uptake system of silicon in different plant species[J]. Exp& Bot. 2005,56:1255-1261.
    [11]杨良金,唐宗阳,韦德海,夏晓进.水稻施用硅肥的增产效果[J].土壤,2001,(3):166-168.
    [13]丁峰,邹忠,周翠萍.水稻施用硅肥效果初探[J].江苏农业科学,2000,(3):43-45.
    [14]宋淑玲,李开松,张东.硅肥在玉米上的应用试验初探[J].山东农业大学学报(自然科学版),2007,38(2):216-218.
    [15]高淑萍,昝林生.硅肥对小麦养分吸收与光合物质生产的影响[J].土壤肥料,2001,(5):35-37.
    [16]束爱娟,陈晓东.大白菜、青菜叶面喷施硅肥的增产效果初探[J].上海农业科技,2009,(2):75-54.
    [17]王耀晶,郭修武,高熙等.硅对草莓生长发育及产量品质的影响[J].北方园艺,2008(4):48-50.
    [18]龙斌,高红莉.硅肥在蔬菜上的肥效试验研究.周口师范高等专科学校学报[J],2000,17(5):98-104
    [19]李清芳,马成仓,尚启亮.干旱胁迫下硅对玉米光合作用和保护酶的影响[J].应用生态学报,2007,18(3)531-536.
    [20]丁燕芳,梁永超,朱佳等.硅对干旱胁迫下小麦幼苗生长及光合参数的影响[J].植物营养与肥料学报,2007,13(3):471-478.
    [21]王晨,左昆,柴琦等.干旱条件下硅对草地早熟禾生长初期的影响[J].草业科学,2008,25(7):114-117.
    [22]周秀杰,赵红波,马成仓.硅对严重干旱胁迫下黄瓜幼苗叶绿素荧光参数的影响[J].华北农学报,2007,22(5):79-81.:
    [23]邹春琴,高霄鹏,刘颖杰等.硅对向日葵水分利用效率的影响[J].植物营养与肥料学报,2005,(15) 4:547-550.
    [24]朱佳,梁永超,丁燕芳.硅对低温胁迫下冬小麦幼苗光合作用及相关生理特性的影响[J].中国农业科学2006,39(9):1780-1788.
    [25]范琼花硅对短期低温胁迫小麦叶片光合作用及其主要相关酶的影响[J].植物营养与肥料学报,2009,15(3):79-85.
    [26] Matoh, T., Kairusmee, P., Takahashi, E., Salt-induced damage to rice plants and alleviation effect of silicate[J]. Soil Sci. Plant Nutr, 1986,32: 295-304.
    [27]Bradbury, M., Ahmad, R., The effect of silicon on the growth of Prosopis juliflora growing in saline soil[J]. Plant Soil ,1990,12(5):71-74.
    [28] Ahmad, R., Zaheer, S.H., Ismail, S. Role of silicon in salt tolerance of wheat (Tritium aestivum L.) [J]. PlantSci. 1992,85:43-50.
    [29]梁永超,丁瑞兴,刘谦.硅对大麦耐盐性的影响及其机制[J].中国农业科,1999,32(6):75-83.
    [30]戚乐磊,陈阳,贾恢先.盐胁迫下有机及无机硅对水稻种子萌发的影响[J].甘肃农业大学学报,2002,37(3):272-278.
    [31]夏石头,萧浪涛,彭克勤.高等植物硅元素的牛理效应及其在农业生产中的作用[J].植物生理学通讯,2001,37(4):356-360.
    [32]Williams, D.E., Vlamis, J. Manganese toxicity in standard culture solutions[J].Plant Soil , 1957, 8: 183-193.
    [33]Baylis, A.D., Gragopoulou, C., Davidson, K.J., Birchall, J.D. Effects of silicon on the toxicity of aluminum to soybean. Commun[J]. Soil Sci Plant Anal, 1994,25: 537-546.
    [34] Ma, J.F., Sasaki, M., Matsumoto, H. Al-induced inhibition of root elongation in corn, Zeamays L. is overcome by Si addition[J]. Plant Soil,1997,188:171-176.
    [35] Cocker, K.M., Evans, D.E., Hodson, M.J.The amelioration of aluminium toxicity by silicon in higher plants: solution chemistry or an in plants mechanism[J]. Physiol. Plant. 1998a ,104: 608-614.
    [36] Hammond, K.E., Evans, D.E., Hodson, M.J..Aluminium/silicon interactions in barley (Hordeum vulgare L.) seedlings[J]. Plant Soil , 1995,173:89-95.
    [37] Hodson, M.J., Evans, D.E. Aluminium/ silicon interactions in higher plants[J]. Exp. Bot ,1995,46: 161-171.
    [38] YOSHIDA S.Fundamentals of Rice Crop Science[J].Manila:IRRI,1981,166-167.
    [39]郭伟,朱永官卜,梁永超,刘文菊,陈正.土壤施硅对水稻吸收砷的影响[J].环境科学,2006,27(7):1393-1397.
    [40]张云龙,李军.硅素物质对土壤-水稻系统中镉行为的影响[J].安徽农业科学,2007,35(10):2955-2956.
    [41]黄秋婵,黎晓峰,沈方科,阳继辉,李耀燕,张维琚.硅对水稻幼苗镉的解毒作用及其机制研究[J].农业环境科学学报,2007,26(4):1307-1311.
    [42]仲维功.杨杰,陈德杰.水稻品种及其器官对土壤重金属元素Pb,Cd,Hg,As积累的差异[J].江苏农业学报,2001,22(4):336-338.
    [43]杨超光,豆虎,梁永超等.硅对土壤外源镉活性和玉米吸收镉的影响,2005,(1):88-94.
    [44]李淑仪,林翠兰,许建光.施硅对小白菜吸收累积和迁移重金属铬的影响[J].水土保持学报,2008,22(2):66-69.
    [45]张国良,戴其根,张洪程等.硅肥和接种纹枯病菌对水稻膜脂过氧化和防御酶活性的影响[J].扬州大学学报(农业与生命科学版),2006,27(1):49-53.
    [46]张岩,史国庆,王印,王青菊,马士学.不同硅肥对水稻产量和抗病性的影响[J].北方水稻,2008,38(3):98-99.
    [47]刘平,何继萸,襁宁.硅浓度对水稻生长、含水量、根冠比和过氧化物酶活性的影响[J].贵州农业科学,1987.16(3):6-9.
    [48]柳金来,宋继娟,李福林,刘荣清.白浆型水稻土硅肥的增产效应[J].吉林农业科学,2002,27(2):27-29.
    [49]王坤,文玉能,邱治龙.氮磷钾硅肥合理配施对稻瘟病的影响[J].耕作与栽培,2003(4):40-41.
    [50]唐旭,郑毅,汤利.不同品种问作条件下的氮硅营养对水稻稻瘟病发生的影响[J].中国水稻科学,2006,20(6):663-666.
    [51]雷雨,黄云,杜哓宇,李仁江.增施硅肥对水稻抗稻瘟病的效果分析[J].安徽农业科学,2009,37(23):11044-11046.
    [52] Fawe A,Abou-Zaid M,Menzies JG,Belanger RR.Silicon-mediated accumulation flavonoid phytoalexins cucumber[J].Phytopathology,1998,88:396-401.
    [53] Cherif, M., Benhamou, N., Menzies, J.G. and Be′langer, R.R.(1992) Silicon induced resistance in cucumber plants against Pythium ultimum[J]. Physiol. Mol. Plant Pathol. 41:411-425.
    [54]杨艳芳,梁永超,娄运生等.硅对过氧化物酶、超氧化物歧化酶和木质素的影响及其抗白粉病的关系[J].中国农业科学,2003,26(7):813-817.
    [55] Fabrícioá. Rodrigues, Wayne M. Jurick II, Lawrence E. Datnoff etal。Silicon influences cytological andmolecular events in compatible and incompatible rice-Magnaporthe grisea interactions . Physiological and Molecular Plant Pathology ,2005,66( 4):144-159.
    [56]文春波,高红莉,蔡德龙等.水稻施用硅肥研究综述[J].地域研究与开发. 2003,22(3):79-31.
    [57]Dern, C. W. Plant genotype, silicon concentration, andsilicon-related responses. In: Silicon in Agriculture, 2001 ,pp. 149-158.
    [58]藏惠林.我国南方水稻土供硅能力的研究[J].土壤学报,1982,19(2):131-139.
    [59]商全玉,张文忠,韩亚东,荣蓉,徐海,徐正进,陈温福.硅肥对北方粳稻产量和品质的影响[J].中国水稻科学,2009,23(6):661-664.
    [60]张玉龙,李军,刘鸣达等.辽宁省水田土壤硅素肥力状况的初步研究土壤通报[J],2003,34(6):543-546.
    [61]宋淑玲,李开松,张东.硅肥在玉米上的应用试验初探[J].山东农业大学学报(自然科学版),2007,38(2):216-218.
    [62]张翠珍,邵长泉,孙汉水.夏玉米施用硅肥效果及适宜用量研究[J].安徽农业科学,2007,35(22):6869.
    [63]周青,潘国庆,施作家.不同时期施用硅肥对小麦群体质量和产量的影响[J].作物杂志,2001,(5):20-22.
    [64]宋合林,刘兵,崔占文,田强.不同生育时期施用硅肥对水稻产量的影响[J].现代化农业,2009,(9):18-26
    [65]赵宏儒,张彦萍,张丽清等.玉米施用硅肥的肥效初探[J].华北农学报,2004,19(21):29-31.
    [66]周鸣铮.有关水稻土养料肥力的某些研究的论述(下)[J].土壤学进展,1981,9(2):12-23.
    [67]蔡德龙,杨乔平,王中洛.水稻硅肥肥效及施肥量试验研究[J].河南科学,1994,12(4):343-347.
    [68]管思太,蔡德龙,邱士可.硅营养[J].磷肥与复肥,2000,15(5):64-66.
    [69]马同生.我国水稻土硅素养分与硅肥施用研究现状[J].土壤学进展,1990,18(4):1-5.
    [70]张效朴.粉煤灰硅钙肥的增产原因及其有效施用条件[J].土壤,1986,18(2):78-84.
    [71]傅云荣.含硅化合物作肥料的研究[J].湖北化工,1993,(4):52-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700